Journal of Mathematics and Statistics 10 (3): 331-338, 2014

ISSN: 1549-3644

© 2014 Science Publications

doi:10.3844/jmssp.2014.331.338 Published Onlin€3)@014 (http://www.thescipub.com/jmss.toc)

USING COLUMN GENERATION TECHNIQUE TO
ESTIMATE PROBABILITY STATISTICSIN TRANSITION
MATRIX OF LARGE SCALE MARKOV CHAIN WITH
LEAST ABSOLUTE DEVIATION CRITERIA

Wanida L er spipatthananon and Peerayuth Char nsethikul

Center of Advanced Studies in Industrial Technol@gpartment of Industrial Engineering,
Faculty of Engineering, Kasetsart University, BarigktD900, Thailand

Received 2014-07-10; Revised 2014-07-24; Accepted-P8102
ABSTRACT

The Least Absolute Deviation (LAD) method is theeoof many methods used to estimate transition
probability matrix of Markov Chain. It can be fortated as a Linear Programming Problem (LP) and
solved using its regular state of the art softwblewever, when the Markov Chain has a large nurolber
states and historical state probabilities datactiveesponding LP size can be very large reachimgpaiter
hardware/software limitation. The aim of this stuslyo apply the Column Generation (CG) technigqusdlve

this large scale LP and to evaluate its extensayohd direct hardware/software capabilities. 18 gtudy, the
sample state probabilities data were simulatedsstadly and two methods were used to solve tlublem.

The first method was using ‘linprog’ function in MAAB to solve the related LP that all decision abtes
were considered simultaneously while the others thes CG method expected to require a much less
percentage of all variables. As result effectivendmth methods solved all test problems resukiggal
LADs each. The CG method required more average. thegertheless, less than 30% of decision variables
were considered in the CG method. The lesser pages were found as the problem size grew. Moreover
larger size problems beyond direct use of softwame solved using the proposed approach.

Keywords Transition Matrix, Markov Chain, Linear ProgrammirfProblem, Column Generation, Least
Absolute Deviation

1. INTRODUCTION Lin (2011) applied Markov chain to establish anmile
production procurement system.

Markov chain is widely used as model in many areas Constant andZimmermann (2013) studied the
i.e., economics, marketing, capital theory, indastr migration of the population with Markov chaiMarkov
structure, demography and social science which show model is used to describe the chance of an event
in the review of Dent an@allintine (1971). Later, the occurring in the next period when we know the cleaic
Markov models have also received attention from that eventin the present period and transitiomaidity
researchers in various disciplines such as Craigy an Matrix in the following manner:

Sendi(2002) used Markov chain to study the changes of

chronic diseases. Jones (2005; Christodoulakis$;200 7k +1)= PTrk)k=12,.. S~ 1 1)
Simister, 2007) estimated the transition matrizafkov

chain to forecast the credit risk. Thyagarajan iiothamed where, mk), m(k+1)is the column vector orden
(2005) used Markov chain to analyze the retail ek  showing the probabilities of each state in periodnd
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k+1, respectivelyP = [p;] is a square matrix order
called transition probability matrix. The assumpsoof
P are presented in Equation 2 and 3.

Pe=e (2)
3)

where,e is then-element column vector of uni, is the
number of states.

There are many researchers who proposed the

methods to estimate probability statistics in tidms

matrices. Leeet al. (1968) suggested the Maximum
Likelihood and Bayesian estimation. Madansky (1959;
Kalbfleisch and Lawless, 1984) constructed the

estimators by the Weighted Least Square method. The, g

Least Square method without regard to assumption

Equation 2 and 3 were used by Miller (1952; Goodman
1953; Telser, 1966). Leet al. (1965; Theil andRay,

1966) offered the Restricted Least Square methatl th
regard to Equation 2 and 3. The Minimum Absolute
Deviation (MAD) was proposed by Ashar and Wallace

(1963). In this study, the Restricted Least Squared
(RLS) method is ignored because it is equivalent to
solve the Quadratic Programming Problem (QPP). The

solution of QPP is complex. As a result, it cansolive

a large scale problem. Therefore, the less contglica
method than RLS will be diagnosed. The MAD method
called Least Absolute Deviation (LAD) under
constraints in Equation 2 and 3 is used to estirttae
elements of the transition matrix when the
approximation ofr(k) was known. It shows that:

S-1 n n
Minimizezz 77§k+1) —Zp,j ) 4)
k=1 j=1 i=1
n
subject toZpij =10 (5)
=
pj 20,0 (6)

The above model (A) consisted of Equation 4-6rhas
linear constraintsn? of non-negativity constraints and
decision variables.
following LP model:
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S-1n
Mlnl mize Zuj(k) (7)
k=1 j=1
n
subject to—uj = > 71y <=7, 0 (8)
i=1
n
“Ujgg *+ ey < 7Y 0 )
i=1
n
ZIOij =L (10)
j=1
S (11)

Equations 7-12 are the components of the
corresponding LP problem referred as model (B) with
n+2n(S-1) of linear constraints amif + n(S-1) of non-
negativity constraints and decision variables. The
explicitly comparison of the model (A) and (B) are
shown in Table 1. The number of variables and
constraints of model (A) are influenced by the nemb
of statesn of Markov Chain while the model (B)
depends on both the number of states and the nuofiber
periods of historical dat& Therefore, the number of
variables grows much faster than the number of
constraints. If the number of stater the number of
periods S is very large up to computer capacity, the
formulated LP can be unsolvable. This study is @ime
to propose the use of column generation technique t
solve this obstacle. In section 2, the proposedroal
generation algorithm is presented with an illusdat
example in section 3. The computational resultshwit
discussions from the numerical experiment are shown
in section 4. The conclusions of this study arealfin
summarized in section 5.

Table 1. The comparison of model (A) and (B)

It can be reformulated as the(®)

Objective Number Number
Model function of variables of constraints
Non-linear n? n
(B) Linear n? +n(S1) n+2n(S-1)
JMSS
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2. COLUM GENERATION I ]
-1 00 - 0
The processes of simplex method are reviewed. It 100 .- 0
shows that, for the minimization problem, the cohsnof 0 <10 - 0
constraint matrix that is nonnegative reduced @ust where, g, = 0 -1 0 ol
only used to determine. If the negative reduced s s )
found, a column corresponding to this reduced wdlst T
be produced. The technique that generates the 000 -1
coefficients associated with a variable as neesemhlied 100 0. -1
Column Generation (CG). The expectation of CG & ih 70 [0] [0] 1
can optimize the LP by examining only a subseteuftar 2xn 2
coefficients and it can avoid unnecessary compmumsti d® = [0]2xn k) [O]Zm ,
Therefore CG is often used to solve the largelsizeThe : : RV
concept of CG algorithm can be illustrated via tthedel [0, [0y - 70
(B) called Master Problem (MP), I&tis a column vector z
of decision variables; is coefficient vector of objective 29 = SR U
function, b is vector of right hand side of constraint akd +nfk) +,7(2k) +7Tr(1k)

is constraint matrix as follows:
And 1 =[1p[15]-41 ]

Yo Let N is the number of decision variables or the
Ue) number of column in constraint matxwhich is equal
: Ui(k) to n(S-1)+n?. If r<N, thenA can be written in form:
_|Ys- _{Y20) |
X =| ~ V| whereu, = k=1,2,...8-1
o w =] A=[ A|Au]
P Un(k) . : : :
. where, A, is a sub-matrix of constraint matrix that
’ contains coefficient of basic variables from Bdsgasible
L R Solution (BFS) and\. is sub-matrix of coefficient of the
P remaining variables or non-basic variables.
Pl The model that considers only thevariables is
andR = pi=12...n, reduced to smaller problem of manageable size wisich
called Restricted Master Problem (RMP). An optimal
Pin solution of the RMP is not necessarily to be th&nogl
Cz[[l]lxn(s—l) [O]lxn2:| , for the MP. An optimal dual solution of RMR)(is used
) . to calculate the reduced cost of non-basic varsatfer
hy -+ choosing a variable to enter the basis the subl@mis
hy nl(k+1) solved in the following manner:
b= h; ) wheren, = n(.k"l) Minimize{(:]- =c; -y Al < (} forj=r+1,.. N
n
o LAY ] Assume that the variabl¥; is entering variable, a
i any [y o [Oope  d® T column of coefficients which according Xpis_ g(_enerated
0 T @ anq addedl to_RMP. The above process is implemented
[ ]2nxn 42 [ ]2nxn d until the objective function cannot be improved.
A=| : R 5 In this study, the summary of the CG algorithm for
[0 [own sty dSD estimating all elements in the transition matrix of
[0] | MarkO\_/ C_haln by LAD method reformulated into LP
L nxn(S-1) J model is given below.
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2.1. Initialization The further detail of CG technique can be studied i

. , Bazaraaet al. (2010; Lasdon, 1970; Nash and Sofer,
Choose the BFS is a subvector of). Assuming the  1996) The detail of ‘linprog’ function can be exaed

values ofUjy, for all j, k andpy;, fori =j are 1. So theg at the website of MATLAB (2013).
consists olUjy, for all j, k andp;, for i = j. It means that

there aren(S-1)+n of the number of variables in RMP. 3. EXAMPLE

2.2.Main Step In this section, the example drawn from (Theil and

» Solve the RMP with ‘linprog’ function of MATLAB  Rey, 1966) is considered. The market shares ofethre

e Use the vector of the shadow price or dual var@ble cigarette brands in the United States during théoge
(y) from step 1 to calculate the reduced cost of non-1939-43 are presentedTiable 2.

basic variables in the following manner: The vector ofX, ¢, b and the matrix of A are shown
CJ :Cj_yTAj for j:r+1,...,N n Tab|e3
« If ¢ =0 for everyj, then the result from step 1 is Table2. Market shares of three cigarette brands
optimal solution and if not, a columi, that Camel Lucky strike Chesterfield
: < . : 1941 0.3579 0.3653 0.2768
according to ¢, =min{¢;[c; <@ will be generated
g to & =min{gjfe; < g g 1942 0.3527 0.3851 0.2622
and added to RMP and repeat to step 1 1943 0.3276 0.3875 0.2849
Table 3. The vector ofX, ¢, b and the matrix oA from example data
Uy U Uy Uie) Uz Uz Pu P21 Pa1 P12 P22 (373 P13 P23 P33 b
c= 1 1 1 1 1 1 00000 0.0000 0.0000 0.0000 0.000W00® 0.0000 0.0000  0.0000
1 0 0 0 0 0 -0.3579 -0.3653 -0.2768 0.0000 0.000(0000  0.0000  0.0000  0.0000  -0.3527
1 0 0 0 0 0 03579 0.3653 0.2768 0.0000 0.000@0CR  0.0000 0.0000 0.0000  0.3527
0o 11 0 0 0 0 0.0000 0.0000 0.0000 -0.3579 -0.3662768  0.0000 0.0000 0.0000 -0.3851
0o 11 0 0 0 0 0.0000 0.0000 0.0000 0.3579 0.3652768 00.0000 0.0000 0.0000  0.3851
0 0 -1 0 0 0 0.0000 0.0000 0.0000 0.0000 0.000@0CR -0.3579 -0.3653 -0.2768 -0.2622
0 0 -1 0 0 0 0.0000 0.0000 0.000 0.0000 0.000@OCR 0.3579 0.3653 0.2768  0.2622
0 0 0o 1 0 0 -0.3527 -0.3851 -0.2622 0.0000 0.000(0000  0.0000 0.0000  0.0000 -0.3276
A= 0 0 0 -1 0 0 03527 03851 0.2622 0.0000 0.00000GD  0.0000 0.0000 0.0000 0.3276
0 0 0 0o A 0  0.0000 0.0000 0.0000 -0.3527 -0.38612622  0.0000 0.0000  0.0000 -0.3875
0 0 0 0o A 0 0.0000 0.0000 0.0000 0.3527 0.3852622 0.0000 0.0000 0.0000  0.3875
0 0 0 0 0 -1 00000 0.0000 0.0000 0.0000 0.000000@ -0.3527 -0.3851 -0.2622 -0.2849
0 0 0 0 0 -1 00000 0.0000 0.0000 0.0000 0.000000@ 0.3527 0.3851 0.2622  0.2849
0 0 0 0 0 0  1.0000 0.0000 0.0000 1.0000 0.0000000.0 1.0000 0.0000 0.0000  1.0000
0 0 0 0 0 0  0.0000 1.0000 0.0000 0.0000 1.0000000.0 0.0000 1.0000 0.0000  1.0000
0 0 0 0 0 0 0.0000 0.0000 1.0000 0.0000 0.0000000.0 0.0000 0.0000 1.0000  1.0000

Table4. The vector o, c, b and the matrix oA for restricted master problem

U1 Up(1) Us(1) Uy(2) Up(2) Us(2) Py P, P33 b

G = 1 1 1 1 1 1 0.0000 0.0000 0.0000
-1 0 0 0 0 0 -0.3579 0.0000 0.0000 -0.3527
-1 0 0 0 0 0 0.3579 0.0000 0.0000 0.3527
0 -1 0 0 0 0 0.0000 -0.3653 0.0000 -0.3851
0 -1 0 0 0 0 0.0000 0.3653 0.0000 0.3851
0 0 -1 0 0 0 0.0000 0.0000 -0.2768 -0.2622
0 0 -1 0 0 0 0.0000 0.0000 0.2768 0.2622
0 0 0 -1 0 0 -0.3527 0.0000 0.0000 -0.3276

A= 0 0 0 -1 0 0 0.3527 0.0000 0.0000 0.3276
0 0 0 0 -1 0 0.0000 -0.3851 0.0000 -0.3875
0 0 0 0 -1 0 0.0000 0.3851 0.0000 0.3875
0 0 0 0 0 -1 0.0000 0.0000 -0.2622 -0.2849
0 0 0 0 0 -1 0.0000 0.0000 0.2622 0.2849
0 0 0 0 0 0 1.0000 0.0000 0.0000 1.0000
0 0 0 0 0 0 0.0000 1.0000 0.0000 1.0000
0 0 0 0 0 0 0.0000 0.0000 1.0000 1.0000
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Table5. The results from CG technique

No. of ¢;

available Thevariable
Iteration variables LAD P21 P31 P12 P32 P13 P23 add to RMP
1 9 0.0898 1.50 0.52 -1.42* -0.55 -0.71 0.73 P12
2 10 0.0746 0.00 -0.03 0.00 -0.03 0.01 -0.04* P23
3 11 0.0723 0.00 -0.06* 0.00 -0.06 0.05 0.00 P31
4 12 0.0188 0.05 0.00 0.00 0.02 0.00 0.00 -

*is min{¢, | ¢, <0}

The CG technique is used to solve this model. Forwhich the product of number of rows and number of
initialization step, assuming the values Gfy; j = columns of the constraint matrix must not exceed
1,2,3;k = 1,2 andpiy, P22, Psz are 1. So the RMP that  6.4x10° bytes. The trials start on generating square
is used to solve in first step of main step comssisft  transition probability matriXP order n anchxS matrix
all vectors and matrix which shown Trable 4. of data according to the Equation 1 Subsequently,

In iteration 1, there are 9 available variables in prepare the matrices and vectors according to the

RMP. The ‘linprog’ function of MATLAB is used to  requirements of the ‘linprog’ function in MATLAB.
the RMP. The value of LAD is 0.0898. The reduced Tne next step is solving the LP by two methods isne

cost (¢;) of all non-basic variables are calculated in directly solved by ‘linprog’ function that all of

the manner that show in step 2 of main step. Infbu decision variables are available and the othersiagu
that, the reduced cost of,, ps; and p;; are negative  CG method as the algorithm shown in section 2.
and the minimum of them igy,. It means that the The numerical computation is presented in Table
0.0890 of LAD is not minimum value. Therefore a g |t is found that when the size of constraint matf
column of constraint matrix that according pe, is model (B) is not over Tobytes, the directly solved by
generated and added to RMP. The number of avallable"nprog, function can be used to optimize the LPhas

yanables In iteration 2 is 10. Following the maitep less average time to estimation than CG methodh Bot
in above section until the reduced cost of all haisic . .
methods give the same average of LAD in every

variables are nonnegative. The results of eachtitar . . )
are presented ifiable 5 scenarios. Note that in the solution when the nunolfe
The result of last iteration is: periods for data collectio8 is 10, CG method use less

than 30% of variables while the directly solved by
‘linprog’ function requires all variables. The nuearbof
U variables that use in CG technique is increased\gis
U 0 0.0094 expanded. If the size of constraint matrix of mo@l is
X=| B | whereUg =|0|,Ugy=| 0 over 16 bytes, the directly solved by ‘linprog’ function
P 0 0.0085 cannot be used, but CG can.
2 : .
The comparison between the RLS and LAD

R method is shown in th&able 7 and 8. It is found
0.212 0.7879 0 that, the LAD method has surprisingly less SSE than
R=| 0 |, ,=/0.2822/, B =|0.7178 the RLS on average implying that solving the prable

1 0 0 linearly can maintain a better numerical stability
computationally. The average time to estimation of
LAD method which directly solved by ‘linprog’
4 NUMERICAL RESULTS function will be less than RLS method when the
number of periods for data collectidghis 10. In the
In this study an Intel(R) Core(TM) i3-2120 3.30 case that the number of states n is more than t8@0,
GHz CPU 4 GB RAM is used to perform the LAD method which solve by CG technique is only
experiments. The maximum possible array is 640 MB method that suitable to estimate the transitionrixat
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Table 6. The numerical computation of each scenarios

Model (B)
Size of the constrain
S n Number of constraints Number of decision variable  matrix of model (B) (byte)
10 60 1,140 4,140 4.71960°
80 1,520 7,120 1.08220°
100 1,900 10,900 2.07%00°
120 2,280 15,480 3.52820
140 2,660 20,860 5.54880
160 3,040 27,040 8.22820
180 3,420 34,020 1.16850°
200 3,800 41,800 1.58840°
250 4,750 64,750 3.0783¢°
300 5,700 92,700 5.28390°
330 6,270 111,870 7.01420°
400 7,600 163,600 1.24880°
20 200 7,800 43,800 3.41610°
30 140 8,260 23,660 1.954B0°
100 60 11,940 9,540 1.13010°
Table 6. The numerical computation of each scenarios (oagji
Directly solved by ‘linprog’ CG method
Time to Number of variables Time to Number ofizbles Percentage of variables
S n Mean of LAD Estimation (sec) considered in thausoh Estimation (sec) considered in the solutiamsidered in CG method
10 60 0.0657 11.6181 4,140 64.7237 1,117 26.97
80 0.0290 51.2985 7,120 221.8648 1,520 21.35
100 0.0290 74.4539 10,900 275.9748 1,822 16.71
120 0.0274 175.6527 15,480 595.0517 2,272 14.67
140 0.0237 294.6160 20,860 761.7571 2,614 12.53
160 0.0115 392.9262 27,040 987.3406 2,877 10.64
180 0.0241 577.6557 34,020 1449.2400 3,250 9.55
200 0.0205 1175.1520 41,800 1497.7800 3,435 8.22
250 0.0226 2290.8500 64,750 4170.2000 4,301 6.64
300 0.0101 3991.7000 92,700 8299.9000 5,207 5.62
330 0.0148 Out of memory 111,870 10684.2300 5,596 5.00
400 0.0139 Out of memory 163,600 50754.0000 8,382 5.12
20 200 0.0416 Out of memory 43,800 8777.3000 5,677 12.96
30 140 0.0874 Out of memory 23,660 8811.4000 5,601 23.67
100 60 0.9702 Out of memory 9,540 26,307.0000 6,802 71.30
Table 7. The sum of square error for each scenario
SSE
% of SSE difference
s n RLS LAD [M]xmo
$ERLS
10 60 0.00004 0.000030 25.00
80 0.00003 0.000020 33.30
100 0.00003 0.000010 66.70
120 0.00004 0.000002 95.00
140 0.00005 0.000003 94.00
160 0.00012 0.000008 93.30
180 0.00002 0.000009 55.00
200 0.00001 0.000002 80.00
250 - - -
300 - - -
330 - - -
400 - - -
20 60 0.00011 0.00007 36.36
80 0.00004 0.00003 25.00
100 0.00005 0.00002 60.00
30 60 0.00012 0.00012 0.00
80 0.00010 0.00006 40.00
100 0.00006 0.00003 50.00
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Table 8. The average time to estimate transition matrixefach scenario
Time to estimation (second)

LAD
% oftime difference % of time difference
s n RLS Directly CG [wjxwo [M]xmo
Timeg s Timeg g
10 60 20.2087 11.61810 64.7237 425 -220.3
80 125.3724 51.29850 221.8648 59.1 -77.0
100 505.9440 74.45390 275.9748 85.3 455
120 1772.5000 175.65270 595.0517 90.1 66.4
140 4736.6000 294.61600 761.7571 93.8 83.9
160 10582.2000 392.92620 987.3406 96.3 90.7
180 23091.4000 577.65570 1449.2400 97.5 93.7
200 40677.1000 1175.15200 1497.7800 97.1 96.3
250 - 2290.85000 4170.2000 - -
300 - 3991.70000 8299.9000 -
330 - - 10684.2300 -
400 - - 50754.0000 - -
20 60 20.1708 111.7754 344.8695 -454.1 -1609.7
80 125.4699 349.7303 674.6040 -178.7 -437.7
100 508.5041 646.6208 1246.8880 27.2 -145.2
30 60 19.8749 329.9915 1370.1000 -1560.3 -6793.6
80 125.2306 966.5548 3299.2000 -671.8 -2534.5
100 502.2330 1534.9000 4035.0000 -205.6 -703.4
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