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Abstract: Problem statement: The purpose of this study is to study numerically the 
magnetoconvection in a tilted square cavity with differentially thermally active vertical walls. The two 
vertical side walls of tilted enclosure are differentially thermally active, each consisting of alternating 
equal sized hot and cold surface elements facing each other in an opposed manner while the horizontal 
top and bottom walls are adiabatic. Approach: Alternating Direction Implicit (ADI) and Successive 
over Relaxation methods are applied to solve the reformulated vorticity-stream function equations. 
Results: The results are obtained for a wide range of non dimensional parameters, such as Grashof 
number from 5000-50000, Hartmann number from 0-10 and angles of inclinations from 0-180° of the 
enclosure in the counterclockwise direction. The detailed flow structure and the associated heat 
transfer inside the cavity are presented. Conclusion/Recommendations: The average Nusselt number 
increases with increase in Grashof number but decreases with increase in Hartmann number and 
behaves in a non-linear fashion with angles of inclination. Further extension of this study could include 
the effect of aspect ratio, for various Prandtl number and also a study on partially open square cavities 
with adiabatic walls and a partial opening.  
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INTRODUCTION 

 
 Natural convection in rectangular enclosures has 
numerous engineering applications, among which are 
electronic packages, solar collectors, thermal design of 
buildings, storage systems, cooling of nuclear 
reactors. A subdivision of the natural convection 
problem in a rectangular cavity is the case where one 
wall is partially/fully heated and the opposite wall is 
partially/fully cooled while the other two walls are 
kept adiabatic. This cavity configuration is of special 
interest in many engineering applications, such as 
solar receivers, solar passive design and cooling of 
electronic equipment.  
 Azwadi et al. (2010) studied the natural convection 
heat transfer inside an inclined enclosure and observed 
that the natural convection increased as the inclination 
angle increased until it reached the critical angle after 
which the natural convection started to decrease. Munir 
et al. (2011)   investigated the natural convection in an 
inclined square cavity and found that the vortex 
formation, size and flow characteristics were 

significantly affected by the magnitude of inclination 
angles. 
 Magnetoconvection in square enclosures has 
numerous engineering applications. Some of them are 
solidification process to weaken the buoyancy-driven 
fluctuations, to modify the interface shape and the rates 
of solidification in the manufacturing process of semi-
conductor crystals. Mehmet and Buyuk (2006) studied 
the steady laminar natural convection flow in the 
presence of a magnetic field in an inclined enclosure 
heated from one side and cooled from the adjacent side 
and observed that the counterclockwise inclination 
affected the temperature field significantly. 
Kandaswamy et al. (2008) investigated the natural 
convection in a square cavity filled with an electrically 
conducting fluid with partially active vertical walls, for 
nine different combinations of active locations in the 
presence of external magnetic field parallel to the 
gravity and observed that the heat transfer is maximum 
for the middle-middle thermally active locations while 
it is poor for the top-bottom thermally active locations.  
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 From the literature survey, it is observed that the 
analysis of buoyancy driven flow in an inclined square 
cavity with vertical walls each consisting of alternating 
equal sized heated and cooled portions facing each 
other in the presence of magnetic field has not received 
much attention. Hence, in the present study, an attempt 
is made to investigate the influence of buoyancy and 
external magnetic forces in an inclined square enclosure 
filled with a perfectly electrically conducting fluid. The 
objective of the present study is to investigate the effect 
of magnetic field on natural convection in the enclosure 
for a wide range of Grashof number, Hartmann number 
at different angles of inclinations.  
 

MATERIALS AND METHODS 
 
 In the present study a two dimensional inclined 
square cavity of length l as shown in Fig. 1a is 
considered. Initially at time t = 0, the fluid is assumed 
to be motionless and at a uniform temperature θc. The 
heated portion is kept at a temperature θh and the 
cooled portion at temperature θc along the vertical walls 
with θh > θc in an opposed manner. Other two walls are 
maintained at adiabatic condition. The heated portion 
along the left vertical wall is making an angle δ with 
the horizontal direction. At δ = 90°, the heated and 
cooled portions are along the vertical walls. It is further 
assumed that all other thermodynamic properties are 
independent of temperature and that compressibility 
and dissipation effects are negligible. The flow within 
the enclosure is laminar and gravitational acceleration 
acts parallel to the vertical walls. Let u, v denote the 
velocity components in the x and y directions 
respectively. An external magnetic field is assumed to 
be applied parallel to gravity and the induced magnetic 
field is neglected.  
 The conservation equations for an unsteady 
laminar two dimensional flow of fluid in the presence 
of a magnetic field under Boussinesq approximation are 
as given below in Eq. 1-4: 
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 The initial and boundary conditions are considered 
as in Eq. 5: 
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 Introducing the following dimensionless variables 
as defined below:  
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 The above Eq. 1-4 get modified as: 
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Fig. 1: (a) Schematic diagram of the physical system 
(b) Average Nusselt number for different grid 
sizes at Gr = 50000,   Ha = 5 and δ = 150° 

 
Table 1: Comparison of average Nusselt numbers for different 

Hartmann  numbers at Gr = 20000 

Gr Ha uN  uN * 

20000 0 2.5188 2.1340 
 10 2.2234 2.0233 
 50 1.0856 1.0219 
 100 1.0110 1.0019 

uN   = Results of Rudraiah et al.  (1995)  uN *  = Present study 
 

 The initial and boundary conditions are given in 
the non dimensional form as: 
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 Introducing the vorticity ς and the stream 
function ψ, the equations governing the problem can 
be written as: 
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 The above Eq. 12-15 are called as the stream 
function, velocity, vorticity and temperature equations, 
respectively. An approximation to their solution will be 
obtained at a finite number of grid points at discrete 
time τ = n Δτ where n is an integer. It is assumed that all 
quantities are known at a time nΔτ. An implicit 
alternating direction technique based on suitable finite 
difference approximations of the vorticity and 
temperature equations is employed to advance the fields 
of vorticity and temperature at the interior grid points 
across a time step nΔτ to the new level (n+2)Δτ. The 
method of Successive over Relaxation is then employed 
in conjunction with the newly computed vorticity to 
solve the stream function equation. The new fields of U 
and V are obtained from space centered finite-
difference approximations of the velocity equations. 
This computational cycle is then repeated for each of 
the next time steps until a steady state situation is 
obtained, when the convergence criteria, 

n 1 n

n 1

(i, j) (i, j)
(i, j)

+

+

ϕ −ϕ
≤ ε

ϕ
 for temperature, vorticity and 

stream function have been satisfied. In the above 
expression, n is any time level, ε is of order 10−5 and ϕ 
represents T, ς and ψ. The numerical solutions 
presented in this study were acquired from a 41×41 grid 
system and with a time increment of order 10−3. Further 
increase in the number of grids produced essentially the 
same results as seen in Fig. 1b.  
 Prior to the present calculations, as a partial 
verification of the computational procedure, the results 
of average Nusselt number at different Grashof 
numbers and Hartmann numbers were estimated using 
the FORTRAN code developed and compared with the 
solutions given by Rudraiah et al. (1995) as seen in 
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Table 1 in which they have studied the natural 
convection in a square enclosure and are found to be in 
good agreement.  
 

RESULTS 
 
 Heat transfer in an inclined square cavity for 
differentially thermally active locations, inclination 
angles, Grashof numbers and Hartmann numbers is 
studied numerically in the presence of a magnetic 
field. The computations are carried out for Grashof 
numbers (Gr) in the range from 500-50000, 
Hartmann number (Ha) from 1-10, angles of 
inclination δ from 30-180° and at Prandtl number 
(Pr) = 0.733. The mid height vertical velocity 
profiles at different Grashof numbers, Hartmann 
numbers and inclination angles are presented.  
 

DISCUSSION 
  
 When Gr = 50000, Ha = 5 and all angles of 
inclination from 30-180°, it is observed in Fig. 2a, two 
counter rotating cells appear in the enclosure. Each 
thermally active location generates an identical 
upward buoyancy force and therefore dual cell flow is 
obtained with fluid flowing down the middle of the 

enclosure. The dual cell structure prohibits direct 
convective heat transfer between the active locations. 
Each cell behaves like an independent one preventing 
warm (cool) fluid from the hot (cold) location mixing 
with cool (warm) fluid from the cold (hot) location. 
The higher values of the streamlines indicate stronger 
rotation due to the higher value of Grashof number. 
The effect of stronger circulation is also displayed by 
the isotherms as seen in Fig. 2b.  
 It is noted in Fig. 3a, when Gr = 50000, Ha = 10 
and at δ = 30°, two counter rotating cells appear with a 
primary cell rotating in clockwise direction. At δ = 60o, 
the secondary cell rotating in anti-clockwise direction, 
grows significantly and suppresses the primary cell. 
The fluid flow gains strength withψ max = 17 at δ = 
120°. By increasing angle of inclination from 120° in 
steps of 30°, the change in the direction of the flow 
pattern is noticed. Strength of the flow increases when 
Gr increases from 5000-50,000 as seen from the higher 
values of the streamlines. It is found that in Fig. 3b, the 
isotherms are greatly influenced by the inclination of 
the enclosure.  

 

            
 

             
(a) 
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Fig. 2: (a) and (b) Streamlines and isotherms at Gr=50000, Ha=5 at δ = 30, 60, 90, 120, 150 and 180° 

 

                
 

         
(a) 
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Fig. 3: (a) and (b) Streamlines and isotherms at Gr = 50000, Ha = 10 at δ = 30, 60, 90, 120, 150 and 180° 
 

                        
 (a) (b) 

 

 
(c) 

 
Fig. 4: (a) Mid height velocity profiles when Ha = 3,δ  (DELTA) = 30 at Gr= 5000, 25000. 50000 (b) Mid height 

velocity profiles when Gr =25000, δ (DELTA) = 30 at Ha = 3, 5, 7, 10 (c) Mid height velocity profiles when 
Gr =50000, Ha = 3 at δ (DELTA) =30, 60, 90, 120, 150 and 180° 



J. Math. & Stat., 7 (2): 149-156, 2011 
 

155 

       
 (a) (b) 

 
Fig. 5: (a) Average Nusselt number Vs Angles of inclination at Gr = 5000, 25000, 50000 when Ha = 5 (b) Average 

Nusselt number Vs Angles of inclination at   Ha = 3, 5, 7, 10 
 
 The mid height velocity profiles at Gr = 5000-
25000 and 50000, when Ha = 3 and δ = 30° are 
presented in Fig. 4a. It is observed that for increase in 
Grashof number, the mid height velocity increases, as 
significant increase in the flow strength contribute to 
higher velocity values. Also as Hartmann number 
increases, the heat transfer is suppressed and hence the 
vertical velocity decreases, as seen in Fig. 4b. The 
effect of inclination angles for δ = 30-180°, when 
50000 and for fixed Ha = 3 on the mid height velocity 
profiles are presented in Fig. 4c. It is observed that the 
velocity U increases for angles 30-90° and decreases 
for angles from 120-180°. At δ = 180°, Gr = 50000 
and Ha = 3, the vertical velocity decreases appreciably 
and hence the velocity profile is flattened. The effect 
of the angles of inclination on the average Nusselt 
number, uN , at Gr = 5000, 25000, 50000 and Ha = 5 
are presented in Fig. 5a. The average Nusselt number 
behaves in a non-linear fashion with angles of 
inclination. The heat transfer is found to be maximum 
at δ = 120° and minimum at δ = 180°, irrespective of 
the Grashof number. It is also observed that the average 
Nusselt number uN  increases considerably with 
Grashof number since the circulation becomes stronger. 
The influence of angles of inclination on uN  for 
Hartmann numbers Ha = 3, 5, 7, 10 is illustrated in 
Fig. 5b. It is observed that the behavior of average heat 
transfer coefficient is a non-linear function of 
inclination angles at all values of Hartmann numbers. 
Angle of inclination has remarkable effect on the 
average Nusselt number uN  at lower values of the 
Hartmann number Ha = 3, Ha = 5 and the effect is less 
significant when Hartmann number is increased to Ha = 
10. It is also observed that the average Nusselt number 

uN  is a decreasing function of Hartmann number. 

CONCLUSION 
 
 The present study considers laminar natural 
convection flow in the presence of a magnetic field in 
an inclined square enclosure with differentially 
thermally active vertical walls while the horizontal 
walls are kept adiabatic. The associated flow 
characteristics and heat transfer inside the titled 
enclosure are found to depend strongly upon the 
strength of the magnetic field and the inclination 
angles. The mid height vertical velocity increases when 
Grashof number increases and decreases when the 
Hartmann number increases. Angle of inclination has 
remarkable effect on the average Nusselt number uN  at 
lower values of the Hartmann number and the effect is 
less significant at higher values of Hartmann number. 
At higher values of the Grashof number, the heat 
transfer is maximum at δ = 120° and minimum at δ = 
180°. The average Nusselt number behaves in a non-
linear fashion with angles of inclination.  
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