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Abstract: Problem statement: The modeling of claims is an important task of actuaries. Our problem 
is in modelling  the actual motor insurance claim data set. In this study, we show that the  actual motor 
insurance claim can be fitted by a  finite mixture model. Approach: Firstly, we analyse the actual data 
set and then we choose the finite mixture Lognormal distributions as our model.  The estimated 
parameters of the model are obtained from the EM algorithm. Then, we use the K-S and A-D test for 
showing how well the finite mixture Lognormal distributions fit the actual data set. We also mention 
the bootstrap technique in estimating the parameters.  Results: From the tests, we found that the finite 
mixture lognormal distributions fit the actual data set with significant level 0.10. Conclusion: The 
finite mixture Lognormal distributions can be fitted to motor insurance claims and this fitting is better 
when the number of components (k) are  increase.  
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INTRODUCTION 

 
Introduction and motivation: Many problems in 
actuarial science involve the building of a mathematical 
model that can be used to forecast or predict insurance 
costs. So modeling is an important procedure for 
actuaries so that they can estimate the degree of 
uncertainty as to when a claim will be made and how 
much will be paid. In particular, the modeling of claims 
and outstanding claims lead to the pricing of insurance 
premiums and an estimation of claim reserving, 
respectively. The most useful approach to uncertainty 
representation is through probability, so we will 
concentrate on probability models.   
 Losses depend on two random variables, i.e., the 
number of losses and the amount of loss which will 
occur in a specified period. The number of losses (claim 
number) is referred to as the frequency of loss (claim 
frequency) and the probability distribution is called the 
frequency distribution. The amount of loss (claim size) 
is referred to as the severity of loss (claim severity) and 
its probability distribution is called the severity 
distribution. Loss distribution and its modeling are 
described in detail in the book of Klugman et al. (2008) 
and paper of Janczuraa and Weron (2010). The severity 
distribution is solely considered for this study.  
 The mixture of distributions is sometime called 
compounding, which is extremely important as it can 
provide a superior fit. A successful use of this technique 

is illustrated in Hewitt and Lefkowitz (1979). In the 
1960s and 1970s, finite mixture models appeared in the 
statistical literature and they proved to be useful for 
modeling discrete unobserved heterogeneity in the 
population. Since there are many different modes for claim 
possibilities, a finite mixture model should work well. 
 The Expectations-Maximization (EM) algorithm is 
provided to fit the model that introduces unobserved 
indicators with the goal of maximizing the complete 
likelihood function. The EM algorithm is also applicable 
for parameter estimation of mixture models. For more 
detail, McLachlan and Peel (2000); Aitkin and Rubin 
(1985); Hogg et al. (2004) and Hogg and Klugman (1984). 
 The bootstrap process is a tool for fitting and it is 
not complicated to implement. Usually, the bootstrap 
process involves resampling with replacements from 
the residual more than the data themselves. We apply 
the bootstrap technique to recalculate the estimated 
parameters for model fitting. For more detail, Efron and 
Tibshirani (1993).  
 The purpose of this study is find a statistical model 
for the claim severity. Many authors investigate some 
special distributions of the severity claims and apply 
them to calculate the insurance premium. Recently, 
Mohamed et al. (2010) investigated a model of severity 
claims which has Pareto distribution and they used it to 
calculate insurance premiums under the retention limit. 
Moreover, Brazauskas et al. (2009) suggest the Method 
of Trimmed Moments (MTM) in the case of loss 
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distribution of Lognormal and Paerto and analyze a real 
data set concerning hurricane damage in the United 
States. But in our work, we work in the opposite 
direction, i.e., we shall find a model that is fitted to the 
empirical data. 
 We considers the data from a set of motor 
insurance claims from the top three non-life insurance 
public companies in Thailand. A mixture model is fitted 
to the data and the estimated parameters for the model 
are calculated by the EM algorithm. We also use the 
bootstrap technique to fit the data and show that the 
bootstrap sample for observation can be applicable to 
the estimated parameters.  
  

MATERIALS AND METHODS 
 
 We present the statistical modeling for a finite 
mixture of Lognormal distributions, the EM algorithm 
is explained and the bootstrap technique is 
demonstrated. 
 
Statistical modeling: The skewed right distribution 
such as Gamma, Lognormal, Weibull and Pareto 
distribution have often been used by actuaries to fit 
claim sizes; see Klugman et al. (2008). In insurance 
companies, there are 2 types of claim data recording, 
i.e., individual and group data. We model the individual 
claim data. Some assumptions and symbols are 
specified as below.  
 
Assumption 1 (Policy independence): Consider n 
different policies (contracts). Let Xi denote the response 
for policy i. Then X1,…, Xn are independent.  
  
Assumption 2 (Time independence): Consider n 
disjointed time intervals. Let Xi denote the response in 
time interval i. Then X1,…, Xn are independent. 
  
Assumption 3 (Homogeneity): Consider any two 
policies in the same tariff cell, having the same 
exposure. Let Xi denote the response for policy i. Then 
X1 and X2 have the same probability distribution.  
 
Assumption 4: Severity losses are non-catastrophe 
losses.  
 
Assumption 5: A recorded claim is equal to an actual 
claim (observation). 
 
Single parametric distribution: On the basis of the 
analyst’s knowledge, experience and statistical test, 
the Lognormal distribution is our selection for 
modeling and fitting to the data set. The Maximum 
Likelihood Estimation (MLE) is provided for 
estimation of the parameters.   

The model:  Assume that X ∼ Lognormal (µ,σ), 
abbreviates X ~  LN (µ,σ), with density: 
 

( ) ( )2

X 2

ln x1
f x exp  

2x 2

R,   0,   x 0

 − µ
 = −
 σσ π  

µ ∈ σ > >

 (1)  

 
Estimation for the model: Let x = (x1,…, xn) be an 
independent observation. Consider the amount xi paid 
for the ith contract. We fit the Lognormal distribution in 
Eq. 1 to the data set by MLE.  

 The likelihood function ( )
n

X i
i 1
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=

= ∏  then: 
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 We estimate ̂µ  and ˆ σ  for µ and σ respectively by 

ln L
0

∂ =
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 and 
ln L

0
∂ =

∂σ
.  

 We obtain maximum likelihood estimates for the 
parameter µ and the parameter σ as follows:   
 

n

ii 1
ln x

ˆ   
n

=µ = ∑   

 
 and:  
 

( )n 2
ii 1

ˆln x  
ˆ

n
=

− µ
σ = ∑ , respectively  

 
Finite mixture models: We consider the second-order 
and more than second-order finite mixture model. We 
aim to find the mixing weights according to the number 
of Lognormal distributions and estimated parameters by 
the MLE via EM algorithm.   
 
The model: 
  
Let ~X 1τ LN ( )1 1X µ ,σ + +⋯ kτ LN ( )k kX µ ,σ

 
(2) 

 
 Then its probability density function is: 
 

( ) ( ) ( )X 1 1 k kf x τ f x τ f x= + +⋯  
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where, 0<τj <1 for j 1,  ...,  k=  and τ1+…τk = 1. The 
likelihood function can be written as follows: 
 

( )
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and the log-likelihood function is in form: 
 

( ) 2n k
i j

j 2
i 1 j 1 ji j

ln x  1
ln L ln  exp

2x 2= =

  − µ
  = τ −

 σ πσ   
∑ ∑  

 
Estimation for the model: EM algorithm is a powerful 
algorithm for data arising from mixtures. Assume that 
the data set of motor insurance claim is produced 
according to model Eq. 2.  
 Let  ( )ijz z ,   i 1,...,n;   j 1,...,k= = =  be the latent 

(unobservable) variables that determine the components 
from which the observation originates. The values zij  
are indicators defined as: 
   

i j
ij

  1   ,  observation x  comes from the distribution f  
z

  0  ,   elsewhere

= 


 

 
 The complete likelihood takes quite a simple form:  
  

( ) ( )

ijz

j
n k i j
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i 1 j 1 i j

2
j
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x 2
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 τ πσ 
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 The complete log-likelihood function is Eq. 3: 
 

( )
( )

( )
j i j n k

c ij
2i 1 j 1

i j2
j

1
 lnτ lnx lnσ ln 2π

2
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  Set ( )τθ,ψ = ,  ( )1k1  τ,...,ττ −=  and 
θ = ( )k1k1 σ ,...,σ ,µ ,...,µ .  

 For each k components, there are 3k-1 unknown 
parameters that will be estimated by EM algorithm. We 
use a computer for the calculation of the parameters and 
visualization as a way to see its modeling. The proper 
number of components to be included in the mixture 
model will be considered.  
 
E-step: replacing zij in Eq. 3 by its expected 
value ij ijE z : T ,  =   yields the expected complete log-

likelihood: 
 
 ( )cE  ln L θ  x, τ      

( ) ( )
j i jn k
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i 1 j 1 i j2

j

 ln τ ln x ln σ

T  1 1
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(4) 

 
 Note that Tij is the marginal probability that an 
observation xi comes from the jth component. By Baye’s 
theorem, the marginal probability Tij is given by: 
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 M-step: we maximize Eq. 4 to estimate ψ . Firstly, 
we solve the first order conditions: 
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 This has the same form as the MLE for the 
multinomial distribution, so: 
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 Secondly, We solve the equation 
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 Similarly, one can show that: 
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 In summary, we obtain that: 
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 Note that the expected complete log-likelihood 
function is given by: 
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 For a given set of parameters ψ, i.e., θj = (µj, σj),    
j = 1,2,…, k and τ = (τ1,…, τk-1), the E-step consists of 
calculating Tij and τj for M-step. Given τj, the M-step 
consists of maximizing the expected complete log-
likelihood function. The E-step and M-step are repeated 
in an alternating fashion until the expected complete 
log-likelihood fails to increase. At this point, we 
conduct a final M-step in which the set of parameters ψ 
is estimated. Otherwise, we return to the E-step for the 
next iteration.  In the final step after the mth iteration, 
the EM algorithm is produced as below:  
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E-step: Given our current estimation of the parameters 
ψ(m) after the mth iteration. Thus the E-step results in the 
function:  
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M-step:  Maximizing ψ. That is: 
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Bootstrap technique: We are interested in the 
bootstrap sample for observation and residual. We 
shall recalculate the estimated parameters of the 
Lognormal distribution by using the bootstrap 
technique and MLE. One of advantage of the 
bootstrap technique is that we can calculate as many 
replications of the sample as we want. 
 
Observation bootstrap: 
  
Define               ( )* * * *

1 2 nx x ,  x ,...,  x=  (6) 

 
 The bootstrap data points * * *

1 2 nx ,  x ,...,  x  are a 

random sample of size n with replacement from the 
observation of n objects( )1 2 nx ,  x ,...,  x . Then we 

recalculate the estimated parameters, *µ̂  and *ˆ σ , by 

MLE based on *x . 
 
Residual bootstrap: There are many forms of the 
residual definition and it is important to use an 

appropriate residual definition for the determination of 
each problem. We have already considered some forms 
of residual definitions, such as the unscaled Pearson 
residual and the unscaled Anscombe residual. But these 
forms of residual are not suitable for our data. Hence, 
we consider the residual form µ̂ , that is, we define the 
form of the residual as follows: 
 

i i ˆln xε = − µ  

 
where, εi is the residual (i = 1,2,…, n) and µ̂  comes 
from Eq. 6. 
 Let    ( )1 2 n,  ,...,  ε = ε ε ε   and let  ( )* * * *

1 2 n,  ,...,  ε = ε ε ε  

be the resample residual.   
 By using the bootstrap technique, we obtain a 
resample ε* and the bootstrap data samples Eq. 7: 
 

* *
i i ˆln x ,i 1,  2,...,  n= ε + µ =  (7)  

 
 We recalculate the estimated parameters, *µ̂  and 

*ˆ σ  by MLE based on *
iln x , i = 1, 2,…, n.  

 
Goodness of fit test: The Goodness of Fit (GOF) test 
measures the compatibility of a random sample with a 
theoretical probability distribution function. We use the 
Kolmogorov-Smirnov test (K-S test) and the Anderson-
Darling test (A-D test) for showing how well the 
distribution fits our data set.     
 The K-S test is used to decide if a sample comes 
from a hypothesized continuous distribution. It is based 
on the Empirical Cumulative Distribution Function 
(ECDF) and denoted by:  
 

( ) [ ]n
X

1
F x Number of observations x

n
= ≤  

 
 The K-S test statistic is defined by: 
 

( ) ( )n *
X X

x
D sup   F x F x   = −  

 
 The A-D test is a general test to compare the fit of 
an observed cumulative distribution function to an 
expected cumulative distribution function. This test 
gives more weight to the tails than the K-S test. 
 The A-D test statistic is defined as: 
 

( ) ( ) ( ){ }
n

2 * *
X i X n i 1

i 1

1
A n   2i 1    ln F x ln  1 F  x

n − +
=

 = − − − − − ∑  

  
where, *

XF  is the theoretical cumulative distribution of 

the distribution being tested. 
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RESULTS 
 
 The finite mixture of Lognormal distributions is 
applied to the actual set of claims data and the bootstrap 
procedure is analyzed. An analysis and some 
comparisons are shown with respective to statistical tests. 
 
An application: We fitted the finite mixture of 
Lognormal distributions to the data set which was 
provided by a non-life insurance company in Thailand. 
We considered it for both a whole portfolio and various 
types of product coverages. The Kolmogorov-Siminov 
test and the Anderson-Darling test are statistical tests 
for model fitting.  
 
Motor insurance data set: We consider the data set of 
motor insurance claims for the year 2009; all types of 
vehicle, i.e. automobiles, lorries and motorcycles are 
included. The total of each claim amount is paid by the 
insurer. The data set is classified by product coverage 
type-i for i = 0, 1,…, 5. There are 1,296 observations of 
type-5 that meet the mixture Lognormal distributions. 
The historical data of sevirity claim and histogram of 
severity claim (log scale) are illustrated in Fig. 1 and 2, 
repectively.   
 Table 1-2 show the statistical test value for fitting 
the finite mixture Lognormal distributions to the data 
set. For both the K-S and A-D test consideration, the 
summaries are as the following cases.  
 
Case 1: at a significant level of α = 0.05. We obtain the 
estimated parameters, ˆ 8.9672µ =  andˆ 1.1804σ = , that 
the Lognormal distribution does not fit to type-5. While 
the mixture Lognormal distributions are fitted to type-5 
as k components greater than or equal to 20.  
 
Case 2: at a significant level of α = 0.10. The mixture 
Lognormal distributions are fitted to type-5 as k 
components equal to 25 and over. Mostly, k 
components of the mixture Lognormal distributions are 
better fit to the type-5 while k are increased. The 
maximum numbers of components is 130, since over 130 
components are not applicable to k mean clustering. 
 From Table 2, by the A-D test. We can see that A2 
value are reduced when k are increased as the D value 
is not.  
 Figure 3-4 show probability density function 
(p.d.f.) of Lognormal distribution (k=1, witĥ 8.9672µ =  
and ˆ 1.1804σ = ) and mixture Lognormal distributions 
when k=100, respectively.   
 Figure 5-6, solid line, show the distribution 
functions (d.f.) of finite mixture Lognormal when k=1 and 
k=100, respectively. The dashed line is ECDF. 

 
 
Fig. 1: Historical data 1,296 observations 
 

 
 

Fig. 2:  Histogram  (log scale) 
 
Table 1: The Lognormal distribution 
Single parametric              K-S test         A-D  test  
distribution ----------------------              ---------------------- 
 D Value P Value  A2 Value  P Value  
Lognormal 0.0466 p<0.01 3.3770 0.0241 

 
Table 2: The finite mixture Lognormal distributions 
          K-S test          A-D test  
 ---------------------- ------------------------ 
k-components D value P value A2 value P value 
15 0.0430 0.0215 3.1900 0.0296 
20 0.0355 0.0793 2.0373 0.0907 
25 0.0330 p>0.1 1.6118 p>0.1 
30 0.0261 p>0.1 1.1829 p>0.1 
35 0.0264 p>0.1 1.0348 p>0.1 
40 0.0217 p>0.1 0.7989 p>0.1 
50 0.0247 p>0.1 0.6193 p>0.1 
62 0.0234 p>0.1 0.5447 P>0.1 
65 0.0247 p>0.1 0.4594 P>0.1 
76 0.0239 p>0.1 0.4094 p>0.1 
78 0.0224 p>0.1 0.3454 p>0.1 
88 0.0216 p>0.1 0.3401 p>0.1 
100 0.0216 p>0.1 0.3029 p>0.1 
 
 Figure 7-8 show the P-P plot of finite mixture 
Lognormal distributions when k=1 and k=100, 
respectively.  
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Fig. 3:  P.d.f. of Lognormal distribution 
 

 
 
Fig. 4:  k = 100 
 

 
 
Fig. 5: k = 1 
 
 A bootstrap data sample can be calculated by using 
Eq. 6 and 7 for observation and residual respectively. 
The Lognormal distribution was fitted to the data set, 
when we recalculated the new estimated parameters 
respective to the bootstrap process. We have found that 
the Lognormal distribution is fitted to type-5 at a 
significant level of α=0.01 for both the K-S and A-D test. 
By K-S test, the Lognormal distribution can be fitted to 
type-5 at a significant level of α=0.10. We can see some 
examples of this from Table 3.  
 From Table 3, we can see that the bootstrap 
technique can be applicable to refitting the model of the 
data set. Note that the residual bootstrap provides better 
A2 values in a shorter time of a computer run than the 
observation bootstrap. 

 
 
Fig. 6: k = 100 
 

 
 
Fig.7:  k = 1 
 

 
 
Fig. 8: k = 100 
 
Table 3: Recalculation of the estimated parameters based on data and 

residual bootstrap 
         K-S test         A-D test 
Bootstrap    --------------------  ------------------- 

and MLE   
*
µ̂  ˆ *σ  D value P value A2 value P value 

  8.9024 1.1654 0.0427 0.0238 3.2188 0.0287 
            8.9339 1.1607 0.0377 0.0510 2.7781 0.0416 
Data  8.9433 1.1185 0.0331 p>0.1 3.3329 0.0255 
  8.9154 1.1102 0.0309 p>0.1 3.6200 0.0170 
  8.9336 1.1094 0.0289 p>0.1 3.5141 0.0201 
  --------------------------------------------------------------------------- 
  8.9182 1.1656 0.0406 0.0350 2.8866 0.0384 
  8.9384 1.1541 0.0359 0.0714 2.8051 0.0408 
Residual  8.9334 1.1313 0.0324 p>0.1 3.0150 0.0347 
  8.9355 1.1215 0.0307 p>0.1 3.2072 0.0290 
  8.9249 1.1095 0.0295 p>0.1 3.5309 0.0196 
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DISCUSSION 
 
 We should consider the infinite mixture Lognormal 
distributions (uncountable family) for reducing the 
problem of the number of components and it should be 
considered for the fitting of truncated and/or censored 
data sets in further research.  
 The model presented fitted the claim amount. It can 
be used for actuaries to determine which estimated 
parameters are acceptable or distribution functions are 
suitable for their work. The bootstrap technique can 
estimate the parameters easily and quickly. The finite 
mixture model makes the approach moderately useful 
for heavy tail (fat tail) distribution.  
 

CONCLUSION 
 
 The finite mixture of Lognormal distributions can 
be fitted to the set of actual claim data while the 
Lognormal distribution cannot be fitted. The mixture of 
Lognormal distributions fit very well to product type-5. 
The limitation of the finite mixture model is the number 
of components that depend on a mean clustering. So we 
should be careful to consider the number of 
components used for computing the estimated 
parameters. The estimated parameter of Lognormal 
distribution by using the bootstrap method is fitted to 
the data according to K-S test. Although the bootstrap 
process is not as good for fitting in a tail as the finite 
mixture of Lognormal distributions is. 
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