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ABSTRACT 

The Least Absolute Deviation (LAD) method is the one of many methods used to estimate transition 
probability matrix of Markov Chain. It can be formulated as a Linear Programming Problem (LP) and 
solved using its regular state of the art software. However, when the Markov Chain has a large number of 
states and historical state probabilities data, the corresponding LP size can be very large reaching computer 
hardware/software limitation. The aim of this study is to apply the Column Generation (CG) technique to solve 
this large scale LP and to evaluate its extension beyond direct hardware/software capabilities. In this study, the 
sample state probabilities data were simulated statistically and two methods were used to solve the problem. 
The first method was using ‘linprog’ function in MATLAB to solve the related LP that all decision variables 
were considered simultaneously while the others was the CG method expected to require a much less 
percentage of all variables. As result effectiveness, both methods solved all test problems resulting equal 
LADs each. The CG method required more average time. Nevertheless, less than 30% of decision variables 
were considered in the CG method. The lesser percentages were found as the problem size grew. Moreover, 
larger size problems beyond direct use of software were solved using the proposed approach. 
 
Keywords: Transition Matrix, Markov Chain, Linear Programming Problem, Column Generation, Least 

Absolute Deviation 

1. INTRODUCTION 

 Markov chain is widely used as model in many areas 
i.e., economics, marketing, capital theory, industrial 
structure, demography and social science which shown 
in the review of Dent and Ballintine (1971). Later, the 
Markov models have also received attention from 
researchers in various disciplines such as Craig and 
Sendi (2002) used Markov chain to study the changes of 
chronic diseases. Jones (2005; Christodoulakis, 2006; 
Simister, 2007) estimated the transition matrix of Markov 
chain to forecast the credit risk. Thyagarajan and Mohamed 
(2005) used Markov chain to analyze the retail banking. 

Lin (2011) applied Markov chain to establish an adaptive 
production procurement system. 

Constant and Zimmermann (2013) studied the 
migration of the population with Markov chain. Markov 
model is used to describe the chance of an event 
occurring in the next period when we know the chance of 
that event in the present period and transition probability 
matrix in the following manner: 
 

T( 1) P ( ), 1,2, , 1k k k Sπ π+ = = … −  (1) 
 
where, ( )kπ , ( 1)kπ + is the column vector order n 
showing the probabilities of each state in period k and 
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k+1, respectively. P = [pij] is a square matrix order n 
called transition probability matrix. The assumptions of 
P are presented in Equation 2 and 3. 

 
Pe e=   (2) 

 
0 1ijp≤ ≤  (3) 

 
where, e is the n-element column vector of unit, n is the 
number of states. 

There are many researchers who proposed the 
methods to estimate probability statistics in transition 
matrices. Lee et al. (1968) suggested the Maximum 
Likelihood and Bayesian estimation. Madansky (1959; 
Kalbfleisch and Lawless, 1984) constructed the 
estimators by the Weighted Least Square method. The 
Least Square method without regard to assumption 
Equation 2 and 3 were used by Miller (1952; Goodman, 
1953; Telser, 1966). Lee et al. (1965; Theil and Ray, 
1966) offered the Restricted Least Square method that 
regard to Equation 2 and 3. The Minimum Absolute 
Deviation (MAD) was proposed by Ashar and Wallace 
(1963). In this study, the Restricted Least Squared 
(RLS) method is ignored because it is equivalent to 
solve the Quadratic Programming Problem (QPP). The 
solution of QPP is complex. As a result, it cannot solve 
a large scale problem. Therefore, the less complicated 
method than RLS will be diagnosed. The MAD method 
called Least Absolute Deviation (LAD) under 
constraints in Equation 2 and 3 is used to estimate the 
elements of the transition matrix when the 
approximation of ( )kπ was known. It shows that: 
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,0,ij i jp ≥ ∀  (6) 

 
The above model (A) consisted of Equation 4-6 has n 

linear constraints, n2 of non-negativity constraints and 
decision variables. It can be reformulated as the 
following LP model: 
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,0,ij i jp ≥ ∀  (11) 

 
 ( ) ,0,j k j ku ≥ ∀  (12) 

 
Equations 7-12 are the components of the 

corresponding LP problem referred as model (B) with 
n+2n(S-1) of linear constraints and n2 + n(S-1) of non-
negativity constraints and decision variables. The 
explicitly comparison of the model (A) and (B) are 
shown in Table 1. The number of variables and 
constraints of model (A) are influenced by the number 
of states n of Markov Chain while the model (B) 
depends on both the number of states and the number of 
periods of historical data S. Therefore, the number of 
variables grows much faster than the number of 
constraints. If the number of states n or the number of 
periods S is very large up to computer capacity, the 
formulated LP can be unsolvable. This study is aimed 
to propose the use of column generation technique to 
solve this obstacle. In section 2, the proposed column 
generation algorithm is presented with an illustrated 
example in section 3. The computational results with 
discussions from the numerical experiment are shown 
in section 4. The conclusions of this study are finally 
summarized in section 5. 
 
Table 1. The comparison of model (A) and (B) 

 Objective Number Number 
Model function of variables of constraints 

(A) Non-linear  n2 n 
(B) Linear  n2 + n(S-1) n+2n(S-1) 
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2. COLUM GENERATION 

The processes of simplex method are reviewed. It 
shows that, for the minimization problem, the columns of 
constraint matrix that is nonnegative reduced cost are 
only used to determine. If the negative reduced cost is 
found, a column corresponding to this reduced cost will 
be produced. The technique that generates the 
coefficients associated with a variable as needed is called 
Column Generation (CG). The expectation of CG is that it 
can optimize the LP by examining only a subset of vector 
coefficients and it can avoid unnecessary computations. 
Therefore CG is often used to solve the large size LP. The 
concept of CG algorithm can be illustrated via the model 
(B) called Master Problem (MP), let X is a column vector 
of decision variables, c is coefficient vector of objective 
function, b is vector of right hand side of constraint and A 
is constraint matrix as follows: 
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Let N is the number of decision variables or the 

number of column in constraint matrix A which is equal 
to n(S-1)+n2. If r<N, then A can be written in form: 
 

]r N rA A A −=   

 
where, Ar is a sub-matrix of constraint matrix that 
contains coefficient of basic variables from Basic Feasible 
Solution (BFS) and AN-r is sub-matrix of coefficient of the 
remaining variables or non-basic variables. 

The model that considers only the r variables is 
reduced to smaller problem of manageable size which is 
called Restricted Master Problem (RMP). An optimal 
solution of the RMP is not necessarily to be the optimal 
for the MP. An optimal dual solution of RMP (y) is used 
to calculate the reduced cost of non-basic variables. For 
choosing a variable to enter the basis the sub-problem is 
solved in the following manner: 
 

{ }Minimize | 0 1, ,T
j j j jc y A c forc j r N= − < = + …ɶ ɶ   

 
Assume that the variable Xt is entering variable, a 

column of coefficients which according to Xt is generated 
and added to RMP. The above process is implemented 
until the objective function cannot be improved. 

In this study, the summary of the CG algorithm for 
estimating all elements in the transition matrix of 
Markov Chain by LAD method reformulated into LP 
model is given below. 
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2.1. Initialization 

Choose the BFS (xB is a subvector of x). Assuming the 
values of Uj(k), for all j, k and pij, for i = j are 1. So the xB 
consists of Uj(k), for all j, k and pij, for i = j. It means that 
there are n(S-1)+n of the number of variables in RMP. 

2.2. Main Step 

• Solve the RMP with ‘linprog’ function of MATLAB 
• Use the vector of the shadow price or dual variables 

(y) from step 1 to calculate the reduced cost of non-
basic variables in the following manner: 

T
j j jc c y A= −ɶ  for 1, ,j r N= + …  

• If 0jc ≥ɶ  for every j, then the result from step 1 is 

optimal solution and if not, a column At that 

according to { }min | 0j j jc c c= <ɶ ɶ ɶ  will be generated 

and added to RMP and repeat to step 1 

The further detail of CG technique can be studied in 
Bazaraa et al. (2010; Lasdon, 1970; Nash and Sofer, 
1996). The detail of ‘linprog’ function can be examined 
at the website of MATLAB (2013). 

3. EXAMPLE 

In this section, the example drawn from (Theil and 
Rey, 1966) is considered. The market shares of three 
cigarette brands in the United States during the period 
1939-43 are presented in Table 2. 

The vector of X, c, b and the matrix of A are shown 
in Table 3. 
 
Table 2. Market shares of three cigarette brands 
 Camel Lucky strike Chesterfield 
1941 0.3579 0.3653 0.2768 
1942 0.3527 0.3851 0.2622 
1943 0.3276 0.3875 0.2849 

 
Table 3. The vector of X, c, b and the matrix of A from example data 
 u1(1) u2(1) u3(1) u1(2) u2(2) u3(2) P11 P21 P31 P12 P22 P32 P13 P23 P33 b 
c = 1 1 1 1 1 1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 
 -1 0 0 0 0 0 -0.3579 -0.3653 -0.2768 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3527 
 -1 0 0 0 0 0 0.3579 0.3653 0.2768 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3527 
 0 -1 0 0 0 0 0.0000 0.0000 0.0000 -0.3579 -0.3653 -0.2768 0.0000 0.0000 0.0000 -0.3851 
 0 -1 0 0 0 0 0.0000 0.0000 0.0000 0.3579 0.3653 0.2768 00.0000 0.0000 0.0000 0.3851 
 0 0 -1 0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3579 -0.3653 -0.2768 -0.2622 
 0 0 -1 0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3579 0.3653 0.2768 0.2622 
 0 0 0 -1 0 0 -0.3527 -0.3851 -0.2622 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3276 
A= 0 0 0 -1 0 0 0.3527 0.3851 0.2622 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3276 
 0 0 0 0 -1 0 0.0000 0.0000 0.0000 -0.3527 -0.3851 -0.2622 0.0000 0.0000 0.0000 -0.3875 
 0 0 0 0 -1 0 0.0000 0.0000 0.0000 0.3527 0.3851 0.2622 0.0000 0.0000 0.0000 0.3875 
 0 0 0 0 0 -1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 -0.3527 -0.3851 -0.2622 -0.2849 
 0 0 0 0 0 -1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3527 0.3851 0.2622 0.2849 
 0 0 0 0 0 0 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 
 0 0 0 0 0 0 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 1.0000 
 0 0 0 0 0 0 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 1.0000 1.0000 

 
Table 4. The vector of X, c, b and the matrix of A for restricted master problem 
 u1(1) u2(1) u3(1) u1(2) u2(2) u3(2) P11 P22 P33 b 
cr = 1 1 1 1 1 1 0.0000 0.0000 0.0000 
 -1 0 0 0 0 0 -0.3579 0.0000 0.0000 -0.3527 
 -1 0 0 0 0 0 0.3579 0.0000 0.0000 0.3527 
 0 -1 0 0 0 0 0.0000 -0.3653 0.0000 -0.3851 
 0 -1 0 0 0 0 0.0000 0.3653 0.0000 0.3851 
 0 0 -1 0 0 0 0.0000 0.0000 -0.2768 -0.2622 
 0 0 -1 0 0 0 0.0000 0.0000 0.2768 0.2622 
 0 0 0 -1 0 0 -0.3527 0.0000 0.0000 -0.3276 
Ar = 0 0 0 -1 0 0 0.3527 0.0000 0.0000 0.3276 
 0 0 0 0 -1 0 0.0000 -0.3851 0.0000 -0.3875 
 0 0 0 0 -1  0 0.0000 0.3851 0.0000 0.3875 
 0 0 0 0 0 -1 0.0000 0.0000 -0.2622 -0.2849 
 0 0 0 0 0 -1 0.0000 0.0000 0.2622 0.2849 
 0 0 0 0 0 0 1.0000 0.0000 0.0000 1.0000 
 0 0 0 0 0 0 0.0000 1.0000 0.0000 1.0000 
 0 0 0 0 0 0 0.0000 0.0000 1.0000 1.0000 
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Table 5. The results from CG technique 

 No. of  jcɶ  
 available  ------------------------------------------------------------------------------------- The variable 
Iteration variables LAD p21 p31 p12 p32 p13 p23 add to RMP 

1 9 0.0898 1.50 0.52 -1.42* -0.55 -0.71 0.73 p12 
2 10 0.0746 0.00 -0.03 0.00 -0.03 0.01 -0.04* p23 
3 11 0.0723 0.00 -0.06* 0.00 -0.06 0.05 0.00 p31 
4 12 0.0188 0.05 0.00 0.00 0.02 0.00 0.00 - 

* is min{ | 0}j jc c <ɶ ɶ  

 
The CG technique is used to solve this model. For 

initialization step, assuming the values of Uj(k); j = 
1,2,3; k = 1,2 and p11, p22, p33 are 1. So the RMP that 
is used to solve in first step of main step consists of 
all vectors and matrix which shown in Table 4. 

In iteration 1, there are 9 available variables in 
RMP. The ‘linprog’ function of MATLAB is used to 
the RMP. The value of LAD is 0.0898. The reduced 
cost ( )jcɶ  of all non-basic variables are calculated in 

the manner that show in step 2 of main step. It found 
that, the reduced cost of p12, p32 and p13 are negative 
and the minimum of them is p12. It means that the 
0.0890 of LAD is not minimum value. Therefore a 
column of constraint matrix that according to p12 is 
generated and added to RMP. The number of available 
variables in iteration 2 is 10. Following the main step 
in above section until the reduced cost of all non-basic 
variables are nonnegative. The results of each iteration 
are presented in Table 5. 

The result of last iteration is: 

 

(1)

(2)

1

2

3

U

U

X P

P

P

 
 
 
 =
 
 
 
 

 where (1)

0

0

0

U

 
 =  
  

, (2)

0.0094

0

0.0085

U

 
 =  
  

, 

1

0.2121

0

1

P

 
 =  
  

, 2

0.7879

0.2822

0

P

 
 =  
  

, 1

0

0.7178

0

P

 
 =  
  

 

 
4. NUMERICAL RESULTS 

In this study an Intel(R) Core(TM) i3-2120 3.30 
GHz CPU 4 GB RAM is used to perform the 
experiments. The maximum possible array is 640 MB 

which the product of number of rows and number of 
columns of the constraint matrix must not exceed 
6.4×108 bytes. The trials start on generating square 
transition probability matrix P order n and n×S matrix 
of data according to the Equation 1 Subsequently, 
prepare the matrices and vectors according to the 
requirements of the ‘linprog’ function in MATLAB. 
The next step is solving the LP by two methods one is 
directly solved by ‘linprog’ function that all of 
decision variables are available and the other is using 
CG method as the algorithm shown in section 2. 

The numerical computation is presented in the Table 
6. It is found that when the size of constraint matrix of 
model (B) is not over 108 bytes, the directly solved by 
‘linprog’ function can be used to optimize the LP. It has 
less average time to estimation than CG method. Both 
methods give the same average of LAD in every 
scenarios. Note that in the solution when the number of 
periods for data collection S is 10, CG method use less 
than 30% of variables while the directly solved by 
‘linprog’ function requires all variables. The number of 
variables that use in CG technique is increased when S is 
expanded. If the size of constraint matrix of model (B) is 
over 108 bytes, the directly solved by ‘linprog’ function 
cannot be used, but CG can. 

The comparison between the RLS and LAD 
method is shown in the Table 7 and 8. It is found 
that, the LAD method has surprisingly less SSE than 
the RLS on average implying that solving the problem 
linearly can maintain a better numerical stability 
computationally. The average time to estimation of 
LAD method which directly solved by ‘linprog’ 
function will be less than RLS method when the 
number of periods for data collection S is 10. In the 
case that the number of states n is more than 300, the 
LAD method which solve by CG technique is only 
method that suitable to estimate the transition matrix. 
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Table 6. The numerical computation of each scenarios 
  Model (B) 
  ------------------------------------------------------------------------------ Size of the constraint 
S n Number of constraints  Number of decision variables matrix of model (B) (byte) 
10 60 1,140 4,140 4.7196×106 
 80 1,520 7,120 1.0822×106 
 100 1,900 10,900 2.0710×107 
 120 2,280 15,480 3.5294×107 
 140 2,660 20,860 5.5488×107 
 160 3,040 27,040 8.2202×107 
 180 3,420 34,020 1.1635×108 
 200 3,800 41,800 1.5884×108 
 250 4,750 64,750 3.0763×108 
 300 5,700 92,700 5.2839×108 
 330 6,270 111,870 7.0142×108 
 400 7,600 163,600 1.2433×109 
20 200 7,800 43,800 3.4164×108 
30 140 8,260 23,660 1.9543×108 
100 60 11,940 9,540 1.1391×108 
 
Table 6. The numerical computation of each scenarios (continue) 
   Directly solved by ‘linprog’ CG method 
   ------------------------------------------------- ----------------------------------------------------  
   Time to Number of variables Time to Number of variables Percentage of variables 
S n Mean of LAD Estimation (sec) considered in the solution Estimation (sec) considered in the solution considered in CG method 
10 60 0.0657 11.6181 4,140 64.7237 1,117 26.97 
 80 0.0290 51.2985 7,120 221.8648 1,520 21.35 
 100 0.0290 74.4539 10,900 275.9748 1,822 16.71 
 120 0.0274 175.6527 15,480 595.0517 2,272 14.67 
 140 0.0237 294.6160 20,860 761.7571 2,614 12.53 
 160 0.0115 392.9262 27,040 987.3406 2,877 10.64 
 180 0.0241 577.6557 34,020 1449.2400 3,250 9.55 
 200 0.0205 1175.1520 41,800 1497.7800 3,435 8.22 
 250 0.0226 2290.8500 64,750 4170.2000 4,301 6.64 
 300 0.0101 3991.7000 92,700 8299.9000 5,207 5.62 
 330 0.0148 Out of memory 111,870 10684.2300 5,596 5.00 
 400 0.0139 Out of memory 163,600 50754.0000 8,382 5.12 
20 200 0.0416 Out of memory 43,800 8777.3000 5,677 12.96 
30 140 0.0874 Out of memory 23,660 8811.4000 5,601 23.67 
100 60 0.9702 Out of memory 9,540 26,307.0000 6,802 71.30 
 
Table 7. The sum of square error for each scenario 
  SSE   
  ------------------------------------------------- % of SSE difference  

S n RLS  LAD  100RLS LAD

RLS

SSE SSE

SSE

 − × 
 

 

10 60 0.00004 0.000030 25.00 
 80 0.00003 0.000020 33.30 
 100 0.00003 0.000010 66.70 
 120 0.00004 0.000002 95.00 
 140 0.00005 0.000003 94.00 
 160 0.00012 0.000008 93.30 
 180 0.00002 0.000009 55.00 
 200 0.00001 0.000002 80.00 
 250 - - - 
 300 - - - 
 330 - - - 
 400 - - - 
20 60 0.00011 0.00007 36.36 
 80 0.00004 0.00003 25.00 
 100 0.00005 0.00002 60.00 
30 60 0.00012 0.00012 0.00 
 80 0.00010 0.00006 40.00 
 100 0.00006 0.00003 50.00 
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Table 8. The average time to estimate transition matrix for each scenario 
  Time to estimation (second) 
  ---------------------------------------------------------------------- 
   LAD    
   ------------------------------------------ % of time difference % of time difference 

S n RLS  Directly CG 100RLS LAD

RLS

Time Time

Time

 − × 
 

 100RLS CG

RLS

Time Time

Time

 − × 
 

 

10 60 20.2087 11.61810 64.7237 42.5 -220.3 
 80 125.3724 51.29850 221.8648 59.1 -77.0 
 100 505.9440 74.45390 275.9748 85.3 45.5 
 120 1772.5000 175.65270 595.0517 90.1 66.4 
 140 4736.6000 294.61600 761.7571 93.8 83.9 
 160 10582.2000 392.92620 987.3406 96.3 90.7 
 180 23091.4000 577.65570 1449.2400 97.5 93.7 
 200 40677.1000 1175.15200 1497.7800 97.1 96.3 
 250 - 2290.85000 4170.2000 - - 
 300 - 3991.70000 8299.9000 - - 
 330 - - 10684.2300 - - 
 400 - - 50754.0000 - - 
20 60 20.1708 111.7754 344.8695 -454.1 -1609.7 
 80 125.4699 349.7303 674.6040 -178.7 -437.7 
 100 508.5041 646.6208 1246.8880 -27.2 -145.2 
30 60 19.8749 329.9915 1370.1000 -1560.3 -6793.6 
 80 125.2306 966.5548 3299.2000 -671.8 -2534.5 
 100 502.2330 1534.9000 4035.0000 -205.6 -703.4 

 
The transition matrix of this example is: 

 
0.2121 0.7879 0

0 0.2822 0.7178

1 0 0

P

 
 =  
  

 

 
5. CONCLUSION 

The probability statistics in transition matrix of 
large scale Markov Chain estimated by LAD method 
reformulated to LP model is studied. If the size of 
constraint matrix of LP is checked and found that it is 
not over the maximum possible array, the ‘linprog’ 
function in MATLAB should be used to optimize the 
LP and if not, when the number of states n is a large 
number and the number of periods for data collection 
S is a small number, the CG algorithm is an 
interesting method to be used to solve that problem 
because it uses less than 30% of the total problem 
variables and the number of variables used decreases 
when the number of states n is increased. 
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