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Introduction 

The classical Central Limit Theorem (CLT) considers a 

sequence of independent random variables and their 

normalized sums. Here we consider a sequence of weakly 

dependent random fields on a multi-dimensional integer 

lattice. We are interested in the limiting distribution of 

normalized sums of these variables, similar to the sums in 

the classical CLT. Such problems arise in the research of 

Renormalization Group (RG) in statistical mechanics. 
The concept of RG as a scale transformation was 

introduced and studied in works of Kadanoff  
(Kadanoff, 1966; Kadanoff, 2013), Wilson and Kogut 
(1974). Originally RG was defined in terms of 
Hamiltonian (interpreted as the interaction potential). A 
rigorous formula of the renormalized Hamiltonian was 
derived by Kashapov (1980). Bertini et al. (1999) and 
Lorinczi et al. (1998) studied Gibbs property of the 
renormalized Hamiltonian. 

Other research on RG are based on limit theorems 
of probability theory. Sinai (1976) studied 
distributions invariant under the RG transformation 
and showed that Gaussian distribution is one of them. 
Newman (1980) proved the CLT on an integer lattice 
under Fortuin-Kasteleyn-Ginibre (FKG) conditions. 
Bolthausen (1982) proved the CLT on an integer 
lattice under some strong conditions. 

In this paper we study the limiting distribution of 

Gibbs random field under the RG transformations and 

we improve our results from (Kachapova and Kachapov, 

2015). We show that under the condition |λ| < C the 

limiting distribution in a high-temperature region is an 

independent Gaussian distribution. The novelty of our 

result is in finding a broad condition for the interaction 

parameter λ, for which the CLT on a lattice holds; this 

condition is |λ| < C for a constant C depending only on 

the lattice dimension. This is a simple condition and is 

easy to check and it is stated in a form preferable for 

physicists, without tedious technical details. 

The FKG conditions in the Newman's version of CLT 

(Newman, 1980) do not always hold; for example, they 

hold for the ferromagnetic Ising model but not for the 

anti-ferromagnetic one; while our theorem covers both 

models and more. 

The conditions in the Bolthausen's theorem (1982) 

involve supremum of probabilities and supremum of 

covariances, which are difficult to estimate. Also 

Bolthausen proved his theorem under the assumption of 

absolute convergence of three series and positivity of a 

fourth series, while in our paper we prove convergence of 

all necessary series. In his theorem Bolthausen did not 

consider RG transformations but only normalized sums of 

a random variable on finite sets and he proved 

convergence in distribution of these sums to a single 

random variable. In our paper we prove convergence in 

distribution of RG transformations of a random field to 

another random field. 

Mathematicians doing research in statistical 

mechanics try to create the mathematical structures that 

make foundation of physical theories. They appreciate 

rigorous, non-contradictory and transparent theories. 
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They also make effort to obtain simplest possible proofs 

for existing theorems. In our paper we use a new 

approach in proving the CLT for weakly dependent 

random fields; this approach is based on estimation of 

semi-invariants. 
We apply the techniques of Malyshev and Minlos 

(1991; Malyshev, 1980) to estimate semi-invariants of a 
random field and we use these estimations to prove a 
generalization of the CLT to weakly dependent random 
fields on a lattice. 

Semi-invariants are synonyms for cumulants and 

Ursell functions. We give the definition of semi-

invariants and briefly describe their properties in section 

2. In section 2 we also introduce other necessary 

concepts from probability theory and statistical 

mechanics and briefly prove some relevant lemmas. 

In section 3 we state the main result of this paper: the 

central limit theorem for Gibbs random field transformed 

by RG, with a brief discussion of its meaning. 

The rest of the paper develops techniques for proving 

the main theorem. In particular, in section 4 we prove an 

inequality about the number of links in a set with a 

symmetric binary relation and apply it to estimate semi-

invariants of a random field (Estimation Theorem). 

In section 5 we prove the main theorem. In 

subsections 5.1 and 5.2 we prove a series of lemmas, 

which lead to the direct proof of the main theorem in 

subsections 5.3 and 5.4. In particular, we find an 

expression for the limiting variance and show the 

equality to 0 of all other limiting semi-invariants of the 

random field transformed by RG. We complete the 

proof of the main theorem by applying Carleman 

theorem to the limiting distribution. 

2. Main Concepts 

2.1. Semi-Invariants 

Denote E(X) the expectation of a random variable X. 
Semi-invariant is a generalization of the concepts of 
expectation and covariance. The following is a slight 
modification of the definition in (Malyshev and Minlos, 
1991), pg. 27-33. 

Definition 2.1 

Suppose X1,..., Xm are random variables on the same 

probability space and M = {1, 2,..., m} is the set of their 

indices. For any S ⊆ M, we denote S ii S
X X

∈
= ∏ . We 

assume that the expectation of every such product is finite. 

A semi-invariant of random variables X1,..., Xm is: 

 

 ( ) ( ) ( ) ( )∑ −−= −

α
,XE...XE!kX,...,X m

k

m1 1

1
11

 
 

where the sum is taken over all partitions α = {S1,..., 

Sk} of the set M. By a partition we mean a set of 

disjoint, non-empty subsets of M such that their union 

equals M. 

Notation 

If I = (i1,..., im) is a sequence or a set of indices, we 

denote 
mii

\
I X,...,XX

1
= . 

Semi-invariants characterize the distribution and 

dependence of random variables. Other terms for a semi-

invariant are cumulant and Ursell function. 

Example 2.1 

Suppose X, X1, X2 and X3 are random variables. 

Denote µ the expectation of X and σ the standard 

deviation of X. Then the following hold: 

 

1) 〈X〉 = µ. 

2) 〈X1, X2〉 = 〈X1 X2〉 - 〈X1〉〈X2〉 = cov (X1, X2), the 

covariance of X1 and X2. 

3) 〈X1, X2, X3〉 = 〈X1X2 X3〉 - 〈X1〉〈X2X3〉 - 〈X2〉〈X1X3〉 
- 〈X3〉〈X1X2〉 + 2〈X1〉〈X2〉〈X3〉. 
 

4) 〈X, X〉 = σ 2
, the variance of X. 

 

5) 〈X, X, X〉/σ 3
 equals the skewness of X. 

 

6) 〈X, X, X, X〉/σ 4
 equals the kurtosis of X. 

 

Lemma 2.1 

1. A semi-invariant is a symmetrical and multi-linear 

functional on random variables 

2. If 0 < n < m and two random vectors (X1,..., Xn) 

and (Xn+1,..., Xm) are independent of each other, then 

〈X1,..., Xn, Xn+1,..., Xm〉 = 0. 

 

3. For set M = {1, 2,..., m}: 

( ) \

S

\

SMM k
X...XXXE ∑==

α
1

, 

 

where the sum is taken over all partitions α = 〈S1,..., Sk〉 
of the set M. 

4. If m >1 and at least one of random varables X1,..., 

Xm is constant, then 〈X1,..., Xm〉 = 0. 

 

Proof can be found in (Malyshev and Minlos, 1991). 
The following is a well-known lemma about semi-

invariants of normal distribution. 

Lemma 2.2 

Suppose random variables Y1, Y2,..., Ym have an 
independent multivariate normal distribution and M = 
{1, 2,..., m} is the set of their indices. 
 

1. If k ≥ 3 and i1,..., ik ∈ M, then 0
1

=
kii Y,...,Y . 

2. If i, j ∈ M and i ≠ j, then 〈Yi, Yj〉 = 0. 
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Definition 2.2 

We say that random variables Y1,..., Ym satisfy the m-

variate Carleman condition if: 

 

( ) ∞=∑
∞

=

−

1

2

1

2
n

n
nM , where ∑

=

=
m

i

k

ik YM
1

.          (1) 

 

For example, if X is bounded, then it satisfies 

Carleman condition. The logarithmic normal distribution 

does not satisfy Carleman condition and is not defined 

uniquely by its moments. In order to prove that random 

variables X1, X2,..., Xm with identical distribution satisfy 

the m-variate Carleman condition, it is sufficient to 

check the 1-variate Carleman condition for only one of 

the random variables. 

We will use the following version of Carleman theorem. 

Theorem 2.1. (Carleman theorem) 

Suppose random vectors (X1,..., Xm) and (Y1,..., Ym) 

have equal corresponding moments and the variables 

Y1,..., Ym satisfy the m-variate Carleman condition. Then 

the random vectors (X1,..., Xm) and (Y1,..., Ym) have the 

same probability distribution. 

Lemma 2.3 

If a random variable Z has the standard normal 

distribution, then it satisfies the 1-variate Carleman 

condition. 

Proof 

Clearly, 〈Z 2k〉 = (2k−1)!! If integer k ≥ 1, then 

(2k−1)!! ≤ k
k
. Therefore 

 

∞=≥ ∑∑
∞

=

∞

=

−

11

2

1

2 1

kk

kk

k
Z . 

 

Similarly it can be proven that a random variable 

with exponential distribution satisfies the 1-variate 

Carleman condition. 

Lemma 2.4 

Suppose random variables X1, X2, ..., Xm are 

uncorrelated, identically distributed and satisfy the 

following condition: 
 

0
1

=
mii X,...,X  for  k ≥ 3;  1 ≤ i1 ,…, im ≤ m. 

 
Then X1, X2, ..., Xm are independent and have a 

multivariate normal distribution. 

Proof 

Denote µ = 〈Xi〉, σ
2
 = 〈Xi, Xi〉. Consider independent 

random variables Z1, Z2, ..., Zm, where each Zi has the 

standard normal distribution and denote Yi = σZi. Then 

Y1,..., Ym are independent and have a multivariate normal 

distribution. 

By Lemma 2.3 each Zi satisfies the 1-variate 

Carleman condition and so does each Yi. Since Y1,..., Ym 

are identically distributed, they satisfy the m-variate 

Carleman condition. 

By Lemma 2.2, the random vectors (Y1, ..., Ym) and 

(X1−µ ,..., Xm−µ) have the same corresponding semi-

invariants and the same corresponding moments, since 

semi-invariants uniquely determine moments. So by 

Carleman theorem, the random vectors (Y1, ..., Ym) and 

(X1−µ ,..., Xm−µ)  have the same distribution, which is 

an independent multivariate normal distribution. Hence 

the random vector (X1, ..., Xm) has an independent 

multivariate normal distribution. 

2.2. Interaction Model in Statistical Mechanics 

For the rest of the paper we fix a natural number v ≥1 

and consider a v-dimensional integer lattice: 

 

ℤ
 ν  

= {(t1,…, tν) | ti ∈ℤ, i = 1, 2,…, ν} 

 

with the distance between any two points s and t 

defined by: 

1

| |
v

i i

i

s t s t
=

− = −∑ . 

Denote ( )0 0,...,0= , the origin. Fix a set D⊆ℝ with at 

least 2 elements and denote Ω  = {ω | ω: ℤ
 ν

 →D}. An 

element ω of Ω is called a configuration and is 

interpreted as a state of a physical system in statistical 

mechanics. 

For each t∈ℤ
 ν
 a function Xt : Ω→D is defined by the 

following: 

 

( ) ( )tX tω ω= . 

 

We define Σ as the σ-algebra generated by sets of the 

form {ω∈Ω | ω(t) ≤ a} for all t∈ℤ
 ν

 and a∈D. We fix a 

probability measure P0 on (Ω, Σ) such that: 

 

for any a∈D, P0 (ω(t) < a) does not depend on t          (2) 

and 

for any a1,…, an ∈D and distinct t1,…, tn ∈ℤ
 ν
: 

P0 (ω(t1) < a1,…, ω(tn) < an) 
 

                   = P0 (ω(t1) < a1) ⋅… ⋅ P0 (ω(tn) < an).         (3) 
 

Then {Xt | t ∈ℤ
 ν

} is an independent random field on 

the probability space (Ω, Σ, P0) and this field is 

translation invariant. Clearly, the random variables Xt, 

t ∈ℤ
 ν

, are identically distributed with respect to the 

measure P0.
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We also assume that the following conditions are 

satisfied: 
 

1 2 3th

t
each X  has a finite moment of m order,m = , , ,…;  (4) 
 

each  Xt  satisfies the 1-variate Carleman condition: 
 

( ) ∞=∑
∞

=

−

1

2

1

0

2

n

kk

tX . (5) 

 

We denote 〈⋅〉0 the expectation with respect to the 

measure P0. 

Note 1  

There always exists a probability measure P0 

satisfying (2) - (3) and for which {Xt | t ∈ℤ
 ν

} satisfies 

the conditions (4) - (5). Here is an example. Let F(x) be a 

probability distribution function satisfying Carleman 

condition, that is: 

 

( ) ( )
1

2
2

1

, kn
n k

n

M where M x dF x
∞ +∞−

−∞
=

= ∞ =∑ ∫ . 

 

As mentioned before, the normal and exponential 

distributions are some of the distributions satisfying 

Carleman condition. 

Probability measure P0 is defined by: 

 

P0 (ω(t) < a) = F(a) and equality (3). 

 

Then the conditions (2) - (5) are satisfied. 

We fix an increasing sequence ΛN of finite subsets of 

ℤ
 ν 

 such that ΛN ⊂ ΛN+1 for any N∈ℕ  and
 

 

=
∞

=
∪

1N
NΛ  ℤ

 ν
. 

 

Denote R = {{s, t}| s, t∈ ℤ
 ν

 and ||s−t|| = 1}. R is the 

set of all pairs of neighbouring nodes in the lattice ℤ
 ν

. 

Denote RB = {u∈ℤ
 ν

 | one coordinate of u is 1 and the 

others are 0}. RB is the standard basis in ℝ
 ν
. 

Definition 2.3 

Interaction model is defined by a triple of objects 

(N, λ, ϕ), where 

(i)   N∈ℕ, N ≥ 1; 

(ii)  λ∈ℝ; 

(iii)  for any u∈RB, ϕu: ℝ
2
 → ℝ is a Borel function such 

that |ϕu| ≤ 1. 
 

The interaction model includes a set ΛN (as defined 

before), potential Φ and interaction energy UN 

defined as follows. 

1) For any B∈R we define a random variable ΦB on 

the probability space (Ω, Σ, P0). Any B∈R has the form 

B = {r, r + u}, where u∈RB, so we define: 

 

( ) ( ) ( )( ),B u r r uX Xω ϕ ω ω+Φ = . 

 

Such ΦB represents interaction between neighbours r 

and r + u. 

2) Function UN: Ω→R is defined by the following: 

 

( ) ( )
, N

N B

B R B

U ω λ ω
∈ ⊂Λ

= − Φ∑ . (6) 

 

UN(ω) characterizes the energy of configuration ω 

in ΛN.  

This completes the definition of the interaction 

model. 

Note 2 

In the interaction model a union of the random fields 

{Xt | t ∈ℤ
 ν
} and {ΦB| B∈R} is translation invariant. This 

means: for any t1,..., tm, r ∈ℤ
 ν

 and any B1,..., Bn ∈R the 

random vectors ( )
1 1

,..., , ,...,
m nt t B B

X X Φ Φ  and 

( )
1 1

,..., , ,...,
m nt r t r B r B r

X X
+ + + +

Φ Φ  have the same distribution 

(here for Bi = {si, ti}, 
i

B r+  denotes {si + r, ti + r}). 

The interaction model describes a physical system 

with many particles represented by points of the set ΛN 

in the integer lattice. The random field Xt describes some 

property of the physical system. The function UN 

characterizes the interaction energy of the system and |λ| 

is proportional to the inverse temperature of the system. 

The parameter λ also characterizes the strength of 

interaction between particles and we assume that only 

neighbouring particles interact. 

Example 2.2 

The statistical model with λ = 0 describes a physical 

system with no interaction between its elements, e.g., 

ideal gas. 

Example 2.3 

Potts model with parameter q (q∈ ℕ, q ≥ 1). 

It is a particular case of interaction model, where 

D = {1, 2,..., q} and the probability measure P0 is 

defined by: 

 

P0 (ω(t) = i) =
q

1
, i = 1, 2,…, q, and equality (3). 
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Since D is finite, each Xt satisfies the Carleman 

condition. The rest of the model is defined by: 
 

( ) ( ) ( )

{ } ( ) ( ) ( )( )
( )

{ }
( ) ( )( )

,

, ; ,

1 ,
, , , ,

0 .

,

,

N

u

s ts t

N s t

s t R s t

if x y
x y x y where x y

if x y

So X X and

U X X

ϕ δ δ

ω δ ω ω

ω λ δ ω ω
∈ ∈Λ

=
= = 

≠

Φ =

= − ∑
 

 

2.3. Gibbs Modification 

Gibbs modification was introduced in (Malyshev and 

Minlos, 1991). Since it is important for our paper, we 

also provide the definition. 

Definition 2.4 

For the interaction model given by (N, λ, ϕ) we define 

the associated probability space (Ω, ΣN, Pλ, N) as follows: 
 

1. The sample space is the set Ω as defined before. 

2. ΣN is the sigma-algebra generated by Xt , t∈ΛN. 

3. For any event A∈ΣN the probability is defined by: 
 

( ) 0
,

0

N

N

U

A

N
U

I e
P A

e
λ

−

−
= , 

 
where IA denotes the indicator of event A. 

The probability measure Pλ,N is called (finite) Gibbs 

modification on ΛN. This completes the definition. 

 

Note: Clearly, Pλ, N (Ω) 1
1

0

0 =
⋅

=
−

−

N

N

U

U

e

e
. 

 

Example 2.4 

Ising model with parameters N, λ and h is usually 

defined with probabilities: 

P(ω(t) = 1) = P(ω(t) = −1) =
2

1
 

and potential WN = UN + VN, where  

 

( ) ( )
{ }

∑
Λ∈∈

−=
Nt,s,Rt,s

tsN XXU ωωλ   and  ( )∑
Λ∈

−=
Ns

sN XV ωλ . 

 

ΣN is defined in the same way as in the interaction 

model and probability measure PG is defined by: 

 

PG (A)

0

0

N

N

W

W

A

e

eI

−

−

=   for any A∈ΣN , 

where the expectations are with respect to the probability 

measure P. 

We can define the Ising model as a particular case of 

interaction model. We take D = {-1, 1}; P0 is defined by: 

 

P0 (ω(t) = a) 
hh

ha

ee

e

+
= −

−

  (a = ±1 ) and equality (3); 

ϕ u (x, y) = xy. 

 

So Φ{s, t}(ω) = Xs (ω) Xt (ω)  and 

 

( ) ( )
{ }

∑
Λ∈∈

−=
Nt,s,Rt,s

tsN XXU ωωλ . 

 

Then we show that the probability space (Ω, ΣN, Pλ,N) 

is the same as (Ω, ΣN, PG) in the usual definition of the 

Ising model. 

Proof  that PG = Pλ,N.  

Fix A∈ΣN. 
 

( ) ( ) ( )

( ) ( )

( ) ( )

( )

( ) ( )

( )
( )

| |

| |

| |

| || |

| |

1

2

1

2

1

2

1

2

2

NN

N N

N

ssN N

N

sN

N

N

NN

N

N

N

N

WW

A A

U V

A

h X
U

A

hXU

A s

h h
U h s

h h
A s

h sh h
U

h h

s

I e I e P

e

e e

e e

e e
e e

e e

e e e
e

e e

ω

ω

ω ω

ω

ωω

ω

ω

ω

ω ω

ω

ω
ω

ω ω

∈Λ

−−

∈Ω

− −

Λ
∈

−−

Λ
∈

−−

Λ
∈ ∈Λ

ΛΛ −
− −

−
∈ ∈Λ

Λ −−
−

−
∈

=

=

∑
=

 
=   

 

  + =      +     

 +
=  

+ 

∑

∑

∑

∑ ∏

∑ ∏

( ) ( )
| |

0

| |

0

2

2

N

N

N

N

N

A

h h
U

A

h h
U

A

e e
e P

e e
I e

ω

ω

ω

ω

∈ Λ

Λ−
−

∈

Λ−
−

 
  
 

 +
=  

 

 +
=  

 

∑ ∏

∑

 

Similarly, 
02

N

N

N U
hh

W
e

ee
e

−
−

−








 +
=

Λ

. 

Therefore 

( ) ( )0
,

0

NN

N
N

UW
AA

G N
W U

I eI e
P A P A

e e
λ

−−

− −
= = = . 

Lemma 2.5 

Suppose λ = 0. Then the following hold. 

1. P0,N = P0 on ΣN. 
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2. {Xt | t∈ΛN} is an independent random field with 

respect to P0,N. 
 

3. The distribution of the random field {Xt | t∈ΛN} 

with respect to Gibbs modification P0,N does not 

depend on N. 
 

4. Suppose T = {t1,…, tn}⊂ ΛN, S = {s1,…, sm} ⊂ ΛN 

and T∩S = ∅. Suppose Fi (i = 1,…, k) are random 

variables dependent on 
1

,...,
nt t

X X  and Gj (j = 1,…, p) are 

random variables dependent on 
1

,...,
ms s

X X . Then the 

random vectors (F1,…, Fk) and (G1,…, Gp) are 

independent of each other with respect to P0. 

 

Proof 

Let λ = 0. Then UN = 0. 

1. For any A∈ΣN,  P0,N (A) = 

0

0

0

0

AI e

e
 = 

0AI = P0(A). 

2. This part holds because the random variables Xt, 

t∈ΛN, are independent with respect to the measure P0. 

3. Follows from part 1. 

4. Follows from part 2. 

 

2.4. Gibbs Measure and Thermodynamic Limit 

The definition of Gibbs measure is given in 

(Dobrushin, 1968); it is a probability measure on (Ω, 

Σ). For our results it is sufficient to consider Gibbs 

measure Pλ as the limit of Gibbs modifications Pλ,N as 

N→∞: 

 

( ) ( )APlimAP N,
N

λλ
∞→

=   for any A∈Σ.                                (7) 

 

Malyshev and Minlos (1991) established necessary 

and sufficient conditions when the equality (7) holds; 

the results in (Kashapov, 1980) imply that the equality 

(7) holds for all λ with |λ| < C, where C is the 

constant from our main theorem (Theorem 3.1). 

Let us see what happens to the interaction model and 

associated probability space when N→∞. Clearly, the 

finite set ΛN transforms into the lattice ℤ
 ν
, ΣN transforms 

into Σ and the Gibbs modification Pλ,N transforms into 

the Gibbs measure Pλ.
 

Definition 2.5 

The thermodynamic or macroscopic limit of 

interaction model is the lattice ℤ
ν
 together with the 

limiting probability space (Ω, Σ, Pλ).
 

Clearly, {Xt | t ∈ℤ
 ν

} is a random field on the 

limiting probability space. We denote 〈⋅,…,⋅〉λ semi-

invariants with respect to the Gibbs measure Pλ. 

2.5. Renormalization Group 

The following concept was introduced by Kadanoff 

(1966). 

Definition 2.6 

Fix a natural number k >1 and a real number α ≥ v. 

For each r = (r1, r2,..., rv)∈ℤ
 ν

 consider a cube k

r
C  of 

side length k with vertex kr: 
 

k

rC = { t ∈ℤ
 ν
 | kri ≤ ti < k(ri +1), i = 1, 2,…, v}. 

 
A renormalization group (RG) with parameters k and 

α is a transformation that assigns to each random field {Zt 

| t ∈ℤ
 ν
} a new random field { ( )k

rY  | r∈ ℤ
 ν 

} given by: 

 

( ) ( )2

k
r

k

r t t

t C

Y k Z Z
α

λ

−

∈

= −∑ . 

 
RG is a scaling transformation. It allows to study a 

physical system at different distance scales, such as 

atomic and molecular levels. Details of its physical 

interpretation can be found in (Kadanoff, 2013). 

We are interested in the distribution of the result 
( )k

rY of the RG transformation of the field {Xt | t ∈ℤ
 ν
}. 

3. The Central Limit Theorem for the Field 

Xt Transformed by RG 

Theorem 3.1. (Main Theorem) 

Consider the thermodynamic limit of interaction 

model with parameter λ. Suppose a renormalization 

group with parameters k and α transforms the random 

field {Xt | t ∈ℤ
 ν
} into a random field { ( )k

iY  | r∈ ℤ
 ν 

}.  

There exists a positive constant C such that for any  

|λ| < C the following hold. 

1. Suppose α > v. Then the field 
( )k

r
Y → 0 in mean 

square as k →∞. 

2. Suppose α = v. Then as k→∞, the random field  

{ ( )k

iY | r∈ℤ
 ν 

} converges in distribution to an independent 

random field with Gaussian distribution (i.e., any finite 

subset of the field has a multivariate normal 

distribution). Each of the variables of the limiting field 

has 0 expectation and the positive variance given by: 
 

0

n

n

n

V Vλ
∞

=

= ∑ , 

 
where each coefficient Vn is a finite sum of semi-

invariants of Xt and ΦB with respect to P0 (t∈ℤ
ν
, 

B∈R). Exact formula for coefficients Vn is formula 

(27) in subsection 5.4. 
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Proof is given in section 5. 

This theorem can be considered as a generalization of 

the classical Central Limit Theorem (CLT). Instead of a 

sequence of independent random variables we have a 

weakly dependent random field {Xt | t ∈ℤ
 ν
}. It is weakly 

dependent because |λ| is small and λ characterizes the 

strength of interaction. 

The classical CLT considers a sequence of 

independent identically distributed random variables with 

finite variances and states that their normalized sums 

converge in distribution to a normal random variable. 

Theorem 3.1.2) also states convergence in distribution and 

that the limiting distribution is normal but in this case it is 

the distribution of an independent normal field. 

In other words, Theorem 3.1 states: in systems with 

weak interaction the distribution of the normalized sums 

over big regions is approximately independent and normal. 

4. Estimation of Dependencies 

4.1. Estimation Theorem 

The proof of the main theorem in Section 5 is based on 

estimations of semi-invariants. In this section we prove an 

inequality (Theorem 4.1), which will be applied to 

estimating semi-invariants. This was inspired by Estimates 

of Intersection Number in (Malyshev and Minlos, 1991). 

Here we have improved our estimate from (Kachapova and 

Kachapov, 2015) and simplified the proof. 

In this section we consider a countable set � with a 

reflexive, symmetric binary relation. If elements a, b of � 

are in this relation, we say that a and b are linked. Thus, 

any element of � is always linked to itself (reflexivity). If 

a is linked to b, then b is linked to a (symmetry). 

Denote l(a) the number of elements in � that are 

linked to a. In this section we assume that there is a 

constant L such that l(a) ≤ L for all a∈�. 

Definition 4.1 

For any sequence α = (a1,..., am) of elements of � we 

use the following notations: 

 

1. J(α) = {i1,..., ik} is the set of indexes of elements of 

α when the elements are written without repetition. 

2. ni (α) is the number of elements of α that equal ai 

(i = 1,..., m). This number is called the multiplicity of ai. 

3. υi (α) is the number of elements of α that are 

linked to ai (i = 1,..., m). 

Theorem 4.1. (Estimation Theorem) 

For any sequence α of elements of �: 

 

( )
Lln

n
lnn

Jj j

j

j ≤









∑

∈ α

υ

α
1

, (8) 

where |α| = m is the length of the sequence α, nj = nj(α) 

and υj = υj (α). 

This estimate cannot be improved. 

Proof 

Fix a sequence α = (a1,..., am) of elements of �. 

Denote J = J(α) for brevity. We define a link matrix dij 

as follows: 





=
.otherwise

,atolinkedisaif
d

ji

ij
0

1
 

 
Then for any j = 1,..., m: 

 

( )ij j

i J

d l a L
∈

≤ ≤∑  and  

 

∑∑ ∑∑ ∑∑
∈∈ ∈∈ ∈∈

≤==
Jj

j
Jj Ji

ijj
Ji Jj

jij
Ji

i nLdnndυ . 

 

Thus, 

 

mL
Ji

i ≤∑
∈

υ . (9) 

 
Next we use Jensen inequality, which states for a 

concave function f and numbers x1,..., xn in its domain: 
 

( )
1 1

1 1n n

i i

i i

f x f x
n n= =

 
≤  

 
∑ ∑ . 

 
We apply the Jensen inequality to the concave 

function logarithm and 
i

i
i

n
x

υ
=   (i = 1, …, m): 

 

∑∑
=∈









=









 m

i i

i

Jj j

j

j
n

ln
mn

lnn
m 1

11 υυ
 

 











≤








≤ ∑∑

∈= Jj j

j

j

m

i i

i

n
n

m
ln

nm
ln

υυ 11

1

 

 

LlnmL
m

ln
m

ln
Jj

j =






≤







= ∑

∈

11
υ  by (9). 

 
The following example shows that the estimate 

cannot be improved. � is an arbitrary countable set and 

m is any positive integer. We take α = (a1,..., am), where 

all ai are distinct. We assume that any ai and aj are linked 

(i, j = 1,..., m) and there are no other links in �. Then for 

each i = 1,..., m, ni (α) = 1, υi (α) = l(ai) = m and L = m. 

The left-hand side of (8) is: 
 

1 1
1 ln ln ln ln

j J

m m m m L
m m∈

⋅ = ⋅ ⋅ = =∑ . 
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4.2. Application of the Estimation Theorem to 

Semi-Invariants 

First we introduce some notations. We take � = 

R∪{{t}| t∈ℤ
 ν
 }. Two subsets T and S of ℤ

ν
 are said to be 

linked if T∩ S ≠ ∅. By Lemma 2.5.4), if sets T and S are 

not linked, then they correspond to independent random 

vectors. So links correspond to possible dependencies of 

random vectors. 

Any element of the form {t} is linked to itself and to 

2v elements of the form {t, r}, so l({t}) = 2v +1. Any 

element of the form {r, s} is linked to elements {r}, {s}, 

2v elements of the form {r, t} and 2v elements of the 

form {s, t}, so the total is 4v +1 (because the element {r, 

s} is counted twice). Then L = 4v +1 (each element of � 

is linked to at most 4v +1 elements). 

Definition 4.2 

1. A family (of elements of the set �) is a set of 

pairs: 
 

� = {(T1, n1),…, (Tm, nm)}, 
 

where T1,..., Tm are distinct elements of � and ni ≥1 for 

each i = 1,..., m. 

2. The number ni is called the multiplicity of element 

Ti in the family � . 

3. We denote the length of the family � as 

|�|= n1 + n2  +… +  nm 

 

and  �! = n1! ⋅ n2 ! ⋅…⋅nm ! 
 

We use letters �, Ψ ,... for families. The same 

elements T1,..., Tn∈ � can be represented as a sequence 

or a family. 

Definition 4.3 

1. Any sequence α = (T1,..., Tn) reduces to a family: 
 

( ) ( ){ }qq n,T,...,n,T 11
, 

 

where 1 ,..., qT T are the elements T1,..., Tn written without 

repetitions and each ni is the number of times that 
i

T is 

repeated in α ; n1 +...+ nq = n. 

For each family � of length n there are n!/�! 

sequences that reduce to �. 

2. If a sequence α  reduces to a family � we denote   

α ! = �! 

Lemma 4.1 

Denote 0 0
| |kkM X=  and 

 

( ) { }
1

, max ...
lk k

C m X M M= ⋅ ⋅ , 

where the maximum is taken over all sequences of 

numbers k1,…, kl  with  k1 + … + kl = m. 

Denote C1 = 3e (4v +1). For any sequence β = (B1,…, 

Bn) of elements of R and any sequence τ = (t1,…, tm) of 

elements of ℤ
 ν
, the following holds: 

 

( )( ) !!CX,C,X \\ βττ βτ
βτ

+≤Φ 1
0

, where   

 

0

\\ ,X βτ Φ
011 nm BBtt ,...,,X,...,X ΦΦ= , the semi-

invariant with respect to P0. 

Proof 

Consider a sequence α = (A1,…, Ap) of elements of � 

and the set I = {1,…, p} of their indices. Consider 

random variables F1,…, Fp such that each Fi depends on 

Xt, t∈Ai (i = 1,…, p). 

Denote ∏
∈

=
Si

iS FF  for any S⊆ I and denote 

 

D(α)
001 lSS F...Fmax ⋅⋅= , 

 
where the maximum is taken over all partitions {S1,…, 

Sl} of I. If each random variable Fi (i = 1,…, p) satisfies 

Carleman condition, then D(α) < ∞. 

Suppose the sequence α  reduces to a family � = 

( ) ( ){ }1 1
, ,..., ,

q q
A n A n  and J = J(α). Theorem 1 on pg. 69 

of (Malyshev and Minlos, 1991) implies that: 
 

( ) ( )∏
∈

≤
Ii

i

\ DF υαα 3
2

3

0
, where 

0
1

0
p

\ F,...,FF =α . 

Then 
 

( ) ( ) jn

Jj
j

p\ DF ∏
∈

≤ υαα 3
2

3

0
. (10) 

 
By the Estimation Theorem (Theorem 4.1) we have: 

 

( ) =







∏

∈

jn

Jj
jln υ ∑∑

∈∈

+≤
Jj

jj
Jj

jj nlnnLlnlnn αυ , 

 
where L = 4v +1. So 
 

( ) ( )∏∏
∈∈

=
∑

⋅≤ ∈

Jj

n

j

nlnn
Lln

Jj

n

j
jJj

jj

j nLee
ααυ . 

 

From Stirling formula we have 
1

!
2

k kk k e< for any 

positive integer k. Then by (10): 
 

( ) ( ) jn

Jj
j

\ nLDF ∏
∈

≤ αα
α α 3

2

3

0
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( )( ) ( )( ) !eLDe!nLD jn

Jj
j ααα αα

33 =< ∏
∈

. 

Thus, 
 

( )( ) !CDF \ αα α
α 1

0
≤ .  (11)         

 

Now we take α = τ ∗β = (t1,…, tm, B1,…, Bn), a 

concatenation of the sequences τ and β. We take Fi = 

it
X for i = 1,…, m and Fm+j = 

jB
Φ for j = 1,…, n. Then 

by (11): 

 

( )( ) !!CD,X \\ βτα βτ
βτ

+≤Φ 1
0

                         (12) 

 

Since each | |
jB

Φ ≤ 1, we have D(α) = D(τ ∗β) ≤ 

{ }1 0 0

max | | ... | |
lS S

X X⋅ ⋅ , where the maximum is 

taken over all partitions {S1,…, Sl} of τ = (t1,…, tm). For 

a fixed partition {S1,…, Sl} denote ki = |Si|, i = 1,…, l; 

then k1 +… + kl = m. 

From Hölder inequality we get by induction for any 

random variables Y1,…, Yn: 
 

( ) ( )
1 1

1 10 0 0
... | | ... | |

n nn n

n n
Y Y Y Y⋅ ⋅ ≤ ⋅ ⋅ . 

 

So each 0
0 0

i

i i

k

S k
X X M≤ = because all Xt have 

the same distribution. Therefore 
0 0

...
i lS S

X X⋅ ⋅  

1

...
lk k

M M≤ ⋅ ⋅ and D(α) ≤ C(m, X). Then by (12): 

 

( )( ) !!CX,mC,X \\ βτβτ
βτ

+≤Φ 1
0

. 

 

5. Proof of the Central Limit Theorem for 

the Interaction Model 

5.1. Semi-Invariants with Respect to Gibbs 

Measure 

In this subsection we prove a series of lemmas about 

estimates and semi-invariants and later we use these 

lemmas to prove the main theorem. 

Definition 5.1 

Suppose Ψ  = {(B1, n1),..., (Bk, nk)} is a family of 

elements of R. 

1. We define its associated graph G( Ψ ) as follows. 

For each i = 1,..., k, Bi has the form Bi = {ri, si}. The 

points ri and si belong to the set of vertices of G( Ψ ) and 

there are ni edges between ri and si. There are no other 

vertices or edges. 

2. We say that the family Ψ  connects a sequence τ 

of elements of ℤ
ν
 if the associated graph G( Ψ ) is 

connected and the set of its vertices contains all elements 

of the sequence τ. 

Thus, the associated graph has | Ψ | = n1 +...+ nk edges. 

The mapping ( )ΨΨ G֏  is a one-to-one mapping of 

families of elements of R to this type of graphs on ℤ
ν
. 

A semi-invariant is a symmetrical functional, the 

order of random variables is not important. If a sequence 

 β of elements of R reduces to a family Ψ , we denote 

00

\\\\ ,X,X βττ Φ=ΦΨ . 

Lemma 5.1 

If a family Ψ  of elements of R does not connect a 

sequence τ of elements of ℤ
ν
, then 0

0
=ΦΨ

\\ ,Xτ . 

Proof 

Denote G = G( Ψ ). Fix a sequence β that reduces to 

the family Ψ . Suppose Ψ  does not connect τ. There are 

two cases. 

Case 1. Some elements of τ are not vertices of G. 

Without loss of generality we can assume that exactly 

first q elements of τ are not vertices of G; τ = (t1,..., tq, 

tq+1,..., tm) and  β = (B1,..., Bn). Then by Lemma 2.5.4), 

the random vectors ( )
1

,...,
qt t

X X  and 

( )
nmq BBtt ,...,,X,...,X ΦΦ

+ 11
 are independent of each other 

and by Lemma 2.1.2): 

 

0
00 111

=ΦΦ=Φ
+ nmqq BBtttt

\\
,...,,X,...,X,X,...,X,X βτ . 

 

Case 2. All elements of τ are vertices of G but G is not 

connected. 

Then G = G1∪ G2, where G1 and G2 are disjoint 

graphs. Without loss of generality we can assume: τ = 

(t1,..., tq, s1,..., sl) and β = (A1,..., Am, B1,...,Bn), where G1 

contains t1,..., tq and all elements of A1∪...∪ Am as 

vertices; G2 contains s1,..., sl and all elements of B1 ∪...∪ 

Bn as vertices. By Lemma 2.5.4), the random vectors 

( )
1 1

,..., , ,...,
q mt t A A

X X Φ Φ  and ( )
1 1

,..., , ,...,
l ns s B B

X X Φ Φ  

are independent of each other and by Lemma 2.1.2): 

 

0

\\ ,X βτ Φ

0
01111

=ΦΦΦΦ=
nlmq BBssAAtt ,...,,X,...,X,,...,,X,...,X . 
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The following lemma is mentioned by several authors 

without a proof or with a complicated proof. Here we 

provide a short, simple proof giving an explicit value for 

the estimation constant. 

Lemma 5.2 

Denote C2 = 4v
2
. Fix a sequence τ of points in ℤ

ν
 and 

a natural number n ≥ 1. The number of families Ψ  such 

that | Ψ | = n and Ψ  connects τ, is not greater than (C2)
n
. 

Proof 

For a family Ψ  = {(B1, n1),..., (Bk, nk)} consider the 

associated graph G = G( Ψ ). A new graph G′ is 

obtained from G by adding for every edge another 

edge with the same ends. So G′ has 2n edges. Each 

vertex of G′ has an even degree and G′ is connected, 

hence G′ has an Eulerian trail, that is a closed path 

which includes every edge of the graph exactly once; 

the length of such a path is 2n. 

Therefore the number of the families with | Ψ | = n 

that connect τ, is not greater than the number of paths 

with 2n steps through τ going along edges of the lattice 

ℤ
ν
. There are at most 2v directions at each vertex. 

Therefore the number of such paths is not greater than 

(2v)
2n

 = (C2)
n
 for C2 = (2v)

2
. 

For a sequence τ = (t1,..., tm) denote 
N,

\X
λτ  

=
1 ,

,...,
mt t

N

X X
λ

, the semi-invariant with respect to Pλ,N 

and 
λτ

\X =
1

,...,
mt t

X X
λ

, the semi-invariant with 

respect to Pλ. In the Definition 2.4 we expressed the 

measure Pλ,N in terms of measure P0. The following 

lemma describes a connection between semi-invariants 

with respect to these measures. 

Lemma 5.3 

Denote C3 = (2C1C2)
−1

, where C1 is the constant from 

Lemma 4.1 and C2 is the constant from Lemma 5.2. Fix 

N > 1 and a sequence τ of points in ΛN. The following 

equality holds: 

 

,,X
!

X \\

n

n

N,

\

0
0

1
Ψ

∞

= Ψ

Φ
Ψ

= ∑ ∑ τλτ λ                                (13) 

 

where the finite inner sum is taken over all families Ψ = 

{(B1, n1),…, (Bk, nk)} such that | Ψ | = n, Ψ connects τ 

and each Bi ⊂ ΛN. The series (13) converges absolutely 

and uniformly for λ∈[−C3, C3]. 

Proof 

The semi-invariant with respect to Gibbs measure can 

be expanded in Taylor series: 

( )
,U,...,U,X,...,X,X

!n

X,...,X,XX

timesn

NNttt
n

n

N,
ttt

N,

\

m

m

0

0
21

21

1

�����∑
∞

=

−
=

=
λλτ

                 (14) 

 

where 
, N

N B

B R B

U λ
∈ ⊂Λ

= − Φ∑  is the potential of the 

interaction model. 

The proof of (14) can be found in (Malyshev and 

Minlos, 1991), pg. 34. Expanding (14) we get: 

 

( )

∑ ∑

∑∑∑

∞

= Λ⊂∈

Λ⊂∈Λ⊂∈

∞

=

ΦΦ=

Φ−Φ−
−

=

0
0

0
0

1

11

11

11

1

n Beach,RB,...,B
BBtt

n

B,RB
B

B,RB
Btt

n

n

N,

\

Nin

nm

Nnn

n

N

m

.,...,,X,...,X
!n

,...,,X,...,X
!n

X

λ

λλ

λτ

 

 

So 

 

,aX
n

n,N

n

N,

\ ∑
∞

=

=
0

λ
λτ                                                 (15) 

 

where  ∑ Φ=
β

βτ
0

1 \\

n,N ,X
!n

a . 

The last sum is finite and is taken over all 

sequences β = (B1, B2,…,Bn) of elements of R such 

that each Bi ⊂ ΛN. In this sum we can take only the 

sequences β that connect τ because for others the 

corresponding addends equal 0 by Lemma 5.1. If n = 

0, then aN,0 = 
0

\Xτ . 

For each family Ψ  of length n there are 
!

!n

Ψ
 

sequences that reduce to Ψ . Therefore 

 

∑
Ψ

ΨΦ
Ψ

=
0

1 \\

n,N ,X
!

a τ ,                                             (16) 

 

where the sum is taken over all families Ψ =  

{(B1, n1),…, (Bk, nk)} such that | Ψ | = n, Ψ  connects τ 

and each Bi ⊂ ΛN. So we have proven the equality (13). 

It remains to prove that the series converges 

absolutely and uniformly on [−C3, C3]. By Lemma 4.1: 

 

( ) ( ) ( ) ( ),qC!!CX,C
!

,X
!

a

nn

\\

n,N

∑∑

∑

ΨΨ

+

Ψ
Ψ

=Ψ
Ψ

≤

Φ
Ψ

≤

τττ τ

τ

11

0

1

1
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where q(τ) = (C1)
|τ | τ! C(|τ|, X) does not depend on n. By 

Lemma 5.2, the number of addends in the sum (16) is 

not greater than (C2)
n
. So |aN,n| ≤ (C2)

n
(C1)

n
q(τ) and for 

λ∈ [−C3,C3]: 

 

( ) ( ) ( ) ( ), 3 1 2

1

2

n n
n

N n n
a C C C q qλ τ τ≤ = . 

 

Therefore the series in (15) converges absolutely and 

uniformly on [-C3, C3]. 

Lemma 5.4 

Fix a sequence τ of points in ℤ
ν
. For any |τ | < C3 

(where C3 is the constant from Lemma 5.3) the following 

equality holds: 

 

,,X
!

X \\

n

n\

0
0

1
Ψ

∞

= Ψ

Φ
Ψ

= ∑ ∑ τλτ λ                                   (17) 

 

where the finite inner sum is taken over all families Ψ  

with | Ψ | = n that connect τ. The series (17) converges 

absolutely and uniformly for λ∈[−C3, C3]. 

Proof 

It is proven in (Malyshev and Minlos, 1991) that 

.XXlim \

N,

\

N λτλτ =
∞→

 By taking the limit of both sides of 

(13) as N → ∞ we get the equality (17). Similarly to 

Lemma 5.3 we estimate the common term of the series 

(17), which proves its absolute and uniform 

convergence. 

Lemma 5.5 

If |λ| < C3 (where C3 is the constant from Lemma 

5.3), then any finite set of the random variables Xt, 

t∈ℤ
ν
, satisfy the Carleman condition with respect to 

measure Pλ. 

Proof 

Fix t∈ℤ
ν
 and denote τ = (t), a sequence of length 1. 

Similarly to Lemma 5.4, we can show that for any 

natural l: 

 

,,X
!

X \l

t
n

nl

t
0

2

0

2 1
Ψ

∞

= Ψ

Φ
Ψ

= ∑ ∑λ
λ

                               (18) 

 

where the finite inner sum is taken over all families Ψ  

with | Ψ | = n that connect τ = (t). 

Similarly to the proof of Lemma 5.3, we can estimate 

the coefficient for λn
: 

 

( ) ( ) ,CXC,X
!

nln\l

t

+

Ψ
Ψ ≤Φ

Ψ
∑ 1

1
0

2

02
0

21
 

since |τ | = τ ! = 1. Then for |λ | < C3: 
 

( )

( )

2 2

1 1 20 0
0

2 2

1 3 1 2 10 00 0
0 0

1

2

nnl l

t

n

n
l l

n
n n

X X C C C

C X C C C C X

λ
λ

∞

=

∞ ∞

= =

≤

≤ =

∑

∑ ∑
; 

 

2 2

1 0 0
2l l

tX C X
λ

≤ . (19) 

 

Since 
0

X  satisfies Carleman condition with 

respect to P0 by conditions (4)-(5), then by (19) Xt 

satisfies Carleman condition with respect to Pλ. Since 

all Xt are identically distributed, then any finite set of 

them satisfy Carleman condition with respect to Pλ. 

5.2. Estimation of Semi-Invariants for RG 

In this subsection we estimate semi-invariants 

( ) ( ) ( )
λ

k

r

k

r

k

r m
Y,...,Y,Y

21
, where each ( )k

r
Y  is the result of RG 

transformation of the random field {Xt | t ∈ℤ
 ν
}: 

 

( ) ( )2

k
r

k

r t

t C

Y k X
α

µ
−

∈

= −∑ , (20) 

 
where  〈Xt〉λ = µ  does not depend on t. 

Lemma 5.6 

1. For any  r∈ℤ
 ν
,  ( ) .Y k

r 0=
λ

    

2. For m > 1, any r1,…, rm∈ℤ
 ν
 and |λ | < C3: 

 

( ) ( ) ( ) ,,X
!

kY,...,Y,Y
n

\\n
m

k

r

k

r

k

r m
∑ ∑∑
∞

= Ψ
Ψ

−
Φ

Ψ
=

0
0

2
1

21
τ

τ

α

λ
λ (21) 

 

where the first inner sum is over all sequences τ = 

(t1,…, tm) with each 
i

k

i r
t C∈  and the second inner sum 

is over all families Ψ  with | Ψ | = n that connect τ. 
The series (21) converges absolutely and uniformly 

on [−C3, C3]. 

Proof 

1. Obvious 

2. For |λ| < C3 and any sequence τ = (t1,…, tm) of 

elements of  ℤ
 ν
  we have by Lemma 2.1.1) and 4): 

 

.XX,...,XX,...,X \

tttt mm λτλλ
µµ ==−−

11
 

 
So 

 

 

( ) ( )

∑ ∑ ∑

∑
∞

= Ψ
Ψ

−








 −

Φ
Ψ

=

=

τ
τ

α

τ λτ

α

λ

λ
0

0

2

2

1

1

n

\\n
m

\k

r

k

r

,X
!

k

XkY,...,Y

m

m
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by Lemma 5.4, where the first sum is taken over all τ = 

(t1,…, tm) with each 
i

k

i r
t C∈  and the third sum is over all 

families Ψ  with | Ψ | = n that connect τ. By Lemma 5.4 

for each τ the series ∑ ∑
∞

= Ψ
ΨΦ

Ψ0
0

1

n

\\n ,X
!

τλ converges 

absolutely and uniformly on [−C3, C3] and there are a 

finite number of τ in the sum, hence: 

 

( ) ( ) ∑ ∑∑
∞

= Ψ
Ψ

−
Φ

Ψ
=

0
0

2
1

1
n

\\n
m

k

r

k

r ,X
!

kY,...,Y
m

τ
τ

α

λ
λ  

 
and this series also converges absolutely and uniformly 
on [−C3, C3]. 

Lemma 5.7 

If |λ| < C3, then each semi-invariant ( ) ( )
λ

k

r

k

r m
Y,...,Y

1
is 

translation invariant. 

Proof 

If we shift a sequence (r1, r2,…, rm) by vector r, 

then we get a new sequence (r1 + r, r2 + r,…, rm + r). 

This shifts all sequences τ = (t1, t2,…, tm) and families 

Ψ  by vector kr in (21) in Lemma 5.6. But it does not 

change the values of its addends because the field    

{Xt | t ∈ℤ
 ν
} ∪ {ΦB | B∈R} is translation invariant (see 

Note 2 after Definition 2.3). 

Lemma 5.8 

For a fixed t1 ∈ℤ
 ν
   denote: 

 

( ) ,,X
!

m,t,nW
Zt,...,t

\\

m

∑ ∑
∈ Ψ

ΨΦ
Ψ

=
ν

τ
2

0
1

1
 

 

where τ = (t1, t2,…, tm) and the second sum is taken over 

all families Ψ  with | Ψ | = n that connect τ. Then: 

 

( ) ( )( ) ( )1

1 1 2, , 1
nm

W n t m K m n C C
−

≤ + , (22) 

 

where K(m) = C(m, X)(C1)
m
m! and C(m, X) is defined in 

Lemma 4.1. 

Proof 

For a non-zero addend in the sum, | Ψ | = n and Ψ  

connects (t1, t2,…, tm), hence each of t2,…, tm is a vertex 

in the associated graph G( Ψ ). So there are at most n +1 

choices for each of them. By Lemma 5.2, there are at 

most (C2)
n
 families Ψ  with | Ψ | = n that connect τ. 

Using also Lemma 4.1, we get: 

 

( ) ( ) ( ) ( )( )1

1 2 1, , 1 , !
n m nm

W n t m n C C m X C m
+−

≤ +  

and 
 

( ) ( )( ) ( )1

1 1 2
, , 1

nm
W n t m K m n C C

−
≤ + . 

 

Lemma 5.9 

Suppose |λ |< C3 and r1,…, rm∈ ℤ
 ν
. If α > v or (α = v 

and m > 2), then: 
 

( ) ( ) 0
1

=
∞→ λ

k

r

k

r
k m

Y,...,Ylim . 

 

Proof 

Case m = 1 has been considered in Lemma 5.6.1). So 

we assume m > 1. To estimate the semi-invariant we use 

the series (21) from Lemma 5.6 and consider the 

corresponding series of absolute values: 
 

/ 2

,

0

| |m n

k n k

n

A k Bα λ
∞

−

=

= ∑ , 

 

where .,X
!

B
,

\\

k,n ∑
Ψ

ΨΦ
Ψ

=
τ

τ
0

1
Here the sum is taken 

over all sequences τ and families Ψ  as in (21). 

Then ( ) ( )
k

k

r

k

r AY,...,Y
m

≤
λ1

 and it is sufficient to show 

that lim 0k kA→∞ = . 

Using the notation from Lemma 5.8, we have: 
 

( )
1

, 1, ,
k
r

n k

t C

B W n t m
∈

≤ ∑ . 

 

Here we omit the restriction that k

ri Ct ∈  for i = 2,…, 

m. By Lemma 5.8: 
 

( ) ( )( ) ( )1

1 1 2
, , 1

nm
W n t m K m n C C

−
≤ + .                         (23) 

 

Since 
1

k

r
t C∈  there are k

ν
 choices for t1. Since 

3 1 2

1

2
C C C = , we have: 

 

( )

( ) ( )( ) ( )

( ) ( )

( ) ( )

( ) ( )!mmKk

!m
mKk

nmKkk

CCnmKkCk

m,t,nWkA

mm

m

m

n
n

mm

n

nmnm

n Ct

nm

k
k
r

12

2

1
1

1

2

1
1

1

2

2

0

12

0
21

1

3
2

0
1

2

1

−≤








 −

−
≤

+≤

+≤

≤

−

−

∞

=

−−

∞

=

−−

∞

= ∈

−

∑

∑

∑ ∑

αν

αν

ν
α

ν
α

α
λ
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For the last inequality we used Lemma A.1.1) from 

Appendix. 

If  α > v or (α = v and m > 2), then v −mα/2 < 0. So 

 

( ) ( ) 0120 2 =−≤≤
−

∞→∞→

αν m

k

m

k
k klim!mmKAlim  

 

and  0=
∞→k

kAlim . 

 

Corollary 5.1 

If α > v, then for any r∈ ℤ
 ν
: 

 
( )( )lim 0
k

r
k

Var Y
→∞

= . 

 

Proof 

It follows from Lemma 5.9 because 
( )( ) ( ) ( )

λ

k

r

k

r

k

r Y,YYVar = . 

5.3. Finding the limiting covariances 

From here till the end of this section we consider only 

the case when α = v and m = 2. Other cases are 

investigated earlier. 

Lemma 5.10 

Suppose |λ | < C3. If r1, r2∈ ℤ
 ν
 and r1 ≠ r2, then 

 

( ) ( ) 0
21

=
∞→ λ

k

r

k

r
k

Y,Ylim . (24) 

 

Proof 

We consider four cases. 

Case 1: 
1

0r =  and the first coordinate of r2 is negative. 

Denote r = r2. Clearly, for any t = (t1,..., tv) ∈ 0

kC , we 

have: 0 ≤ t1 ≤ k−1. Similarly, for any k

r
s C∈ , s1 ≤ −1. We 

introduce cross-sections of the cube 
0

kC : 

 

( ){ }1 10
,..., | , 0,1,..., 1

k

l vD t t t C t l l k= = ∈ = = − . 

 

Clearly, ∪
1

0
0

−

=

=
k

l
l

k DC . Next we show: 

 

if t∈Dl, 
k

rCs ∈ and Ψ connects (t, s), then | Ψ |≥ l+1. (25) 

 

For t∈Dl we have t1 = l. For k

r
s C∈ we have s1 ≤ −1. 

So the distance between such t and s is at least l + 1. 

If a family Ψ  connects (t, s), then | Ψ | ≥ l + 1. This 

proves (25). 

By Lemma 5.4: 

 
( ) ( )

∑ ∑ ∑∑

∑ ∑

∈ ∈

∞

= Ψ
Ψ

∈ ∈

Φ
Ψ

=

=

k k
r

k k
r

Ct Cs n

\

st

n

Ct Cs

st

k

r

k

,,X,X
!

X,XY,Yk

0

0

0
0

0

λ

λλ

ν

 (26) 

 

where the last sum is taken over all families Ψ  with  

| Ψ | = n that connect (t, s). 

By (25) and since the series converges absolutely we 

have: 

 

( ) ( )

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑ ∑∑

−

= ∈

∞

+= Ψ ∈
Ψ

−

= ∈ ∈

∞

= Ψ
Ψ

Φ
Ψ

=

Φ
Ψ

=

1

0 1
0

1

0 0
00

k

l Dt ln Cs

\

st

n

k

l Dt Cs n

\

st

n
k

r

k

,,X,X
!

,X,X
!

Y,Yk

l
k
r

l
k
r

λ

λ
λ

ν

 

 

where | Ψ | = n and Ψ  connects (t, s). 

For τ = (t, s) we have: |τ | = 2, t ≠ s and τ ! = 1. Then 

by Lemma 4.1 for m = 2 we get:  

 

( )( ) !CX,C,X,X
n\

st Ψ≤Φ +
Ψ

2

1
0

2  

 

Assume Ψ  and t∈Dl are fixed, | Ψ | = n and Ψ  

connects (t, s). Then the graph G( Ψ ) has at most n + 1 

vertices. At least l + 1 of them have nonnegative first 

coordinates. In order for Ψ  to connect (t, s), the point s 

should be among the vertices of G( Ψ ) with negative 

first coordinates. Therefore there are at most n +1− (l 

+1) = n −l choices for s. So 
 

( ) ( ) ( )( )

( )( ) ( ) ( )( ) ,lnKCClnCX,C

!CX,C
!

lnC

,X,X
!

n

n

nnn

Cs

\

st

n

k
r

2

1
22

2
1

21

2

1

2

12

0

−≤−≤

Ψ
Ψ

−≤

Φ
Ψ

+

Ψ ∈
Ψ∑ ∑

λ

λ

λ

 

 
where K(2) = 2C(2, X)(C1)

2
 as in Lemma 5.8. 

 

( ) ( )
1 1

1 1

21 1 1 1
1

1 1 1

2 2 2

1 1 1 1 1

2 2 2 21
1

2

n l n l
n l n l

l k l l
k

n l n l

k

∞ ∞

+ − −
= + = +

∞

+ − + −
=

− = −

= = =
 − 
 

∑ ∑

∑  

 
Since Dl contains k

v−1
 points, we have: 
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( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1
1

0
0 1

1

1
0 0

1
, 2

2

2 21 1 1

2 2 2

2 2
2

2

k
k k v v

r n
l n l

k

l l
l l

Y Y k K k n l

K K

k k

K K

k k

λ

− ∞
− −

= = +

− ∞

−
= =

≤ −

= ≤

= ⋅ =

∑ ∑

∑ ∑  

 

Therefore 
( ) ( )

0
,

k k

rY Y
λ

≤
( )2K

k
 and 

( ) ( ) 0
0

=
∞→ λ

k

r

k

k
Y,Ylim . 

 

Case 2: The first coordinate of r1 is greater than the first 

coordinate of r2. Then by Lemma 5.7, 

( ) ( ) ( ) ( )
λλ

k

rr

kk

r

k

r Y,YY,Y
1221 0 −= . Thus, Case 2 is 

reduced to Case 1. 

Case 3: The first coordinate of r1 is less than the first 

coordinate of r2. This is reduced to Case 2 by 

interchanging r1 and r2. 

Case 4: The general case. Since r1 ≠ r2, they should 

differ in at least one coordinate, for example, 

in j-th coordinate. The proof is obtained by 

applying the proofs in Cases 1-3 to j-th 

coordinates instead of the first coordinates. 

5.4. Finding the Limiting Variances 

In the following theorem we derive explicit 

expressions for the limiting variances of ( )k

r
Y . This 

theorem is interesting by itself and also becomes a part 

of the direct proof of the main theorem. 

Theorem 5.1 

Suppose |λ | < C, where C = 
( )

2

3

1 2

min ,
8 2

C
K C C

σ  
 
  

 

and σ2
 is the variance of 

0
X  with respect to P0. Then for 

any r∈ℤ
 ν
: 

 

( ) ( ) 2

0 1

lim , 0
k k n n

r r n n
y

n n

Y Y V V
λ

λ σ λ
∞ ∞

→∞
= =

= = + >∑ ∑ . 

 

Here the series converges absolutely and uniformly 

for λ∈ [−C, C] and: 

 

,,X,X
!

V
Zt

\

tn ∑ ∑
∈ Ψ

ΨΦ
Ψ

=
ν 00

1
                                     (27) 

 

where the second sum is taken over all families Ψ  with 

| Ψ | = n that connect ( 0 , t). For n = 0, 
2

0000 σ== X,XV . 

Proof 

Suppose |λ | < C. For any 
0

ks C∈  denote: 

 

( ) ∑ ∑
∈ Ψ

ΨΦ
Ψ

=
kCt

\

ts ,X,X
!

k,s,nW
~

0

0

1
.                          (28) 

 
Here the second sum is taken over all families Ψ  with 

| Ψ | = n  that connect (s, t). 

If n = 0, then in (28) we have Ψ  = ∅, 

0

\

ts ,X,X ΨΦ = 〈Xs, Xt〉0. For t ≠ s, 〈Xs, Xt〉0 = 0. So 

( )0, ,W s kɶ  = 〈Xs, Xs〉0 = σ2
. Thus, 

 

( ) 20, ,W s k σ=ɶ . (29) 

 

Using Lemma 5.8 for m = 2, we get: 

 

( )( )( )1 22 1
n

nV K n C C≤ + ; (30) 

 

( ) ( )( )( )1 2, , 2 1
n

W n s k K n C C≤ +ɶ . (31) 

 

For n ≥ 0 and k > 2n consider a cube 
0

k k

n
K C⊂ : 

 
k

nK ={s =(s1,…, sν)∈ℤ
 ν
 | n ≤ si < k−n for each i=1,…, ν}. 

 

Next we prove: 

 

If s ∈ k

nK , then  ( ) nVk,s,nW
~

= .                                  (32) 

 

Proof of (32) 

Suppose k

n
s K∈ . We will show that the sums (27) and 

(28) for Vn and ( ), ,W n s kɶ , respectively, contain equal 

addends. 

Consider an addend 
00

\

t ,X,X ΨΦ in (27); here | Ψ | 

= n and Ψ  connects ( 0 , t). Translating all points by s, 

we get 
000

\

t

\

ssts ,X,X,X,X Ψ+Ψ+ Φ=Φ  and B s+  

connects (s, t + s). Since nt =Ψ≤− 0  and 
k

ns K∈ , we 

get t + s ∈ 
0

kC . Thus, for every addend in (27) there is an 

equal addend in (28). Similarly we can show that for 

every addend in (28) there is an equal addend in (27). 

The proof of (32) is completed. 

Next we estimate the variance of ( )k

r
Y , which equals 

( ) ( )
,

k k

r rY Y
λ

. By Lemma 5.7 and Lemma 5.6 we have: 
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( ) ( ) ( ) ( )

( ) .k,s,nW
~

k

,X,X
!

k

Y,YY,Y

n Cs

n

n Ct,s

\

st

n

kkk

r

k

r

k

k

∑ ∑

∑ ∑ ∑

∞

= ∈

−

∞

= ∈ Ψ
Ψ

−

=

Φ
Ψ

=

=

0

0
0

00

0

0

1

ν

ν

λλ

λ

λ                          (33) 

 

By (31) and because 0

kC  contains k
v
 points, we have: 

 

( ) ( )

( )( )( ) ( )( )

0 0

1 2

, , | | , ,

1
| | 2 1 2 1

2

k k

n v n v

s C s C

n
n v v

n

k W n s k k W n s k

k k K n C C K n

λ λ

λ

− −

∈ ∈

−

≤

≤ + ≤ +

∑ ∑ɶ ɶ

 

 

Therefore the series (33) converges absolutely and 

uniformly for any k. We split the inner sum 

( )
0

, ,ks C
W n s k

∈∑ ɶ  in two sums: 

 

( ) ( )1 , , ,
k
ns K

U n k W n s k
∈

= ∑ ɶ  

 
and 
 

( ) ( )
0

2

\

, , ,
k k

ns C K

U n k W n s k
∈

= ∑ ɶ
. 

 
So 
 

( ) ( )

( ) ( )1 2

0

,

, ,

k k

r r

n v v

n

Y Y

k U n k k U n k

λ

λ
∞

− −

=

 = + ∑
       (34) 

 

Since 
k

nK  contains (k −2n)
v
 points, then by (32): 

 

( ) ( ) ( )1 , , , 2
k
n

v

n

s K

U n k W n s k k n V
∈

= = −∑ ɶ  

 
and 
 

( ) ( )
.VV

k

nk
limk,nUklim nn
kk

=
−

=
∞→

−

∞→ ν

ν
ν 2

1  

 

The difference of cubes 
0

\k k

n
C K  contains k

v
−(k−2n)

v
 

points, so by (31) we have: 
 

( ) ( )

( )( )( ) ( )
0

2

\

1 2

| , | | , , |

2 1 2

k k
ns C K

n vv

U n k W n s k

K n C C k k n

∈

≤

 ≤ + − − 

∑ ɶ

 

and 

 

( )

( )( )( ) ( )

2

1 2

0 lim | , |

2
2 1 lim 0

v

k

vv
n

vk

k U n k

k k n
K n C C

k

−

→∞

→∞

≤

− −
≤ + =

 

 

By (34) and since the series converges uniformly 

for any k: 

 

( ) ( ) ( ) ( )[ ]
∑∑

∑
∞

=

∞

=

∞

=

−

∞→

−

∞→∞→

+==

+=

1

2

0

0
21

n
n

n

n
n

n

n kk

nk

r

k

r
k

VV

k,nUklimk,nUklimY,Ylim

λσλ

λ νν

λ
 

 

because V0 = σ
2
. 

It remains to show that the limit is positive. By (30) 

and Lemma A.1.2) from Appendix: 
 

( )( )( )

( ) ( )

( )
( )

( )

( )

1 2

1 1

1 2

1

21 2
1 22

1 2

2

1 2

1 2

| | | | 2 1

2 1 | |

2 | |
2 8 2 | |

1 | |

1
| | | |

2 8 2

n
n n

n

n n

n

n

V K n C C

K n C C

C C
K K C C

C C

because C C and
K C C

λ λ

λ

λ
λ σ

λ

σ
λ λ

∞ ∞

= =

∞

=

≤ +

= +

≤ ≤ <
−

< <

∑ ∑

∑
 

 

Therefore 

 

2

1

σλ −>∑
∞

=n
n

n
V  and 0

1

2 >+ ∑
∞

=n
n

n
Vλσ . 

 

Proof of the Main Theorem (Theorem 3.1) 

Suppose |λ| < C, where C is the constant from 

Theorem 5.1. 

1. Case α > v. 

By Lemma 5.6.1) the limiting expectation of each 
( )k

rY  is 0 and by Corollary 5.1 the limiting variance is 0. 

This proves part 1 of the theorem. 

2. Case α = v. 

By Lemma 5.6.1) and Lemma 5.9 for m ≠ 2: 

 

( ) ( ) 0
1

=
∞→ λ

k

r

k

r
k m

Y,...,Ylim . 

 

By Lemma 5.10 the limiting covariances equal 0 

and by Theorem 5.1 the limiting variance is positive. 
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Thus, all of the limiting semi-invariants equal 0, 

except the variance. Therefore the random variables 
( ) ( ) ( )k

r

k

r

k

r m
Y,...,Y,Y

21
converge in distribution as k→∞ to an 

independent multivariate normal random vector, due 

to Lemma 2.4. The statement about the variance of the 

limiting distribution follows from Theorem 5.1. 

6. Conclusion 

In this paper we introduce a concept of interaction 

model and prove a generalization of the central limit 

theorem to a random field in this model transformed 

by renormalization group. We show that as k→∞ the 

resulting random fields ( )k

r
Y converge in distribution to 

an independent random field with Gaussian 

distribution. We find the limits of all semi-invariants 

of ( )k

r
Y as k→∞ and apply Carleman theorem. In 

particular, we show that all the semi-invariants, 

except the variances, tend to 0. 

In Theorem 5.1 we give an explicit expression for 

the limiting variance. In order to find the limiting 

semi-invariants, we derive estimations of the semi-

invariants of the original random field with respect to 

Gibbs measure. 

We provide a more transparent proof under more 

general conditions for the inequality about the number 

of links in a set with a symmetric binary relation 

(Theorem 4.1). In this theorem and the lemmas about 

estimations of semi-invariants, as well as in the main 

theorem, we derive explicit expressions for the 

estimation constants. 

A possible direction for future research is 

generalization of our theorem to other models in 

statistical mechanics. 

Appendix A 

Lemma A.1 

If 0 ≤ x < 0.5, then the following series converges 

absolutely for any l = 1, 2,... and 

 

1)  ( )
( ) 1

0 1
1 +

∞

= −
≤+∑ l

n

nl

x

!l
xn ;                                (35) 

 

2)  ( )
( )2

0 1

2
1

x

x
xn

n

n

−
≤+∑

∞

=

.  

 

Proof 

1) We have 

 

( ) ( )( ) ( ) ( )( )llnnnl
xxln...nnxn +=+++≤+ 211 . 

Next: 

 

( )( )
( ) ( )

0 0

1

1

l l
l

n l n

n n

x x
x

∞ ∞
+

= =

   = =   −  
∑ ∑  

 

because for n < l we have (x n 
)

 (l)
 = 0. It is easily proven 

by induction on l that: 
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So the series (35) converges and satisfies the 

inequality. 

2) If  l = 1, then 
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