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ABSTRACT 

In this study we show that the rate function of S-Mixing stationary process with part of the hypermixing 
condition is equivalent to the Kullback-Leibler distance. This finding can be used to extend the result of the 
optimality of empirical likelihood test in i.i.d setting to weakly depended case, so that the Asymptotic 
Relative Efficiency (ARE) of the empirical likelihood test with strong mixing data can be established. 
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1. INTRODUCTION 

Large deviation results on random variables can be 
used to derive the bounds of some loss functions, 
therefore the efficiency of statistical inference can be 
assessed by large deviation probabilities, particularly in the 
case that both the loss function and the rate function of the 
large deviations are the Kullback-Leibler (K-L) distance 
between two probability measure, say, m1 and m2: 
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Bahadur (1967) and Dembo and Zeitouni (1998) 

(hereafter DZ), where the optimality of statistical 
inference with i.i.d data is extensively discussed. Although 
in general the rate function for non i.i.d. data is not equal to 
the K-L distance, the purpose of this note is to show that 
combined with part of the hypermixing condition, the S-
mixing stationary process has a rate function equal to the K-
L distance, hence the optimality results on empirical 
likelihood test with i.i.d. data (Kitamura, 2001) can be 
extended to the case of weakly dependent data. 

Let  ∑ be a compact topological space and {Xt: t ∈ 
Z} be a stationary stochastic process taking values in ∑. 

Also let ( )b
a iF X : a i b= σ ≤ ≤ denote the σ-algebra 

generated by {Xi: a ≤ i ≤ b}. According to Bryc and 
Dembo (1996) (hereafter BD), {Xt: t ∈ Z} is said to be 
S-mixing if for any finite constant C < ∞, there exists a 
non-deceasing sequence l(n) ∈ N with Equation 1: 
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Such that Equation 2: 
 

( )l(n ) Cnsup P(A)P(B) e P A B e−− ∩ ≤   (2) 
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BD points out that S-mixing is a fairly weak 
condition since α-mixing condition suffices for S-
mixing, so it is suitable for a quite general class of 
stochastic processes (see also DZ). Specifically, BD 
shows that α-mixing implies S-mixing and also proves 
that S-mixing will hold if it satisfies the following two 
conditions (H-1) and (H-2), which are sometimes called 
hypermixing conditions.  

Assumption 1 (H-1) 

There exist l, α < ∞ such that, for all k, r < ∞ and any 
l-separated functions (For any given intergers r ≥ k ≥ 2, l 
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≥ 0, a family of functionsffig ( )k r
i i 1{f } B ,= ∈ ∑ ℝ is called 

l-seperated if there exist k disjoint intervals I1,…Ir, such 
that dist (Im, Im’)≥ l for 1 ≤ m < m’ ≤ r and fm is Im 
measurablr for any 1≤ m < n) fi ∈ B(Σ,ℝ ) Equation 3: 
 

( )
1/k k

i 1 r i 1 r
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α

= =

  ≤     
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Assumption 2 (H-2) 

There is some constant l0 and functions. β(l) ≥ 1, ω 
(l) ≥ 0 such that for all l > l0, all r < ∞ and any two 
lseparated functions f, g ∈ B (∑r) Equation 4: 
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The following theorem of large deviations can be 

considered as an analogue of Sanov theorem (Sanov, 
1965) of S-mixing process, with which we are able to 
evaluate large deviation probabilities of weakly 
dependent data. Let Q be the underlying probability 
measure of the whole process and let Qn denote the nth 
margin of Q and particularly, Q1 ∈ M1 (∑) is the 
probability measure of a single realization, where M1 (∑) 
denotes the space of Borel probability measures on ∑. 
Also define the empirical measure of a sample 

1 2 nx ,x ,..,x  to be 
n

n xi xi 1

1
(x) 1

n ≤=
µ = ∑ . 

Theorem 1 (Bryc and Dembo, 1996) 

 If a stationary process {Xt: t ∈ ℤ } is S-mixing, the 
sequence of empirical measures satis.es the LDP with 
respect to the τ-topology in M1(∑) and this LDP is 
governed by the good rate function Equation 5: 
 

I { }
f B( , )
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= − Λ∫
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 (5) 

 
i.e., for every set Γ ⊆ M1(∑) Equation 6 and 7: 
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nn 0u
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n→∞ ∈Γ
µ ∈ Γ ≥ −  (6) 

( )n
n

n v

1
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where, Pn ∈ M1 (∑n) is the distribution of µn and 
Equation 8: 
 

n

n Q in n
i 1

1 1
(f ) lim (f ) lim log E exp f (x )

n n→∞ →∞ =

  Λ = Λ =   
  
∑  (8) 

 
and the limit exists for every f ∈ B (∑, ℝ ), where B (∑, 
ℝ ) is the space of all bounded, real-valued, Borel 
measurable functions on ∑. 

On the rate function of the LDP, BD mentioned 
roughly in their paper that I(v) in general will be less 
than specific K-L distance, but they didn’t provide any 
proof. However, we find that I(v) will be equal to the K-
L distance if the S-mixing condition are combined with 
part of hypermixing condition. This main result is 
presented in the next section. 

2. THE RATE FUNCTION OF THE S-
MIXING PROCESS  

First, we introduce the following lemma from DZ. 

Lemma 1  

Given assumption (H-1), for  γ > 0, we have Equation 9: 
 

1
f (x)1

(f ) log e dQ
Σ

γΛ ≤
γ ∫  (9) 

 
see DZ for proof. This lemma ensures that  Λ(f) is 
bounded and so is it’s legendre transformation I(v) in (5). 

Assumption 3 

 If v << Q1, then the Radon. Nikodym density dv/dQ1 
is bounded. 

Our following theorem shows the equivalence of the 
Kullback-Leibler distance H (. |Q1) and the rate function 
of the LDP of S-mixing data. 

Theorem 2 

If assumption (H-1) and 3 are satisfied, the rate 
function I(v) in theorem 1 satisfies: 
 

1I (v) H(v || Q )=  
 
Proof 

Firstly we show that I(v) ≥ H(v || Q1): From lemma 1 
we have Equation 10: 
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The last inequality implies that v is absolute 

continuous with respect to Q1. To see this, let Γ∈ A 
satisfying Q1 (Γ) = 0. Because the inequality holds for 
any f ∈ B (X, ℝ ), we can take f =  ξIΓ where ξ > 0 and I 
is the indicator function. Note that 1

Ie dQ 1
Σ

γξ Γ =∫ , so we 

have I(v) ≥ ξv (Γ) for any ξ > 0. Since I(v) is non-
negative, we conclude v (Γ) = 0, i.e., v << Q1. Therefore 
the Radon-Nikodym derivative of v with respect to Q1 

exists, namely,
1

du

dQ
ϕ ≡ . Hence I(v) ≥ H(v || Q1) is 

implied by (10) if we take f = log  ϕ with assumption 3. 
On the other hand, by Jensen.s inequality and the 

stationary of {xi}, we obtain: 
 

[ ]
( )

n

in
i 1

n

in
i 1

1

1
(f ) lim logE exp f (x )

n

1
lim E logexp f (x )

n

E f (x)

f (x)dx H v || Q

→∞ =

→∞ =

Σ

  Λ =   
  

  ≥   
  

=

≥ −

∑

∑

∫

 

 
which completes the proof. 

In the next section we use Theorem 2 to establish the 
asymptotic optimality of the empirical likelihood (EL) 
test in a general Neyman-Pearson sense, showing the 
asymptotic type II error probability can achieve the 
lower bounds indicated by the rate function of the large 
deviation results. Similar results with i.i.d data are shown 
by Zeitouni and Gutman (1991) (hereafter ZG) and 
Kitamura (2001), but our analysis will be in a context of 
weakly dependent data. 

3. THE OPTIMALITY OF THE EL TEST 

3.1. The EL Test Statistic 

Let n
i i 1{x } =  be a realization of a stationary α-mixing 

(and hence ergodic and S-mixing) process {Xt: t∈ℤ } 
taking values on ∑. We are interested in applying the EL 
to test the following moment condition Equation 11: 

i 0 i 0 iE[g(x , )] g(x , )dQ 0
Σ

θ = θ =∫  (11) 

 
where the moment indicator g: d

ℝ × Θ → m
ℝ  is 

continuous for all d-dimensional xi ∈∑ and Qi is the 
unknown distribution of xi, i,e., Qi is the marginal of Q at 
xi. Also θ0 ∈ Θ ∈ p

ℝ  is the true parameter vector. We 
consider the over-identifying case where m ≥ p.  
 If we assign each observation xi with a probability 
pi, the EL method solves the following problem: 
 

( )

n

i
i 1

n n

i i 0 i i
i 1 i 1

max p

s.t. p g x , 0, p 1,p 0

=

= =

θ = = ≥

∏
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Qin and Lawless (1994). The test statistic is given by 
Kitamura (1997) using block technique Equation 12: 
 

T
d 2

i m p
i 1

m

n
W inf sup 2 log(1 'b(B , ) X

TM −
=θ∈Θ λ∈

 = + λ θ → 
 

∑
ℝ

 (12) 

 
where, λ is a vector of Lagrangian multipliers and 
Equation 13: 
 

( )
M

i
j 1

(i 1)L j

1
b(B , ) g x

M =
− +θ = θ∑  (13) 

 
where, T is the number of blocks, M > 1 denotes the 
block length, L is the separation between block starting 
points. 

Now define Equation 14: 
 

{ }1Q( ) M ( ) : g(x, )d 0θ = µ ∈ Σ θ µ =∫  (14) 

 
Let Q = Uθ∈ΘQ(θ) thus Q is the set of probability 

measures which satisfy the moment condition over the 
parameter space. Hence the problem of testing (11) can 
be considered as testing Equation 15: 
 

0 n 1 nH : Q versus H : Qµ ∈ µ ∉  (15) 

 
where, µn is the empirical measure of the observed data. 
Intuitively, empirical likelihood test is to investigate 
whether the empirical measure µn which is constructed to 
be as close to the true probability measure as possible by 
the EL method, is too far away from any of the measures 
in Q or not. Therefore, considering the K-L distance 
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H(.||.) as a measure of distance between two probability 
measures, the EL test statistic W is indeed a result of the 
following minimizing problem Equation 16: 
 

( )n 1
Q Q1

inf H || Q
∈

µ  (16) 

 
consequently, the empirical likelihood ratio test is to 
reject H0 if Equation 17: 
 

( )n 1
Q Q1

inf H || Q c
∈

µ >  (17) 

 
for some threshold constant c > 0. This is to say, under 
the null hypothesis, the empirical measure µn ∈ Q and 
therefore, if the distance between µn and any of the 
probability measures in Q is too large, then we shall 
reject the null hypothesis. It also tells that the test 
depends on the data only through µn (see DZ). Thus 
empirical likelihood test can be considered as a sequence 
of partitions Λ(n) = (Λ1 (n), Λ2 (n)) of M1(∑) where n = 
1, 2…. and Equation 18: 
 

( )1 1 1 2 1 1
Q Q1

M ( ) : inf H || Q c , M ( ) \
∈

 Λ = µ ∈ Σ µ < Λ = Σ Λ 
 

 (18) 

 
In the following we abbreviate (Λ1 (n), Λ2 (n)) as (Λ1, 

Λ2) for economy of notation, but its dependence on the 
sample size n should not be ignored. Since in general 
framework, pointwise bounds on error probabilities are 
not available (Kitamura, 2001), we consider the  δ-
smoothing of the set Λ2: 
 

2

2

B( , )δ

µ∈Λ

Λ = µ δ∪  

 
and: 
 

1 1 2M ( ) \δ δΛ = Σ Λ  
 
where, B (µ, δ) denotes an open ball of radius δ around µ 
and the balls are taken in the Levy metric: 
 

1 2 1 2d( , ) inf{ 0 : (A) (A) A }µ µ = ∈> µ ≤ µ + ε∀ ∈ Α  
  
which is compatible with the weak, strong and uniform 
convergence of discrete probability measures (e.g., see ZG). 

3.2. Optimality Argument 

To directly apply large deviation property of µn in 
Theorem 1 and Theorem 2 to establish the optimality of 

the EL test, firstly we need some tightness and 
continuous condition. 

 Assumption 4   

supθ∈Θ ||g (x,θ)|| is bounded almost surely and thus it 
is a random variable under all Q1 ∈ Q. The functional 

( )
1

n 1Q Q
inf H || Q

∈
µ  is uniformly continu-ous in µ ∈ M1(∑) 

in the τ-topology. 

Lemma 2 
 

( )1 1 1
Q Q1

M ( ) : inf H || Q c
∈

 Λ = µ ∈ Σ µ < 
 

 

 
Proof 

Since H (µ || Q1) is a lower-semicontinuous function, 

the set ( ){ }
1

1 1Q Q
M ( ) : inf H || Q c

∈
µ ∈ Σ µ ≤ is closed. So we 

have Equation 19: 
 

{ }1 1 1Q Q
M ( ) : inf H( || Q c)

∈
Λ ⊆ µ ∈ Σ µ ≤  (19) 

 
To see the other direction, notice that assumption 4-b 

implies that 
1

1Q Q
{ : inf H( || Q ) c}

∈
µ ∈ µ µ =  is a limit point of 

Λ. Hence the lemma follows. 
In the next theorem we show that EL test is the 

uniformly most powerful test among all the tests with the 
same size. This uniform optimality is sometimes called 
universal property in information theory, e.g., see ZG 
and DZ. 

Theorem 3 

 Let n n n
i n 1 1P M ( )== ⊗ µ ∈ Σ with i = 0, 1, be the law of 

the empirical measure under the hypothesis H0 and H1 
respectively. Then the empirical likelihood test (Λ1, Λ2) 
satisfies Equation 20: 
 

{ }n
1 n 2

n

1
limsup log P c

n
δ

→∞
µ ∈ Λ ≤ −  (20) 

 
Moreover, for any another test (Ω1, Ω2) which is also 

a partition of M1(∑)/and satisfies: 
 

{ }n
1 n 2

n

1
limsup logP c

n
δ

→∞
µ ∈ Ω ≤ −  

 
we have Equation 21: 
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{ }n n
2 n 1 2 n 1

n n

1 1
limsup logP limsup logP { }

n n→∞ →∞
µ ∈Ω ≥ µ ∈ Λ  (21) 

 
Proof 

The inequality (19) implies that the asymptotic type I 
error probability of the EL test is bounded above from e-

nc. This boundness is straightforward from the LDP of 
the empirical measure µn indicated in theorem 1 and 
theorem 2 given assumption 4: 
 

{ } ( )n
1 n 2 1

n u u2 2

1
limsup logP inf I(u) H v || Q c

n→∞ ∈Λ ∈Λ
µ ∈ Λ ≤ − = − ≤ −  

 
Now we show that there exists some n0 ∈ N, such 

that Λ1 ⊆ Ω (n) for all n > n0 alongthe limit supremum. 
Suppose it is not so. Then there exists a subsequence nk 
such that 1nk

ω ∈ Λ and 2nk

δω ∈Ω . Since the set 1Λ  is 

compact due to lemma 2, there exists some 1ω∈ Λ such 

that 
nk

ω → ω . Note that 2nk

δω ∈ Ω , thus 2nk
B( , ) (k)δω δ ⊂ Ω  

and 2 kB( , / 2) (n )δω δ ⊂ Ω  hold for infinitely many nk. So: 
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n
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n
1
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1
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n
inf I(v)

inf H(v || Q )
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δ
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∈ ω δ

∈ ω δ

µ ∈ Ω

≥ µ ∈ Ω

≥ µ ∈ ω δ

≥

= −
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this contradicts (20) and thus 1 1

δ δΛ ⊆ Ω  is verified. 

Consequently: 
 

{ } { }n n
2 n 1 2 n 1

n n

1 1
limsup logP limsup log P

n n→∞ →∞
µ ∈ Ω ≥ µ ∈ Λ . 

4. CONCLUSION 

 We have shown the equivalence of the rate function 
of the S-mixing process to the K-L distance if part of the 
hypermixing condition is added. This results can be 
applied to assess the efficiency of statistical inference 
based on minimum distance method in weakly dependent 
setting, where two probability measureds can be 
compared by the K-L distance.  
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