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ABSTRACT

In this study we show that the rate function of 8l stationary process with part of the hypermgi
condition is equivalent to the Kullback-Leibler @isce. This finding can be used to extend the refuhe
optimality of empirical likelihood test in i.i.d #&g to weakly depended case, so that the Asynptot
Relative Efficiency (ARE) of the empirical likelilod test with strong mixing data can be established.
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1. INTRODUCTION Also let F’=0(X,:as<i<b)denote the c-algebra

Large deviation results on random variables can begenerated by {X a < i < b}. According to Bryc and
used to derive the bounds of some loss functions,Dembo (1996) (hereafter BD), {Xt O Z} is said to be
therefore the efficiency of statistical inferencancbe  S-mixing if for any finite constant C «, there exists a
assessed by large deviation probabilities, paatifyuln the non-deceasing sequence I[N with Equation 1:
case that both the loss function and the rate imacf the

large deviations are the Kullback-Leibler (K-L) tdisce i 1) . Q)
between two probability measure, say,and m: Sin(n+1)
Such that Equation 2:
J'Iog[dml] dm, ifm<m
H(m, |m,) = dm, ’ 2 sug P(A)P(B)- & A Bs &" 2
0 otherwise

where A DR, BOR. 2"k, k,0Z, .

Bahadur (1967) and Dembo and Zeitouni (1998) BD points out that $nixing is a fairly weak
(hereafter DZ), where the optimality of statistical condition since a-mixing condition suffices for S
inference with i.i.d data is extensively discusgdthough mixing, so it is suitable for a quite general class
in general the rate function for non i.i.d. datads equal to  stochastic processes (see also DZ). Specificallp, B
the K-L distance, the purpose of this note is towslthat shows thata-mixing implies S-mixing and also proves
combined with part of the hypermixing conditione tB8- that Smixing will hold if it satisfies the following two
mixing stationary process has a rate function egutle K- conditions (H-1) and (H-2), which are sometimedechl
L distance, hence the optimality results on emgiiric hypermixing conditions.
likelihood test with i.i.d. data (Kitamura, 2001arc be :
extended to the case of weakly dependent data. Assumption 1 (H-1)

Let X be a compact topological space and: {XO There exist g <o such that, for all k, r <« and any
Z} be a stationary stochastic process taking vaines. I-separated functions (For any given intergeeskr= 2, |

////4 Science Publications 334 JMSS



Xing Wang / Journal of Mathematics and Statisti¢4)9 334-338, 2013

> 0, a family of functionsffigif } |, (B (3! R) is called
I-seperated if there exist k disjoint intervals.ll,, such

that dist (J, Iy)= 1 for 1<m < m'<r and f, is |,
measurablr for any<im < n) f 00 B(Z, R ) Equation 3:

T

k

< ”(E[\f (XX,

Assumption 2 (H-2)

There is some constant |0 and functiopé) = 1, w
() = 0 such that for all | >¢) all r < and any two
Iseparated functions f,[g B ") Equation 4:

f (X, X,)

r

B() })”’3(') @)

) B) D”B“)

limsup= log P (u, OF) < - inf I(v) @)
n vaor

n-w

where, P 0 M; (") is the distribution ofu, and
Equation 8:

A(f) = !E[T]o%/\n(f) :Iinrpmﬁog E Q{exp(if(xi )H (8)

and the limit exists for everyd B 2, R ), where BE,,
R) is the space of all bounded, real-valued, Borel
measurable functions gn

On the rate function of the LDP, BD mentioned
roughly in their paper that I(v) in general will bess
than specific K-L distance, but they didn’t providay
proof. However, we find that I(v) will be equal tioe K-
L distance if the S-mixing condition are combinedhw
part of hypermixing condition. This main result is
presented in the next section.

2. THE RATE FUNCTION OF THE &
MIXING PROCESS

First, we introduce the following lemma from DZ.

The following theorem of large deviations can be | gqma 1
considered as an analogue of Sanov theorem (Sanov,

1965) of S-mixing process, with which we are alde t
probabilities of weakly

evaluate large deviation

Given assumption (H-1), foy > 0, we have Equation 9:

dependent data. Let Q be the underlying probability /\(f)slbgj e"™dQ 9)
y z

measure of the whole process and Igtd@note the nth

margin of Q and particularly, QO M; (%) is the
probability measure of a single realization, whdre(2")

denotes the space of Borel probability measureg on

see DZ for proof. This lemma ensures thaff) is
bounded and so is it's legendre transformationif{\p).

Also define the empirical measure of a sample Assumption 3

Xy XX, 10 b, (X) =%Zi":11xisx :
Theorem 1 (Bryc and Dembo, 1996)

If a stationary process {Xt 0 Z} is S-mixing, the

If v << Qy, then the Radon. Nikodym density dv/dQ
is bounded.

Our following theorem shows the equivalence of the
Kullback-Leibler distance H (. [(pand the rate function

sequence of empirical measures satis.es the LDR wit ©f the LDP of S-mixing data.

respect to thet-topology in M(2) and this LDP is

governed by the good rate function Equation 5:

1(u)= sup {jzfdu—/\ (f} (5)

f0B(Z,R)

i.e., for every seff [0 M(>)) Equation 6 and 7:

I . .
liminf EIogP (unIZIF)z— inf (v) (6)

n-e udr
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Theorem 2

If assumption (H-1) and 3 are satisfied, the rate
function I(v) in theorem 1 satisfies:

(V) =H(VIIQ)

Pr oof

Firstly we show that I(vk H(v || Q): From lemma 1
we have Equation 10:
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1(v) :mﬁfﬁ)“z fdu—A (f}
IogL o dQ}

1
{ L fdu—;

2 [ fdu —%/Iogj'z &% dQ

> sup (10)

0B (X, R)

The last inequality implies that v is absolute
continuous with respect to;QTo see this, lef 0 A
satisfying Q (I") = 0. Because the inequality holds for
any f B (X, R), we can take f I whereg > 0 and |
is the indicator function. Note thﬁ'eyz'rdq =1, so we

have I(v)= &v (") for any & > 0. Since I(v) is non-
negative, we conclude ¥) =0, i.e., v << Q Therefore
the Radon-Nikodym derivative of v with respect tg Q

exists, namelyi;sdogJ . Hence I(v)= H(v || Q) is

1

implied by (10) if we take f = logh with assumption 3.

On the other hand, by Jensen.s inequality and theW = infsup

stationary of {3}, we obtain:
.1 2
A(f) =lim =log E{ex > f(x )ﬂ
n-opn =

> lim iE{Iog exr{zn: f(x )ﬂ

=E[f(x)]
sz(x)dx -H(vIIQ)
which completes the proof.

In the next section we use Theorem 2 to estaltish t
asymptotic optimality of the empirical likelihoodEl()

test in a general Neyman-Pearson sense, showing thQ(e):{“DMl(z):Ig(X'e)m:q

asymptotic type Il error probability can achievee th
lower bounds indicated by the rate function of kage
deviation results. Similar results with i.i.d dat@ shown

E[9(x 8,)1= [, a(x .8,)dQ = 0 (11)
where the moment indicator gR‘x © - R™ is
continuous for all d-dimensional; XI>. and Q is the
unknown distribution of xi,e., Qis the marginal of Q at
X;. Also B8p [0 © OR” is the true parameter vector. We
consider the over-identifying case wherep.

If we assign each observationwith a probability
pi, the EL method solves the following problem:

maxlj R

s.t.zzllpg(x Bo)= O,Z;: p= Lp= |

Qin and Lawless (1994). The test statistic is gibgn
Kitamura (1997) using block technique Equation 12:

{%)i log(+A 'bBO YT X,  (12)

oo AOR™

where A is a vector of Lagrangian multipliers and
Equation 13:

b(B, :e)=$j§ g( X(i—l)L+je) (13)

where, T is the number of blocks, M > 1 denotes the
block length, L is the separation between blocktisig
points.

Now define Equation 14:

(14)

Let Q = UzeQ(B) thus Q is the set of probability
measures which satisfy the moment condition over th

by Zeitouni and Gutman (1991) (hereafter ZG) and parameter space. Hence the problem of testing ¢dn)

Kitamura (2001), but our analysis will be in a eortof
weakly dependent data.

3. THE OPTIMALITY OF THE EL TEST
3.1. TheEL Test Statistic

Let {x }, be a realization of a stationaoymixing

(and hence ergodic and S-mixing) process: {KIZ }
taking values ont.. We are interested in applying the EL
to test the following moment condition Equation 11:
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be considered as testing Equation 15:

Ho:M,0Q versus H p,0 Q (15)

where, |, is the empirical measure of the observed data.
Intuitively, empirical likelihood test is to invegate
whether the empirical measyugwhich is constructed to
be as close to the true probability measure astgedsy

the EL method, is too far away from any of the mees

in Q or not. Therefore, considering the K-L distanc
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H(.]|.) as a measure of distance between two pililgab
measures, the EL test statistic W is indeed atre$ihe
following minimizing problem Equation 16:

inf H(1.11Q,) (16)

consequently, the empirical likelihood ratio testtd
reject HO if Equation 17:
Inf H{k11Q)>c (17)

for some threshold constant ¢ > 0. This is to sagler
the null hypothesis, the empirical measuell Q and
therefore, if the distance betwegn and any of the
probability measures in Q is too large, then wellsha
reject the null hypothesis. It also tells that ttest
depends on the data only through (see DZ). Thus
empirical likelihood test can be considered ascusace
of partitionsA(n) = (A1 (n), A, (n)) of My(2) where n =

1, 2.... and Equation 18:

A, ={HDM1(Z): inf H (uIIQ1)<C} A= ME)\A, (18)
4R

In the following we abbreviate\g (n), A, (n)) as 4,
N\,) for economy of notation, but its dependence an th
sample size n should not be ignored. Since in géner
framework, pointwise bounds on error probabilitease
not available (Kitamura, 2001), we consider tlke
smoothing of the seft,:

A= BM)

HOA,
and:
N =M, (D\AS

where, B (1, ) denotes an open ball of radiigroundu
and the balls are taken in the Levy metric:

d(i, 1t,)= Inf{0>0: ,(A) S pfA) +€0A O

which is compatible with the weak, strong and umnifo
convergence of discrete probability measures @&eg.ZG).
3.2. Optimality Argument

To directly apply large deviation property pf in
Theorem 1 and Theorem 2 to establish the optimality
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the EL test, firstty we need some tightness and
continuous condition.

Assumption 4

supe ||g (XP)|| is bounded almost surely and thus it
is a random variable under al, @ Q. The functional
i“leDQH(Hn 1Q,) is uniformly continu-ous ip O My(Y)

in thet-topology.
Lemma?2

A, ={uDM1(Z): inf H(uIIQ1)<C}
Q0Q

Pr oof

Since H (1 || Q) is a lower-semicontinuous function,
the set{pDMl(Z):infoluQH (p||Q1)sc}is closed. So we
have Equation 19:

7\1D{uDMl(Z):iQrIDfQH(u||leC)} (19)

To see the other direction, notice that assumptitin
implies thatp O{u: inf, H(UIQ,) =c} is a limit point of
A. Hence the lemma follows.

In the next theorem we show that EL test is the
uniformly most powerful test among all the testthvthe
same size. This uniform optimality is sometimedechl
universal property in information theory, e.g., €6
and DZ.

Theorem 3

Let P"=07_puOM,E")with i = 0, 1, be the law of
the empirical measure under the hypothesjsahd H

respectively. Then the empirical likelihood teat,(A,)
satisfies Equation 20:

. 1
limsup=logP{p OA3l <-¢
plog{u, 0A%}

n- oo

(20)

Moreover, for any another te€{, Q,) which is also
a partition of M(2)/and satisfies:

Iimsup1 log Ff{un DQEZ} <-c
n

we have Equation 21:
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Iimsup1 Iogl?{unEIQl}z Iimsup& logPy{,0OA, ] (22)
n new N

n-w

Pr oof

The inequality (19) implies that the asymptoticeyp
error probability of the EL test is bounded aboranf €

", This boundness is straightforward from the LDP of
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We have shown the equivalence of the rate function

of the S-mixing process to the K-L distance if pafrthe

hypermixing condition is added. This results can be

applied to assess the efficiency of statisticakriafice

based on minimum distance method in weakly dependen

setting,
compared by the K-L distance.
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where two probability measureds can be
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