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Abstract:  Problem statement: A measurement control system ensures that measuring equipment and 
measurement processes are fit for their intended use and its importance in achieving product quality 
objectives. Approach: The manufacturing industries have been making an extensive effort to 
implement Statistical Process Control (SPC) in their plants and supply bases. Results: Capability 
indices derived from SPC have received increasing usage not only in capability assessments, but also 
in the evaluation of purchasing decisions. In most real life applications, real observations of continuous 
quantities are not precise numbers; in practice, they are more or less imprecise. Since observations of 
continuous random variables are imprecise the values of related test statistics become imprecise. In some 
cases Specification Limits (SLs) are not precise numbers and they are expressed in fuzzy terms, so that 
the classical capability indices could not be applied. Conclusion/Recommendations: In this study we 
obtain 100(1-α)% fuzzy confidence interval for Cpm fuzzy process capability index, where instead of 
precise quality we have two membership functions for specification limits.  
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INTRODUCTION 
 
 Statistical techniques can be helpful throughout the 
product cycle, including activities prior to 
manufacturing, in quantifying process variability, in 
analyzing this variability relative to product 
requirements or specifications and in assisting 
development and manufacturing in eliminating or 
greatly reducing this variability. This general activity is 
called process capability analysis. Process capability 
analysis is a very usable statistical technique to 
demonstrate the process performance. The results of the 
analysis can be used to improve the process 
performance.   Process capability refers to the 
uniformity of process. Obviously, the variability in the 
process is a measure of the uniformity of output.  
 There may not exist a definition of the ‘‘process 
capability’’ but in high probability the (real valued) 
quality characteristic X of the produced items lies 
between some lower and upper specification limits LSL 
and USL (or tolerance interval limits).  Therefore the 
idea of process capability implies that the fraction p of 
produced nonconforming items should be small if the 
process is said to be capable.  
 In the traditional quality management, the most 
commonly used capability indices like Cp, Cpk and 
Cpm are used to indicate process capability (for more 

information see Montgomery, 2008). An underlying 
assumption is that output process measurements are 
distributed as normal random variables. Experience 
shows that the normality assumption is often not met in 
real world.  
 Application and observations usually contain 
fuzziness owing imprecise measurements or described 
by linguistic variables, For instance, the water level of a 
river cannot be measured in an exact way because of 
the fluctuation.  
 Similarly, temperature in a room is also unable to 
be measured precisely because of the same reason. 
Typical example for an imprecise number is the lifetime 
of a system which cannot, in general, be described by 
one real number because the time at which the lifetime 
ends is not a precise number but is more or less 
imprecise. Other examples of imprecise data are data 
given by color intensity pictures or readings on 
analogue measurement equipment. Therefore, the fuzzy 
sets theory is found to be an appropriate tool in 
modeling the imprecise data. There have been some 
attempts to analyze these situations with fuzzy set 
theory developed by (Zadeh, 1965).  In some cases 
Specification Limits (SLs) are not precise numbers and 
they are expressed in fuzzy terms, so that the classical 
capability indices could not be applied. (Parchami et 
al., 2006) obtained fuzzy confidence interval for fuzzy 
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process capability (C�p) when SLs are imprecise. (Chen 
et al., 2008) used the fuzzy analytic method concerning 
process capability index Cpm and calculate C�pm for 
fuzzy observation. (Perakis and Xekalaki, 2004) 
constructed confidence interval for the index Cpm with 
crisp data. In this study, we introduce a new fuzzy PCI 
(C�pm) when SLs, target and observations are triangular 
fuzzy number and introduced a 100(1-α) % confidence 
interval for C�pm fuzzy process capability index, when 
the engineering specification limits are triangular fuzzy 
numbers. A set of confidence intervals of sample mean 
and variance that produces triangular fuzzy numbers for 
the estimation of Cpk index present in (Wu,  2009a). 
(Wu, 2009b) apply fuzzy sets theory to the statistical 
confidence interval for unknown fuzzy parameters by 
considering fuzzy random variables (Hsu and Shu, 
2008) present. The fuzzy inference procedure to assess 
process capability. Generalized confidence intervals for 
the process capability index Cpm is proposed as an 
extension of classical confidence intervals by (Hsu et 
al., 2008). (Lin and Pearn, 2005) present a testing 
manufacturing performance based on capability index 
Cpm. (Parchami and Mashinchi, 2007) assess Fuzzy 
estimation for process capability indices.  
 The organization of this study is as follows. We 
recall some notions of fuzzy number used in this study, 
which contains the traditional definitions of process 
capability indices.  Then  assigned to the presentation of 
point and interval estimations for Cpm based on fuzzy 
data. A numerical example is then given at the end.  
 
Preliminariesl: Let R be the set of real numbers and 
consider sets, ( ) [ ]{F R A | A : R 0,1 ,= → A is a continous 

function}, ( ) { }T a,b,cF R T | a,b,c R,a b c ,= ∈ ≤ ≤  where Eq. 1: 
 

( )
(x a) / (b a) if a x b,

T x (c x) / (c b) if b x c,
a,b,c

0 elsewhere.

− − ≤ ≤
= − − ≤ ≤



 (1) 

 
 Any A∈F (R) is called a fuzzy set on R and any 
Ta,b,c ∈FT (R) is called a triangular fuzzy number, which 
we sometimes write as T (a, b, c). 
 
Definition 2.1: Let T (a, b, c) ∈ FT (R), k∈R, k ≥0. 
Define the operation ⊗ on FT (R) as follows Eq. 2: 
 

( ) ( ) ( )k T a,b,c T a,b,c k T ka,kb,kc⊗ ⊗= =  (2) 
 
 This operation is called the multipilication of T (a, 
b, c) by k. For α∈[0,1], the α-cut of  T (a, b, c) is 
defined by: 
 

( )( ) ( ){ }a,b,cT a,b,c x R | T x
α

= ∈ ≥ α  

Definition 2.2: The Dp,q-distance, indexed by 
parameter 1< P ∞, 0≤ Q< 1 between two fuzzy numbers 

Aɶ  and Bɶ is a nonnegative function on F(R) × F(R) give 
as follows: 
 

1 p

0

1 p

0

1

p(1 q) A B d q

if p

A B d
D (A,B)

p,q

(1 q) sup A B
0 1

q inf A B if p .
0 1


 − −− − α + α α  < ∞ + + − α α α =  


 − − − − α α  < α ≤


 + + + − = ∞  α α < α ≤

∫

∫ɶ ɶ  

 
 The analytical properties of Dp,q depend on the 
first   parameter p, while the second parameter q of 
Dp,q characterizes the subjective weight attributed to 
the sides of the fuzzy numbers. If there are no reasons 
to distinguish any side of fuzzy numbers, Dp,1/2 is 
recommended (For more information see Gildeh and 
Samaneh, 2001). 
 
Definition 2.3: A mapping X : F(R)Ω →ɶ is said to be a 
fuzzy random variable associated with (Ω, A) if and 
only if: 
 

( ) ( ), x : x X A Bαω ∈ ω ∈ ×  

 
where B denote the σ-field of Borel set in R. 
 
Definition 2.4: The central D2,Q-mean square 

dispersion of Xɶ  about E(X)ɶ ɶ  (or 
X

µ
ɶ
ɶ ) is called 

Dvar(X)ɶ given by the value (if it exists):  
 

2
2,q X

1 1

2 2

0 0

Dvar(X) E([D (X, )] )

(X (w) (X (w)
(1 q) d q d dp(w).

( ) ) ( ) )
X X

[ ]
− +
α α

− +
α αΩ

= µ

= − α + α
− µ − µ∫ ∫ ∫

ɶ
ɶ ɶ ɶ

ɶ ɶ

 

 

 Assume that Aɶ  and Bɶ  are triangular fuzzy 
numbers: 1 2 3A T(a ,a ,a )=ɶ and 1 2 3B T(b ,b ,b )=ɶ , the α-cuts 

of Aɶ   and Bɶ  are as follows: 
 

1 2 3 4

1 2 3 4

A [(1 )a a ,a (1 )a ],

B [(1 )b b ,b (1 )b ]
α

α

= − α + α α + − α
= − α + α α + − α

  
 It can be established that: 
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2 2
2,1/2 1 1

2 2
2 2 3 3 1 1 2 2

3 3 2 2

1
[D (A,B)] [(b a ) 2

6

(b a ) (b a ) (b a )(b a )

(b a )(b a )]

= − +

− + − + − −
+ − −

ɶ ɶ

 

 
Proposition 1: Suppose that Xɶ  be a fuzzy random 
variable andT F(R)∈ɶ . Then Eq. 3: 
 

( ) ( ) ( )
( ) ( )

2 2 2
2,q 2,q 2,qX X

2
2,q X

E D X,T E D X, D ,T

Dvar X D ,T

     = µ + µ     

 = + µ 

ɶ ɶ

ɶ

ɶ ɶ ɶ ɶɶ ɶ

ɶ ɶɶ

  (3) 

 
Proof: 
 

( )
2

12
1

2,q 2
0

0

1 1
2

α α α α

0 0

1

0

21

0

(X (w) T )

E D X,T E (1 q)
d q (X (w) T ) d

(1 q) E (X (w) T ) dα q E (X (w) T )

2
(1 q) var(X ) (( ) T )

X

q var(X ) (( ) T )
X

Dvar(

− −
α α

+ +
α α

− − + +

 −
   = −   α + − α 
 

   = − − + −   

− − − = − + µ −
 α α α 

− − − + + µ −
 α α α 

=

∫
∫

∫ ∫

∫

∫

ɶ ɶ

ɶ

ɶ

ɶ
2

2,q X
X) D ( ,T) + µ ɶ

ɶɶ

 

 
 Similarly, it can be established that Eq. 4: 
 

( )
( ) ( )

2n

2,q
i 1

2
n

2,q
i 1

1
D X ,T

in

1
D X,X D X,T

2,qn

=

=

 ∑   

   = +∑     

ɶ ɶ

ɶ ɶɶ ɶ

 (4) 

 
where ( )D̂ var Xɶ  is estimator of  Dvar(X)ɶ . That is Eq. 5: 

 

( ) ( )n
2

2,q
i 1

1
D̂var X D X,X

n =

 = ∑  
ɶɶ ɶ  (5) 

 
Traditional process capability indices: Process 
Capability Indices (PCIs) are becoming powerful 
standard tools for quality report, particularly, at the 
management level around the world. They measure the 
ability of a manufacturing process to produce items that 
meet certain specifications. Numerous Process 
Capability Indices (PCIs) have been proposed to the 
manufacturing industry to provide numerical measures 
of process performance (Kane, 1986; Wu et al., 2009). 
One of the proposed definitions on process capability 

index considers that as the ratio of the real performance 
of process to requested performance that is: 
 

p

USL LSL
C

6

−=
σ

 

 
 Cp indicates how well the process fits between 
upper and lower specification limits and focuses the 
dispersion of the studied process and does not take into 
account the centering of the process. The index Cpk 
measures the consistency of process quality 
characteristic relative to the manufacturing tolerance 
and, therefore, only reflects process potential (or 
process precision). If the process average is not 
centered near the midpoint of specifications limits, the 
Cp index gives misleading results.  
 In order to reflect departures from the target value 

USL LSL
(M )

2

+=  as well as changes in the process 

variation several order indices have been proposed such 
as Cpk and Cpm given as Eq. 6 and 7: 
  

| M |
C C (1 k),k

pk p USL LSL

2

µ −= − =
−

  (6) 

 
And: 
 

pm 2 2

USL LSL
C

6 ( M)

−=
σ + µ −

 (7) 

 
where, µ is the distribution center of characteristic X. M 
is not always equal to τ which is target value.   
 Cpk measures the distance between the process 
mean and the closest specification limit relation to the 
one-side actual process spread 3σ. Cpk describes how 
well the process fits within the specification limits, 
taking into account the location of the process mean. 
The index Cpk takes into account the magnitudes of 
process variation as well as the degree of process 
centering, which measures manufacturing performance 
based on yield (proportion of conformities). Hence, the 
capability index Cpk is a yield-based index.  
 Departures from the target value carry more weight 
with the other well-known capability index Cpm. The 
loss-based process capability index Cpm, sometimes 
called the Taguchi index, has been proposed to the 
manufacturing industry to measure process 
performance. In fact, the capability index Cpm is not 
primarily designed to provide an exact measure on the 
number of conforming items, i.e., the process yield. But 
Cpm considers the process departure (µ-T)2 (rather than 
6σ alone) in the denominator of the definition to reflect 
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the degrees of process targeting (Chan et al., 1988). The 
index Cpm emphasizes measuring the ability of the 
process to cluster around the target, which therefore 
reflects the degrees of process targeting (centering). 
The index Cpm incorporates with the variation of 
production items with respect to the target value and the 
specification limits preset in the factory (Kotz and 
Lovelace, 1998).  In principal, Cpm behaved like Cpk but 
Cpm is bounded above as σ→0 and µ≠M. For µ=M it 
holds Cp = Cpk = Cpm. 
 
Fuzzy proccess capability indices: If we define the 
specification limits by fuzzy quantities, it is more 
appropriate to define the process capability indices as 
fuzzy numbers. 
 
Definition 4.1: Let L = T (l1, l2, l3), U = T (u1, u2, u3) 
are lower and upper specification limits, where u1 ≥ l3. 
T = T (t1, t2, t3) is a fuzzy target and observations are 
triangular fuzzy number too. ThenpmCɶ is defined as 

follow (see [14]) Eq. 8: 
 

( )pm 1 3 2 2 3 1C k T u l ,u l ,u l ,= ⊗ − − −ɶ                                (8) 

 

Where ( )( )
1

2

2,1/2k 6 E D X,T
−

 =  
 

ɶ ɶ  

 

 The point estimate for  pmCɶ  is as follows Eq. 9: 

 

( )pm 1 3 2 2 3 1
ˆ ˆC k T u l ,u l ,u l ,= ⊗ − − −ɶ                              (9) 

 

Where ( )( )
1

2n

2,1/2 i
i 1

k 6
1

D X ,T
n

−

=

 
=   
 

∑ ɶ ɶ     

 
Ranking function: In this study we are going to give a 
fuzzy confidence interval, where comparing fuzzy 
numbers is emergent and so an ordering approach is 
needed. We need a criterion for comparison of two 
fuzzy subsets. A simple but efficient approach for the 
ordering of the elements of F (R) is to define a ranking 
function R: F (R) →R which maps each fuzzy number 
into the real line, where a natural order exists, (Maleki, 
2002).  Define the order  

R
≤  on ( )F R  by: 

 

R
A B≥ɶ ɶ if and only if  ( ) ( )R A R B≥ɶ ɶ  

   

R
A B≤ɶ ɶ  if and only if ( ) ( )R A R B≤ɶ ɶ  

R
A B=ɶ ɶ  if and only if ( ) ( )R A R B=ɶ ɶ  

 
where  Aɶ   and Bɶ  are in  F (R). 
 Several ranking functions have been proposed by 
researchers to suit their requirements of the problems 
under consideration. For more details see (Bortolan and 
Degani, 1985; Wang and Kerre 2001). The ranking 
function proposed by Roubens (Fortemps and Roubens, 
1996) is defined by Eq. 10: 
 

( ) ( )1
r 0

1
R A inf A supA d

2 α α= + α∫ɶ ɶ ɶ  (10) 

 
  From now on, if Rr is the Roubens’s ranking 
function, then we write 

R
≤   simply as ≤. We can easily 

prove the following lemmas. 
 
Lemma 1:   If T (a, b, c) ∈FT (R) then Roubens’s 
ranking function reduces to following Eq. 11: 
 

( )( ) 2b a c
R T a,b,cr 4

+ +=  (11) 

 
Lemma 2: Let m, n∈R, T (a, b, c) ∈FT (R) and 2b + a 
+ c ≥0. Then according to Roubens’s ranking function 

( ) ( )m T a,b,c n T a,b,c⊗ ⊗≤  if and only if m ≤ n. 

 
 Fuzzy confidence interval for pmCɶ  

 
Definition 6.1: Let A, B ∈FT (R) and A ≤ B. The fuzzy 
interval [A, B] is the set[ ] ( ){ }TA,B C F R | A C B= ∈ ≤ ≤ . 
Note that [A, B] is nonempty, since A, B ∈ [A, B]. 
Suppose that the set of all random samples of size n 
which are possible is X(n). 
 
Definition 6.2: Any function A: X(n) → FT (R) is called 
a fuzzy statistic. Note that A (X1,…,Xn) only depends 
on A (X1,…,Xn) �and without any unknown parameters. 
When the observation X (X1,…,Xn) is given, then the 
value of the statistic, A (X) is just a triangular fuzzy 
number. Let X �be a measurable random variable on the 
probability space (Ω, F, P) and T = (a, b, c) ∈FT (R) 
such that 2b + a +c ≥0. We define Eq. 12: 
  
( )X T ( ) X( ) T,⊗ ⊗ω = ω ∀ω∈Ω  (12) 

 
According to definition 2.1: 
Proposition 2: Let X be a measurable random variable 
on the probability space (Ω, F, P), k1, k2 ∈ R and T =T 
(a, b, c) ∈FT (R) with 2b + a +c ≥0. Then: 
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 ( )1 2P k T X T k T 1⊗ ⊗ ⊗≤ ≤ = − α  
 
 If and only if ( )1 2P k X k 1≤ ≤ = − α . 
 
Definition 6.3: Let A �and B be the observed fuzzy 
statistic as triangular fuzzy numbers, where A ≤ B. 
Then [A, B] is a 100 (1- α) % fuzzy confidence interval 
for  X ⊗ T�, where P (A ≤ X ≤ B) = 1- α . 
 
Theorem 1: Suppose that 1 2 nX ,X ,...,Xɶ ɶ ɶ are independent, 
identically distributed fuzzy random variables with N 
(µ, σ2) and L = T (l1, l2, l3) ∈ FT (R), U = (u1, u2, u3) ∈ 
FT (R), are lower and upper specification limits 
(engineering fuzzy limits), where u1 ≥ l3. Target value is 
triangular fuzzy number also such as T =T (t1, t2, t3) 
∈FT (R). Then the following interval is a 100 (1- α) % 
fuzzy confidence interval forCpm

ɶ  Eq. 13-18: 
 

( ) ( )2 2
n, /2 n,1 /2

pm pm

n nˆ ˆC ,C
ˆ ˆn(1 ) n(1 )

α −α
⊗ ⊗

 ′ ′χ δ χ δ
 
 + δ + δ 

ɶ ɶ  (13) 

 

where  pmĈɶ  is defined with Eq. 2. 

2
2,1/2[D ( ,T)]
Dvar

µ
δ =

ɶɶ
and ( )2

n, /2 nα′χ δ  depicted  as the non-

central chi-square with n degrees of freedom and non-

centrality  parameter δn  . 
 

Proof: The statistic 
2

n 2,1/2

i 1

[D (X ,T)]i
Dvar=

∑
ɶ ɶ

 is distributed as 

the non- central chi-square with n degrees of freedom 
and non-centrality parameter nδ  where  

2
2,1/2[D ( ,T)]
Dvar

µ
δ =

ɶɶ

 
(Vakhania, 1981).

 
We have: 

  
 

2
2,1/2

2 (n )
n, / 2

nP 1[D (X ,T)]
i 2i 1 (n )

n,1 / 2Dvar(X)

 ′χ δ < α
 

= − α 
∑ 
= ′< χ δ − α 

ɶ ɶ

ɶ

 (14) 

 
 Therefore: 
 

( )

( )

2
(n, /2

2 2

2, 1/2 i 2, 1/2

2
2, 1/2

2
n,1 /2

2 2
2, 1/2 i 2, 1/2

n )Dvar(X)
P(

D X ,T E D (X,T)

1

E D (X,T)

(n )Dvar(X)
) 1 .

D X ,T E D (X,T)

α

−α

′χ δ
<

   ∑   

<
  

′χ δ
= − α

   ∑   

ɶ

ɶ ɶ ɶ ɶ

ɶ ɶ

ɶ

ɶ ɶ ɶ ɶ

 (15) 

 By Proposition 1, we can write: 
 

2,1/2

2,1/2 2,1/2

2,1/2

2,1/2

2 ˆ(n )D var(X)
n, / 2

P(
2ˆnD var(X) n[D (X,T)]

1 1

2 26 1/ n [D (X,T)] 6 E[D (X,T)]

2 ˆ(n ) D var(X)
n,1 / 2

2ˆnD var(X) n[D (X,T)]

1
) 1

26 1/ n [D (X,T)]

′χ δα

+

× <
∑

′χ δ− α< ×
+

= − α
∑

ɶ

ɶɶ ɶ

ɶ ɶ ɶ ɶ

ɶ

ɶɶ ɶ

ɶ ɶ

 (16) 

 
Let: 
 

  

2
n, /2

1 2
2,1/2

2
2,1/2

ˆ(n )Dvar(X)
k

ˆnDvar(X) n[D (X,T)]

1

6 1/ n [D (X,T)]

α′χ δ
= ×

+

∑

ɶ

ɶɶ ɶ

ɶ ɶ

 

 
And:  
 

2
n,1 /2

2 2
2,1/2

2
2,1/2

ˆ(n )Dvar(X)
k

ˆnDvar(X) n[D (X,T)]

1

6 1/ n [D (X,T)]

−α′χ δ
= ×

+

∑

ɶ

ɶɶ ɶ

ɶ ɶ

 

 
 By Proposition 2 and the fact u1 ≥ l3, we can obtain  
 

1 1 3 2 2 3 1

1 3 2 2 3 12
2,1/2

2 1 3 2 2 3 1

p(k T(u l ,u l ,u l )

1
T(u l ,u l ,u l )

6 E[D (X,T)]

k T(u l ,u l ,u l )) 1

⊗

⊗

⊗

− − − <

− − −

< − − − = − α

ɶ ɶ
 (17) 

  
By Definition 2.1: 
 

1 1 3 1 2 2 1 3 1

1 3 2 2 3 12
2,1/2

2 1 3 2 2 2 2 3 1

P(T(k (u l ), k (u l ), k (u l ))

1
T(u l ,u l ,u l )

6 E[D (X,T)]

T(k (u l ), k (u l ), k (u l )) 1

⊗

− − − <

− − −

< − − − = − α

ɶ ɶ

 (18) 

 
 By Eq. 2 of we obtain: 
 
 

2
n , /2

pm pm

2
n ,1 /2

pm

(n )
Ĉ C

ˆn(1 )
P 1

(n )
Ĉ

ˆn(1 )

α

−α

 ′χ δ
 ⊗ <
 + δ

= − α 
 ′χ δ

< ⊗  + δ 

ɶ ɶ

ɶ
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Table 1: 30 triangular fuzzy observation 

1X (5.85 6.15 6.35)=ɶ  11X T(5.86 6.04 6.25)=ɶ  21X (5.5 5.81 5.99)=ɶ  

2X (5.79 5.9 5.98)=ɶ  12X (6.13 6.23 6.33)=ɶ  22X (5.6 5.92  6.05)=ɶ  

3X (5.71 5.83 5.99)=ɶ  13X (5.95 6.05 6.19)=ɶ  23X (5.55 5.75 5.95)=ɶ  

4X (6.05 6.18 6.32)=ɶ  14X T(5.06 65.5 5.70)=ɶ  24X T(5.84 6.03 6.50)=ɶ  

5X T(5.89 6.06 6.23)=ɶ  15X T(5.65 5.74 5.84)=ɶ  25X T(6.05 6.30 6.50)=ɶ  

6X T(6.01 6.10 6.25)=ɶ  16X T(5.70 5.77 5.83)=ɶ  26X T(6.25 6.35 6.45)=ɶ  

7X (6.15 6.20 6.30)=ɶ  17X T(6.23 6.32 6.40)=ɶ  27X T(5.65 5.86 6.05)=ɶ  

8X T(5.64 5.81 6.05)=ɶ  18X T(5.60 5.70 5.08)=ɶ  X T(5.70 5.87 5.95)=ɶ  

9X T(5.8 5.9 5.98)=ɶ  19X T(5.85 5.95 6.05)=ɶ  29X T(5.75 5.95 5.15)=ɶ  

10X T(6.01 6.12 6.24)=ɶ  20X T(5.90 6.00 6.10)=ɶ  30X T(6.10 6.23 6.46)=ɶ  

 
Table 2: Fuzzy confidence interval 

α−1  Fuzzy confidence interval 

0.8 pmT(0.5570   0.7161   0.8752) C T(0.5950   0.7650   0.9349)≤ ≤ɶ  

0.85 
pm

T(0.5617   0.7222   0.8827) C T(0.5901   0.7587   0.9273)≤ ≤ɶ  

0.9 
pm

T(0.5664   0.7283   0.8901) C T(0.5853   0.7525   0.9198)≤ ≤ɶ  

0.95 
pm

T(0.5712   0.7343   0.8975) C T(0.5806   0.7464   0.9123)≤ ≤ɶ  

 
Hence:  
 

2 2
n, /2 n,1 /2

pm pm

(n ) (n )ˆ ˆC , C
ˆ ˆn(1 ) n(1 )

α −α
 ′ ′χ δ χ δ
 ⊗ ⊗
 + δ + δ 

ɶ ɶ  

 
 Is a 100 (1- α) % fuzzy confidence interval forpmCɶ . 

Note that any ( )pmC T a,b,c=ɶ , with: 

  

2 (n )
n, / 2 ˆR C ,

r pmˆn(1 )

R C
r pm 2 (n )

n,1 / 2 ˆR C
r pmˆn(1 )

  ′χ δ  α ⊗  
+ δ      ∈   

    ′χ δ  − α ⊗  + δ   
  

ɶ

ɶ

ɶ

 

 
 Is in the 100 (1- α)% fuzzy confidence interval 
given in Theorem1 if the following inequalities hold:  
 

( )
2

n, /21 3

n

2,1/2
i 1

(n )u l
a

ˆ1 n(1 )
6 D X ,T

in

α

=

′χ δ− ≤
+δ ∑  
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( )
2

n,1 /23 1

n

2,1/2
i 1

(n )u l
c

ˆ1 n(1 )
6 D X ,T

in

−α

=

′χ δ−
≤

+δ ∑  
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And:  
 

( )

( )

2,1/2

2,1/2

2 (n )u l n, / 22 2 b
ˆn n(1 )1

6 D X ,T
in i 1

2 (n )u l n,1 / 22 2
ˆn n(1 )1

6 D X ,T
in i 1

′χ δ− α <
+ δ

 ∑   =

′χ δ− − α<
+ δ

 ∑   =

ɶ ɶ
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Or: 
 

( )n

2 22,1/2 i
i 1n, /2 n,1 /2

2 2

1
6b D X ,T(n ) (n )n

ˆ ˆu ln(1 ) n(1 )
=α −α
 ∑′ ′ χ δ χ δ
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−+ δ + δ

ɶ ɶ

 

 

Let
2 2

n, /2 n,1 /2(n ) (n )
,

ˆ ˆn(1 ) n(1 )

′χα −α
 ′χ δ δ
 λ ∈
 + δ + δ 
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 (a) 
 

 
 (b) 
 

 
 (c) 
 
Fig. 1: Fuzzy process specification 
 

 Then any ˆC C
pm pm

⊗= λɶ ɶ  is in the 100 (1- α)% 

fuzzy confidence interval given in Theorem1. The non-
central chi-square distribution can be approximated 
(Pearson, 1959). 
 
Numerical example: Table 1 shows the Fuzzy data 
given in (Chen et al., 2008).  In this example, LSL = 
(5.4, 5.5, 5.6), USL = (6.3, 6.4, 6.5) and T=T (5.9, 6, 
6.1). Fig 1a shows the membership function of fuzzy 
process specification limits. The value of pmCɶ  based on 

the definition 2.5 is T = T (0.5823, 0.7487, 0.9151) as 
shown in Fig1b. We present 100 (1- α) % confidence 
intervals using the Theorem1 in Table 2 and illustrate 
these fuzzy confidence intervals in Fig. 1c. 
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