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ABSTRACT 

Horserace win and place returns have yet to be considered seriously as portfolio inputs in financial trading 
markets. However there exist technical and fundamental stochastic models of parametric and nonparametric 
distribution that appear to optimize expected returns from win and place investing in the horserace wagering 
market. In this study, a complex number optimization technique is introduced and applied to develop a 
deterministic betting model that calculates actual returns from the win and place betting. Using classes of 
models mentioned, field win bet payoff results were generated for a sample of successive global galloper 
races from Australasia, Asia and the United Kingdom. It was noted double digit returns exceeding 10% 
were consistently achieved within minutes of horserace investing, with arbitrage opportunity locked into 
prerace from the deterministic model. The results from this study provide evidence for serious investigation 
into the inclusion and benefit of Institutional Betting Funds into the local stock market. 

 
Keywords: Models on Horserace Outcomes, Institutional Betting Funds, Stock Market, Horserace Betting 

1.INTRODUCTION 

‘Financial markets are typically defined by having 
transparent pricing, basic regulations on trading, costs 
and fees and market forces determining the prices of 
securities that trade’ (Investopedia, 2013). The horserace 
wagering market inherits uncertain investment returns, 
many participants and supply expansive information 
concerning participants and products typical of financial 
markets (Ali, 1998). Betting Market elements include 
institutional regulators (International Horseracing 
Federation), the participants (breeder, trainer, owner, 
jockey and bettor) and the betting products (win, place, 
quinella, trifecta). Global horserace annual wagering 
turnover is significant; for example, for year 2008 the 
turnover was AUD$0.25 trillion (AGC, 2011), while 
theAustralian horserace annual turnover was AUD$12.6 

billion. The amount can be compared to the ASX equity 
annual turnover of AUD $1.6 trillion (ASXG, 2008). 

Global horserace wagering facilities have evolved from 
the track and Licensed Betting Office (LBO) outlets to 
online tote or fixed odd betting and person-to-person (p2p) 
betting exchange operations (Laffey, 2005). A betting 
exchange is an entity that provides trading facilities for 
retail or bookmaker customers to buy or sell contracts 
(Koning and Van Velzen, 2009). Horserace wager contracts 
are structured as binary options (typically European style) 
where the payoff is either some fixed amount from a win or 
place bet or nothing from a loss. One party is the layer 
(acceptor) of the bet and the counterparty are the bet taker. 
Betting exchange products include horserace wagering 
contracts, financial spread betting and contract for 
difference financial derivatives. The betting exchanges can 
be claimed to have brought transparency and trading 
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innovation to horserace betting markets necessary for 
institutional investment (Laffey, 2005). 

Betting activity on the exchange may be classified into 
speculative, hedging or arbitrage trading (Arnold, 2002). In 
2011, the UK-founded Betfair betting exchange recorded an 
annual sale activity of 916 million bets matched; an average 
of 7 million transactions on the betting exchange daily. 
Moreover, Betfair recorded a new peak load of 30000 beats 
per minute during the 2011 Grand National steeplechase 
event (Betfair, 2011). Several factors appear to have 
contributed to Betfair’s growth that include reduced online 
bettor transaction costs, the implication from Moore’s Law-
more affordable computing gives firms and customers 
access to enormous processing power; and the adaptation 
from Metcalfe’s Law of Networks that as the number of 
customers using Betfair multiplies, so does the utility of 
each customer. Others such as greater liquidity in the 
market and hence greater efficiency also aided Betfair’s 
growth (Davies, 2005). 

The Betfair model is based upon the open outcry 
system whereby backers and layers stakes are pool 
matched (Davies, 2005). Goldman Sach’s technological 
division provides services concerning the development of 
both technical and fundamental model based algorithmic 
trading software. The models generate automatic 
execution strategies that can be used by the banker’s 
internal equity businesses, as well as external clients such 
as fund managers and hedge funds (Goldman Sachs, 
2011). Research in recent times has focused on optimal 
horserace betting models that forecast horserace outcomes 
based on both ‘technical’ and ‘fundamental’ analysis 
techniques (Edelman, 2007). The technical betting models 
utilize horserace market odds that are the bettor’s 
probabilities with assumed market efficiency. This model 
quantifies both historical and current horserace variable 
data; while the fundamental modelling techniques utilize 
selective researched variables for race forecast, such as a 
Support Vector Machine/Conditional Logit (SVM/CL) 
horserace betting modelthat can generate double digit 
return trial results (Lessmann et al., 2009). 

The main aim of this study is to develop and 
demonstrate a new technical deterministic betting 
model. The analysis will show that consistent 
profitable trading at an acceptable reward-to-risk level 
for the institutional betting fund can be achieved. The 
significance of deterministic models to lock in prerace 
guaranteed payoff for the fund is critically examined. 
In the first section a review of the existing literature on 
stochastic technical and fundamental rank order 
horserace betting models used to develop trading 
algorithms is presented. In the next section, a multiple 

system optimization theorem over the complex number 
field is presented and the deterministic horserace betting 
model developed from the theorem is used to generate 
returns from win and place betting. The model testing is 
then conducted on a random sample of global horseraces 
by simulating continuous trading and recording payoff 
results. The deterministic model payoff results are then 
compared with payoffs from selective technical 
stochastic models and the final section presents a 
discussion of the application of the new deterministic 
betting model in institutional betting fund trading. 

2 TECHNICAL AND FUNDAMENTAL 
STOCHASTIC BETTING MODELS 

2.1. Racer Rank Notation 

The rank for the outcome of an event expressed by a 
rater is the result of ranking of a random variable from an 
underlying nonparametric or parametric distribution 
(D’Elia, 2003). Assigning the probability to the outcome 
from an ‘n’ field horserace is equivalent to assigning the 
probability for the rank permutation of the first ‘n’ racers. 
In this study, Xi denotes an independent, non-identically 
distributed continuous random variable to represent time 
taken for the ith rank racer, with probability distribution 
F(Xi; αi). The order of finish for a field size of ‘n’ racers is 
represented by the permutation = (1,2,…,n) whereby 1 

represents the first placed racer and nnnn is the last placed racer 
from the field. The probability assigned to rank permutation 

is ( ) ( ) ( )1 2 n1 2 n R R Rp = p , ,…, = p X < X < ...< X . This 

class of rank models is described as order statistics models 
that share the property that the order of any subset of the 
items is independent to the ordering of any disjoint subsets 
(Critchlow et al., 1991; Ali, 1998). Permutation group n = 
{} , nεI, represents the set of complete and partial rank 
order permutations for the ‘n’ racer field and p() the 
parametric or nonparametric distribution on permutation R. 

The technical and fundamental models revised in this 
study share a multistage sequential process to generate 
permutation probability from bettor win odds to calculate 
expected payoff. For example, win(1), quinella (1,2) and 
trifecta (1,2,3) illustrate betting market products. In 
particular, parametric distributions based upon the 
normal random variable f(Xi; αi, σ

2), the gamma random 
variable f(Xi; αi, r) and the exponential random variable 
f(Xi; αi, r = 1) have been proposed for technical betting 
model application. These technical models share the L-
decomposability property that the probability attached to 
the ranking of a racer is independent from the relative 



C.G.L. Hopf and G.A. Tularam / Journal of Mathematics and Statistics 10 (3): 390-400, 2014 

 
392 Science Publications

 
JMSS 

ordering of the higher ranked racers (Critchlow et al., 
1991). The fundamental betting models revised in this 
study utilize a two stage process to combine selective 
horserace variable data with the bettor odds variable to 
generate win (or place) probability. These include rank 
order Multiple Linear Regression/Conditional Logit 
(MLR/CL) and Conditional Logit/Conditional Logit 
(CL/CL) models and classifier Support Vector 
Machine/Conditional Logit (SVM/CL) model (Edelman, 
2007; Lessmann et al., 2009). 

2.2. Technical Betting Model Optimization 
Techniques 

The ranking processes of the L-Decomposable models 
of Luce (1959; Harville, 1973; Hausch and Ziemba, 1985; 
Stern, 1990), all determine the conditional product of the 
choice probabilities (i.e., preferred racer from remaining 
racers) across the multistage sequence Equation 1: 
 

( ) ( ) ( )

( )

( ) ( )

( )

 
 =  
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{ ( )}
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Bi = {i..n} is the set remaining at stage ‘i’; with 

( ) =∑ 1
n

ii=1
p . These multistage sequential processes 

utilize the bettor win odds ( ) 1 ( : )i
i

O win oddsO= =1ip
 

to 

calculate win, place and compound betting products. 
The technical betting models attempt to achieve 
consistent profitable betting return, which challenges 
the semi-strong market efficient hypothesis that 
historical and publicly available horserace data has 
been correctly factored into the current bettor odds. 
The HZR wagering system calculates optimal place 
bets to maximize expected logarithm of final wealth 
from place wagering (Hausch and Ziemba, 1985). The 
model calculates the expected return from one 
additional dollar bet to decide racer selections against 
a breakeven benchmark and optimal bet sizes for the 
selected racers are calculated to maximize final 
wealth. The modern online betting portals should only 
enhance this model’s performance from the 
presumption that pool wagering occurs just prior to 
the close  of  the  betting  period  (Hausch and 
Ziemba, 1985).  A  modified version of the HZR 
model  for  algorithm  development  using bothwin 
and  place  totalizer  bettor odds is as follows 
Equation 2:
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The Logistic model generates permutation 
probabilities from the logarithm of win probability ratios 
(Plackett, 1975). The first-order logistic model 
corresponds to the L-Decomposable model, 

( ) ( )( )
( ) ( ).. ( )

( ) ( ( )).. ( )
=

− − −
1 2

1 1 21 1
n

n

p p p
p

p p p p
. An interpretation 

of the model is that a racer’s rank is independent of 
earlier selections in accordance with the L-
decomposability property. 

A second-order logistic model illustration for a 
four racer field has permutation probability (Dansie, 
1983) Equation 3: 
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The probability association between racer pairs is 

considered by the second-order logistic model. A 
third-order logistic model illustration for a five racer 

field is ( ) ( )123 34

34 35

( )

( ) ( )

p p
p

p p
=

+
. A model derived from the 

extension of the L-Decomposable and gamma models 
is the discount model, which includes a discount 
factor r

kλ (decrease function as ‘k’ increases and 

dependent on shapeparameter ‘r’) to discount 
diminished racer performance with decrease in placing 
(Lo et al., 1995). The log odds ratio assumption that 
racer ‘i’ beats racer ’j’ for kth place being a discounted 
function of racer ‘i’ defeating racer ‘j’ for the 

win, ( ) ( ), \ , \1
r
kLO i j k LO i j λ= . A discount model trifecta 

probability approximation is provided (Lo et al., 1995) 
Equation 4: 
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The discount model is a function of the win 

probabilities of all the racers in the field, unlike the L-
Decomposable model which is a function of the win 
probabilities of only selective racers. The inverse 
hypergeometric model similarly applies a sequential 
comparison criterion of bettor win or place odds to 
investigate ranking process outcomes (D’Elia, 2003). 

The normal rank order model is a class of rank 
model that is a function of a single independent 
variable of parametric distribution N(Xi; αi) with joint 

pdf ( )
1

( :  )
n th

i
i

average timei racerα
=

−∏ i if X α . 

Permutation  probability  for  the normal rank model 
is represented  by  the  multivariate   integral  
Equation 5: 
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The win racer ‘i’ probability for RX (expected win 

time) is expressed 
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Henery (1981) derived the normal rank approximate 
model from first degree Taylor expansion to calculate 
the permutation probability as 
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trifecta probability approximations are illustrated by the 
following forms in Equation 6: 
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The gamma rank order model class is a function of 

bivariate independent variables with gamma 
distribution ΓΓΓΓ(Xi; αi, r) and joint pdf 
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. 

The gamma rank permutation probability (Stern, 
1990) is Equation 7: 
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And the racer probability to win (Henery, 1983) is 
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The gamma density function Equation 8: 
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From which a first degree Taylor expansion 

approximation for the model is derived (Henery, 1983) 
as follows Equation 9: 
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A gamma rank probability approximation for the kth 

placed racer (Henery, 1983) is 
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denotes 

the gamma rank order model with shape parameter r = 
1. The exponential model is equivalent to the L-
Decomposable model (Stern, 1990). The mathematical 
derivation of the L-Decomposable model from the 
gamma rank order model with shape parameter r = 1, 
using conditional probability first principles is 
accordingly Equation 10: 
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These technical rank order models for horserace 

betting adopt permutation conditional probabilities and 
bettor odds to determine expected outcomes for typical 
horserace betting products, such as quinella, trifecta and 
first four horserace wagering. These elementary 
probabilities can be combined to optimize expected 
return from field betting. 

2.3. Fundamental Betting Model Optimization 
Techniques 

The fundamental model analysis utilizes relevant 
racer variables for win and place forecast based upon 
publicly available information. The predictive models 
that attempt to achieve a consistent profitable betting 
return do not satisfy the conditions of the semi-strong 
market efficiency theory that publicly available racer 
information has been factored into bettor odds 
(Lessmann et al., 2009). The inclusion of selective 
fundamental variables relevant to current and previous 
race information combined with current market odds 
data is one attempt to develop profitable stochastic 
models. CL/CL, MLR/CL and SVM/CL models 
possess such a two stage design; the first stage 
quantifies racer’s ability based upon previous and 
current racer data and the second stage utilizes the bettor 
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odds to provide consideration for within-race 
competition. The nonparametric MLR/CL technique 
models racer rank as a linear function of selective 
fundamental multivariable data to produce a 
winningness index forecast (score ability) in the first 
stage. Within-race competition is excluded from the 
first stage of the MLR/CL model but included in the 
second stage. Stage two develops a probability forecast 
for a racer win or place estimated in conjunction with 
competitors (within-race competition) by using a 
multinomial logit technique, which models a race as an 
entity; maintaining racer relationship and factoring in 
market bettor odds. The MLR/CL, CL/CL and 
SVM/CL techniques differ in the first stage. The 
CL/CL model considers within competition with its 
modelling of publicly available racer information at 
stage one. The SVM/CL technique derives a 
classification model to identify race winners or losers 
and intentionally eliminating reliance upon rank order 
regression. The SVM/CL model utilizes a win or non-
win indicator variable rather than a finishing position in 
stage one (Lessmann et al., 2009). To construct 
nonlinear decision surfaces, support vector machine 
methodology map input fundamental data into a high-
dimensional feature space using a mapping function to 
minimize intensive calculation in the transformed 
feature space (Lessmann et al., 2009). Kernel functions 
can be employed to compute the scalar product of 
transformed vectors in the feature space. The Gaussian 
Radial Basis Function (RBF) kernel has been applied to 
horserace modelling with output values lying between 
zero and one (Edelman, 2007). The model below is a 
field win bet optimization strategy to determine optimal 
field bets to maximize expected logarithmic return and 
utilizing the MLR/CL two stage technique to forecast 
racer win probabilities. Stage one produces a 
winningness index as follows Equation 11: 
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The second stage of the MLR/CL model determines 
win probability forecasts for the individual racers 
Equation 12: 
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The probability forecasts are combined with the 

bettor win odds to calculate optimal field bets to 
maximize expected logarithmic return (Edelman, 2007) 
in Equation 13: 
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The stochastic fundamental and technical horserace 

betting market models, analogous to capital market 
models, optimize expected return on individual or field 
win and place assets. Furthermore, a property of pari-
mutuel betting to beconsidered, is zero return - to - nil 
risk field betting is achievable from the gross bettor odds 
(before commission); subsequently positive actual 
returns can be achieved from favourable trading. 

3. COMPLEX NUMBER MULTIPLE 
SYSTEM OPTIMIZATION 

A set of algebraic elements and relations that define 
the set constitute a mathematical system. Complex and 
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hypercomplex (quaternions, octonions) number systems 
are finite dimensional vector spaces over the real 
numbers that satisfy many of the real number system 
axioms. Complex analysis extends mathematical 
application beyond restrictions evident with the real 
number system’s incapacity to describe all features of 
physical science. Consideration is given to horserace 
betting payoff represented by a complex number to 
separate field payoff from individual racer payoff. A 
deterministic model is one in which every set of variable 
states is uniquely determined by parameters in the model 
and by sets of previous states of these variables (Yang, 
2008). In fact, deterministic modelling of future events 
through known parameters has significant application for 
financial market investment payoff, as evident in the 
capital debt markets. Schochetman and Smith (1998) 
develops an algorithm to generate average optimal 
solution in deterministic infinite horizon. The Multiple 
System Optimization (MSO) model is developed in this 
study.The model optimizes multiple complex system  

inputs, Z(Cn;), over a finite horizon. 

Theorem 1 

Multiple System Optimization (MSO) over an ‘n’ 
finite series of complex systems generates a constant real 
component over each consecutive system in Equation 14: 
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Proof of Theorem 1 

The proof for the MSO theorem is by mathematical 
induction. The proof by induction involves a two stage 
process; firstly the base stage that is followed by the 
inductive stage. The base stage verifies that the 
optimization over a complex system, which comprises a 
complex vector argument and accompanying relations, 
generates a Я real constant value. The inductive stage 
verifies that for a finite series of ‘n’ consecutive complex 
systems, the optimal solution is Яn for the multiple 
system complex function. 

Maximizing or minimizing on the space Cn of n-tuples 
of complex numbers must satisfy the n-dimensional 
Cauchy-Riemann equations in order for the complex 
function to be complex differentiable Equation 15: 
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Mathematical Induction step Equation 16: 
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3.1. Deterministic Betting Model: An 

Application of MSO 

It would seem that a deterministic model would be 
relevant for modelling betting market payoffs. The 
betting market assets (wager) possess defined payoffs 
with limited liability that is in contrast to equity and 
derivative market asset forecast payoff that are 
determined from the systematic and diversifiable factors 
(Williams, 1999). A zero risk horserace field betting 
provides an arbitrage opportunity for the trader and 
institutional betting fund. Optimization of the complex, 
nonlinear payoff function provided in Equation 17 
determines racer field win and place returns from the 
available bettor fixed and totalizer odds: 
 

{ } ( )
{ }

( )
( )

, ; | | ,

( .. ),

| | | |, ,

:   , :  ,

: /  

n n
i

n n
i

set of operators b betting amount b C

O win place odds O R

= =

= −

= ≠

∈

∈

∑ ∑
1 1

1 2

max

min

n n
n n

i i i

i i

n

i i j j

Payoff b O O b b

subject to b b b

O b O b i j∀∀∀∀  (17) 



C.G.L. Hopf and G.A. Tularam / Journal of Mathematics and Statistics 10 (3): 390-400, 2014 

 
397 Science Publications

 
JMSS 

Table 1. Trackinvest©model-win and place payoff race results: R(R1 R2 R3)=(12,3,4); win payoff Z(R1) = Я = 30.30%; place payoff 
Z(R1 R2 R3) = Я = 5.9% 

Racer Mkt    Net  Racer Mkt   Max-min Payoff 
(Ri) odds Bet Win (Ri) return Payoff  (Ri) odds Bet Place(Rijk) return  (max-min) 
1 17.8 $12000 $213600 $48600 (29.45%,0) 1 3.4 $21000 $71400 ($13600,-$43600) (6.6%, -21.3%) 
2 20.8 $10000 $208000 $43000 (26.06%,0) 2 3.6 $20000 $72000 ($14200,-$43000) (6.9%, -21%) 
3 4.9 $45000 $220500 $55500 (33.64%,0) 3 1.6 $45000 $72000 ($14200,-$43000) (6.9%, -21%) 
4 16.6 $13000 $215800 $50800 (30.79%,0) 4 7.3 $10000 $73000 ($14200,-$42000) (6.9%, -20.5%) 
5 17.4 $12000 $208800 $43800 (26.55%,0) 5 5.3 $14000 $74200 ($14200,-$40800) (6.9%, -19.9%) 
6 0.0     6 0.0 
7 0.0     7 0.0 
8 4.7 $47000 $220900 $55900 (33.88%,0) 8 1.9 $37000 $70300 ($12500,-$44700) (6.1%, -21.8%) 
9 2.4 $0 $0 -$165000 (0%, -100%) 9 1 $20000 $20000 (-$37800,-$44700) (-18%, -21.8%) 
10 13.5 $16000 $216000 $51000 (30.91%,0) 10 3.5 $20000 $70000 ($12200,-$44700) (6%, -21.8%) 
11 0.0     11 0.0 
12 21.5 $10000 $215000 $50000 (30.30%,0) 12 4 $18000 $72000 ($14200,-$43000) (6.9%, -21%) 
  $165000      $205000 
source: Unitab – Riccarton ZS1 (24 February 2012) 
 
Table 2. Trackinvest© model-multibet win payoff racer results: R1 (R1 R2 R3) = (12,3,4), R2 (R1 R2 R3) = (1,11,12);win payoff  Z1..2 

= (R1 R2) = (1+Я)2 = (1+0.3030)(1+0.09) = 1.42,Я= 1.420.5-1=19%       
Racer Mkt  Win Net   Mkt   Net 
(Ri) Odds Bet  (Ri) return Payoff Racer(Ri) odds Bet Win(Ri) return Payoff 
1 17.8 $12000 $213600 $48600 (29.45%,0) 1 4.4 $12000 $52800 $4500 (9%,0) 
2 20.8 $10000 $208000 $43000 (26.06%,0) 2 0.0     
3 4.9 $45000 $220500 $55500 (33.64%,0) 3 6.7 $7500 $50250 $1950 (4%,0) 
4 16.6 $13000 $215800 $50800 (30.79%,0) 4 9.3 $5500 $51150 $2850 (6%,0) 
5 17.4 $12000 $208800 $43800 (26.55%,0) 5 10.7 $4600 $49220 $920 (2%,0) 
6 0.0     6 26.0 $2000 $52000 $3700 (8%,0) 
7 0.0     7 18.0 $2800 $50400 $2100 (4%,0) 
8 4.7 $47000 $220900 $55900 (33.88%,0) 8 3.2 $4000 $12800 -$35500 (0%, -73%) 
9 2.4 $0 $0 -$165000 (0%, -100%) 9 16.6 $3000 $49800 $1500 (3%,0) 
10 13.5 $16000 $216000 $51000 (30.91%,0) 10 50.6 $1000 $50600 $2300 (5%,0) 
11 0.0     11 19.6 $2600 $50960 $2660 (6%,0) 
12 21.5 $10000 $215000 $50000 (30.30%,0) 12 14.9 $3300 $49170 $870 (2%,0) 
  $165000      $48300    
Source: Unitab-Riccarton ZS1 and ZS2 (24 February 2012) 
 

Table 1 and 2 illustrate field win and place payoff 
results generated from algorithm, which uses online or 
fixed horserace bettor odds and attempts to lock in a 
pre-race positive optimal payoff over the racer field for 
a total minimum investment. The complex payoff is 
determined using the MSO-the derived algorithm 
displays a return-to-risk trade-off that typifies financial 
market investments. This technical deterministic betting 
model’s output separates field payoff from individual 
racer payoff. The return-to-risk trade-off shown in 
Table 1 is to lock in a pre-race 30% win payoff over 
the racer field, excluding the favourite, for the short-
term investment period (minutes). The risk is a loss 
from the favourite racer winning. An optional feasible 
trade-off is locking into the lower place payoff and 
lesser absolute maximum risk. 

A trader could source the global market of betting 
exchanges and bookmakers for preferred win or place 
odds. Bet taking win market odds of 4.7 for the 
favourite would have achieved arbitrage and a 3% 
payoff over the entire field. Table 2 displays the 
return-to-risk trade-off from multiple betting over two 
consecutive races. The horserace results shown in 
Table 2 generated a feasible payoff of 19% for the 
fund from consecutive race investing. 

4, DETERMINISTIC VERSUS 
STOCHASTIC BETTING PAYOFF-

ANALYSIS AND RESULTS 

A sample of fifty consecutive galloper races for 
January 01 2012 from global racetracks of Australasia 
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(Australia and New Zealand), Asia (Singapore and Hong 
Kong) and Great Britain, provided the data 
(http://www.sportsbet.com.au/results/horse_racing)for 
testing the performance and comparison of the technical 
deterministic and stochastic betting models in this study. 
The data gathered simulates “passing the bet global”-
continuous trading on betting market races from the 
southern to the northern hemisphere. Although dated, 
both Lo et al. (1995) and Ali (1998) tests show that the 
normal model forecasted horserace rank probabilities 
more accurately than the gamma rank or L-
decomposable models. Based on the data, the racer field 
win betting payoff from the deterministic model is 
compared with payoff from the normal rank approximate 
and L-decomposable models. The deterministic model 
optimizes racer field payoff (Я)-to-risk trade-off for 
minimum betting amount on consecutive races; zero risk 
reflects arbitrage opportunity and locks in a pre-race 
positive return independent of winning racer outcome. 
Both the normal approximate and L-decomposable 
stochastic models recorded the same expected payoff 
results. The net expected win return per $1 unit bet from 
a winning racer for both the L-decompose and normal 
approximate models equals the negative of the tote track 

take (t); and the net expected field win payoff for both 
models is E(payoff) = -(n+t-1); n: field size, t: track take. 

Table 3 displays model’s results for the Australasian, 
Asian and UK sampled regions. Individual and 
accumulative race returns generated from both the DBM 
and the normal approximate technique are displayed. The 
DBM provide two payoffs: (a) A nil trade strategy where 
maximum exposure from an individual racer losing is 
100%; and (b) a case where the maximum risk of loss 
from an individual racer is capped at a maximum of 
10%. Uniform unit bets on the field for the normal 
approximate model resulted in sample payoff 
comparison with the DBM payoff results. Table 3 results 
demonstrate the superiority of the DBM over the 
stochastic model. The DBM consistently generated 
double digit bettor race return. Similar to the stochastic 
model results, the accumulative payoff generated from 
the DBM over a series of races is affected when a loss 
occurs with high exposure. Interestingly however, the 
DBM optimizing field win bets with betting exchange 
trade to maximize exposure to 10%, resulted in both 
exceptional positive accumulative payoffs (1+Я)n and 
successive racer return Я achieved for the series of 
races in all the regions. 

 
Table 3. Technical models-field win bet payoff 

 DBM Results (%) 
 ----------------------------------------------------------------------------------------------------------------------- 
Region race 1 race 2 race 3 race 4 race 5 race 6 race 7 race 8 (1+Я)n Я(%) 

UK (Cheltenham) 1.82 59.36 (a) -29.16 8.21 15.81    (a) 1.44  (a) 7.6 
   (b) -10      (b) 1.83 (b) 12.8 
SGP (Kranji) 7.87 (a) -75.52       (a) 0.382 (a) -17.5 
  (b) -10 26.12 7.49 6.79    (b) 1.405 (b) 7 
HKD (Sha Tin) 5.46 (a) -62 17.46 6.55 11.98    (a) 0.562 (a) -11 
  (b) -10       (b) 1.33 (b) 5.9 
AUS (Inverell) 12.62 9.08 4.44 (a) -70.59 6.21 1.4 (a) -78.46 6 (a) 0.093  (a) -26 
    (b) -10   (b) -10  (b) 1.186 (b) 2.16 
AUS (Mornington) 14.22 4.89 10.63 11.17 (a) -81.46 32.01 (a) -75.2 (a) -76.98 (a) 0.02 (a) -39 
     (b) -10  (b) -10 (b) -10 (b) 1.418 (b) 4.46 
AUS (Murray Bridge) 31.78 16.48 (a) -81.25 42.91 11.52 (a) -65.87 6.69 10.09 (a) 0.184 (a) -19 
   (b) -10   (b) -10   (b) 2.328 (b) 11.14 
AUS (Sunshine Coast) (a) -25.4  52.28 3.17 (a) -52.77 13.62 (a) -71.33 0.32 2.64 (a) 0.18 (a) -19.3 
 (b) -10   (b) -10  (b) -10   (b) 1.34 (b) 3.73 
NZD (Waikouaiti) (a) -45.45 27.55 (a) -72.86      (a) 0.19 (a) -42.5 
 (b) -10  (b) -10      (b) 1.033 (b) 1.09 
 Normal (approximate) Model Results (%) 
UK (Cheltenham) -65 6.67 -50 -17 41.25    0.219 -26 
SGP (Kranji) -2.5 -78 439 -53.6 -24.2    0.407 -16.5 
HKD (Sha Tin) 44.6 -69.3 147.1 -70 42.1    0.468 -14 
AUS (Inverell) -31.25 2.3 -54.3 -74.5 -60.8 21.1 -78.5 21.4 0.01 -44 
AUS (Mornington) -56.25 -15.6 -46.4 8.6 -69.2 -37.5 -78.3 -67.8 0.003 -52 
AUS (Murray Bridge) 25.7 238.2 -66 8.3 -30 -64.3 1.7 62.9 0.65 -5 
AUS (Sunshine Coast) -82.9 -33.3 -48 -74.3 -11 -69 -63.1 -54 0.0007 -60 
NZD (Waikouaiti) -77.5 25 -70      0.084 -56.2 
Source: NSW TAB (01 January 2012)  (a) max risk 100%  (b) max risk 10% 
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5. IMPLICATIONS FOR THE 
INSTITUTIONAL BETTING FUND 

The results show that the DBM can be applied to all 
classes of racing including galloper, trotter and 
greyhound. Clearly, the DBM optimizes the pre-race 
(or within race) payoff-to-risk trade-off for win or place 
field betting for selective races or consecutive race 
series over the finite time horizon. The algorithms of 
win and place combination are worthy of consideration 
to enhance payoff performance. The bet take and lay 
trade enables a risk-free payoff; that is, the betting 
exchanges trade bettor odds that offset the track 
commission to lock-in pre-race deterministic return. 
The consistently generated double digit returns from 
the DBM for the global galloper sample provides 
evidence for further and more in depth investigation of 
institutional betting fund participation and liquidity 
contribution into the financial markets; including future 
consideration for portfolio investment inclusion. 

6. CONCLUSION 

The findings of this study show that deterministic and 
stochastic financial market models may be used to 
determine the reward-to-risk trade-off for an investment. 
The stochastic technical and fundamental betting models 
provide racer win and place probabilities and expected 
payoffs, from historical and current race information. 
The analysis shows that the deterministic modelling of a 
limited payoff and limitedliability investment generates a 
“fixed” or a certain outcome. Moreover, the DBM’s 
generate an actual return from win and place wagering. 
The MSO generated a constant real component over 
consecutive systems. The DBM developed based on 
this technique optimizes field win and place betting and 
separates the optimal field payoff from the individual 
racer payoff. The individual racer exposure is related to 
the track take, which reduces the true bettor odds. Both 
the DBM and trading in the betting market can offset 
the track commission to achieve racer return field 
coverage at an acceptable risk; therefore, clearly 
arbitrage is achieveable. The preliminary findings from 
DBM testing of a global horserace sample in this study 
has generated significant payoff at acceptable risk for 
the Institutional Betting Fund; as precursor to attaining 
results from larger racer sampling periods to challenge 
the existing semi-strong efficient market hypothesis 
toward horserace betting. 
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