Journal of Mathematics and Statistics 7 (2): 107-111, 2011 ISSN 1549-3644 © 2010 Science Publications

Fuzzy Subalgebras and Fuzzy T-ieals in TM-Algebras

¹Kandasamy Megalai and ²Angamuthu Tamilarasi ¹Department of Mathematics, Bannari Amman Institute of Technology, Sathyamangalam, Tamilnadu, India ²Department of Computer Science, Kongu Engineering College, Perundurai, Tamilnadu, India

Abstract: In this study, we introduce the concepts of fuzzy subalgebras and fuzzy ideals in TM-algebras and investigate some of its properties. **Problem statement:** Let X be a TM-algebra, S be a subalgebra of X and I be a T-ideal of X. Let μ and v be fuzzy sets in a TM-algebra X. **Approach:** Define the upper level subset μ_t of μ and the cartesian product of μ and v from X×X to [0,1] by minimum of μ (x) and v (y) for all elements (x, y) in X×X. **Result:** We proved any subalgebra of a TM-algebra X can be realized as a level subalgebra of some fuzzy subalgebra of X and μ_t is a T-ideal of X. Also we proved, the cartesian product of μ and v is a fuzzy T-ideal of X×X. **Conclusion:** In this article, we have fuzzified the subalgebra and ideal of TM-algebras into fuzzy subalgrbra and fuzzy ideal of TM-algebras. It has been observed that the TM-algebra satisfy the various conditions stated in the BCC/ BCK algebras. These concepts can further be generalized.

Key words: TM-algebra, fuzzy subalgebra, fuzzy ideals, homomorphism, cartesian product, level subset, conditions stated

INTRODUCTION

Isaki and Tanaka introduced two classes of abstract algebras BCI-algebras and BCK-algebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCI- algebra. Hu and Li introduced a wide class of abstract algebra namely BCH- algebras. Zadeh (1965), introduced the notion of fuzzy sets in 1965. This concept has been applied to many mathematical branches. Xi applied this concept to BCK-algebra. Dudek and Jun (2001) fuzzified the ideals in BCCalgebras. Jun (2009) contributed a lot to develop the theory of fuzzy sets.

We (Megalai and Tamilarasi, 2010) introduced a new notion called TM-algebra, which is a generalization of Q/BCK / BCI /BCH-algebras and investigated some properties. In this study, we introduce the concepts of fuzzy subalgebras and fuzzy T-ideals in TM-algebra and investigate some of their properties.

MATERIALS AND METHODS

Certain fundamental definitions that will be used in the sequel are described.

Preliminaries:

Definition 1: A BCK-algebra is an algebra (X, *, 0) of type (2, 0) satisfying the following conditions:

- $(x^*y)^*(x^*z) \le z^*y$
- $x^*(x^*y) \le y$
- $x \leq x$,
- $x \le y$ and $y \le x$ imply x = y,
- $0 \le x$ implies x = 0, where $x \le y$ is defined by
- $x^*y = 0$ for all $x, y, z \in X$.

Definition 2: Let I be a non- empty subset of a BCKalgebra X. Then I is called a BCK-ideal of X if:

- $0 \in I$,
- $x * y \in I$ and $y \in I$ imply $x \in I$, for all $x, y \in x$

Definition 3: A TM-algebra (X,*,0) is a non-empty set X with a constant "0" and a binary operation "* " satisfying the following axioms:

- x*0 = x
- $(x^*y)^* (x^*z) = z^*y$, for any $x, y, z \in X$

In X we can define a binary relation \leq by $x \leq y$ if and only if $x^*y = 0$.

Correspond Author: Kandasamy	Megalai,	Department	of	Mathematics, Bannari	Amman	Institute	of	Technology,
Sathyamangalam, Tamilnadu, India								

Definition 4: Let S be a non-empty subset of a TMalgebra X. Then S is called a subalgebra of X if $x^*y \in S$, for all x, $y \in X$.

Definition 5: Let (X, *, 0) be a TM-algebra. A nonempty subset I of X is called an ideal of X if it satisfies

- 0 ∈ 1
- $x * y \in I$ and $y \in I$ imply $x \in I$, for all $x, y \in X$.

Definition 6: An ideal A of a TM-algebra X is said to be closed if $0 * x \in A$ for all $x \in A$.

Definition 7: Let (X,*,0) be a TM-algebra. A nonempty sub set I of X is called a T- ideal of X if it satisfies

- 0 ∈ I
- $(x^*y)^*z \in I$ and $y \in I$ imply $x^*z \in I$, for all $x, y, z \in X$.

Fuzzy subalgebras:

Definition 8: Let X be a non-empty set. A mapping $\mu: x \rightarrow [0,1]$ is called a fuzzy set in X. The complement of μ , denoted by $\overline{\mu}(x) = 1 - \mu(x)$, for all $x \in X$.

Definition 9: A fuzzy set μ in a TM-algebra X is called a fuzzy subalgebra of X if

 $\mu(x * y) \ge \min\{\mu(x), \mu(y)\}, \text{ for all } x, y \in X.$

Definition 10: Let μ be a fuzzy set of a set X. For a fixed $t \in [0,1]$, the set $\mu_t = \{ x \in X / \mu (x) \ge t \}$ is called an upper level of μ .

Fuzzy T-ideals in TM-algebras:

Definition 11: A fuzzy subset μ in a TM-algebra X is called a fuzzy ideal of X, if:

- (i) $\mu(0) \ge \mu(x)$
- (ii) $\mu(x) \ge \min{\{\mu(x * y), \mu(y)\}}$ for all $x, y, z \in X$

Definition 12: A fuzzy subset μ in a TM-algebra X is called a fuzzy T-ideal of X, if:

- $\mu(0) \ge \mu(x)$
- μ (x*z) \geq min{ μ ((x*y)* z), μ (y)}, for all x, y, z $\in X$

RESULTS

Lemma 13: If μ is a fuzzy subalgebra of a TM-algebra X, then $\mu(0) \ge \mu(x)$ for any $x \in X$. Proof: Since x * x = 0 for any $x \in X$, then:

 $\mu(0) = \mu(x^*x) \ge \min\{\mu(x), \mu(x)\} = \mu(x).$

This completes the proof.

Theorem 14: A fuzzy set μ of a TM-algebra X is a fuzzy subalgebra if and only if for every $t \in [0,1]$, μ_t is either empty or a subalgebra of X.

Proof: Assume that μ is a fuzzy subalgebra of X and $\mu_t \neq \phi$. Then for any $x, y \in \mu_t$, we have:

$$\mu(x^*y) \ge \min\{\mu(x), \mu(y)\} \ge t$$

Therefore $x^*y \in \mu_t$. Hence μ_t is a subalgebra of X. Conversely, μ_t is a subalgebra of X. Let x, $y \in X$. Take $t = \min{\{\mu(x), \mu(y)\}}$.

Then by assumption μ_t is a subalgebra of X implies:

 $x^*y \in \mu_t$

Therefore μ (x*y) $\geq t = \min{\{ \mu(x), \mu(y) \}}$. Hence μ is a subalgebra of X.

Theorem 15: Any subalgebra of a TM-algebra X can be realized as a level subalgebra of some fuzzy subalgebra of X.

Proof: Let μ be a subalgebra of a given TM-algebra X and let μ be a fuzzy set in X defined by:

$$\mu(\mathbf{x}) = \begin{cases} \mathbf{t}, \text{ if } \mathbf{x} \in \mathbf{A} \\ 0, \text{ if } \mathbf{x} \notin \mathbf{A} \end{cases}$$

where, $t \in (0,1)$ is fixed. It is clear that $\mu_t = A$.

Now we will prove that such defined μ is a fuzzy subalgebra of X.

Let x, $y \in X$. If x, $y \in A$ then also $x * y \in A$.

Hence $\mu(x) = \mu(y) = \mu(x^*y) = t$ and

$$\mu(x^*y) \ge \min\{\mu(x), \mu(y)\}.$$

If $x, y \notin A$ then $\mu(x) = \mu(y) = 0$ and in the consequence $\mu(x^*y) \ge \min\{\mu(x), \mu(y)\} = 0$.

If at most one of x, y belongs to A, then at least one of μ (x) and μ (y) is equal to 0.

Therefore, min { μ (x) , μ (y) } = 0 so that:

 μ (x*y) \geq 0, which completes the proof

Theorem 16: Two level subalgebras μ_{s} , μ_{t} (s < t) of a fuzzy subalgebra are equal if and only if there is no $x \in X$ such that $s \le \mu(x) \le t$.

Proof: Let $\mu_s = \mu_t$ for some s < t. If there exits $x \in X$ such that $s \le \mu(x) < t$, then μ_t is a proper subset of μ_s , which is a contradiction.

Conversely, assume that there is no $x \in X$ such that $s \le \mu(x) < t$. If $x \in \mu_s$, then $\mu(x) \ge s$ and $\mu(x) \ge t$, since $\mu(x)$ does not lie between s and t. Thus $x \in \mu_t$, which gives $\mu_s \subseteq \mu_{t-}$ Also $\mu_t \subseteq \mu_s$. Therefore $\mu_s = \mu_t$

Theorem 17: Every fuzzy T-ideal μ of a TM-algebra X is order reversing, that is if $x \le y$ then:

 μ (x) $\geq \mu$ (y) for all x, y \in X.

Proof: Let $x.y \in X$ such that $x \le y$. Therefore $x^*y = 0$. Now, $\mu(x) = \mu(x^*0)$

 $\geq \min\{ \mu ((x^*y)^* 0), \mu (y) \}$

 $= \min\{ \mu (0*0), \mu (y) \}$

 $= \min\{ \mu(0), \mu(y) \}$

 $= \mu (y).$

Theorem 18: A fuzzy set μ in a TM-algebra X is a fuzzy T-ideal if and only if it is a fuzzy ideal of X.

Proof: Let μ be a fuzzy T-ideal of X Then (i) μ (0) $\geq \mu$ (x) and (ii) μ (x*z) $\geq \min \{ \mu$ ((x*y) *z), μ (y) $\}$ for all x,y, z \in X. By putting z = 0 in (ii) we have μ (x) $\geq \min \{ \mu$ (x*y), μ (y). Hence μ is a fuzzy ideal of X. Conversely, μ is a fuzzy ideal of X.

Then:

 μ (x*z) \geq min { μ ((x*z)*y), μ (y) }

= min { μ ((x*y) *z), μ (y) }, which proves the result.

Theorem 19: Let μ be a fuzzy set in a BCK-algebra X. Then μ is a fuzzy T-ideal if and only if μ is a fuzzy BCK-ideal.

Proof: Since every BCK-algebra is a TM-algebra, every fuzzy T-ideal is a fuzzy ideal of a TM-algebra and hence a fuzzy BCK-ideal.

Conversely, assume that $\boldsymbol{\mu}$ be a BCK-ideal of X.

Then:

$$\mu$$
 (x*z) \geq min { μ ((x*z)*y), μ (y) }

= min { μ ((x*y)* z) , μ (y)}.

Hence μ is a fuzzy T-ideal of X.

Theorem 20: Let μ be a fuzzy set in a TM-algebra X and let $t \in Im(\mu)$. Then μ is a fuzzy T-ideal of X if and only if the level subset:

 $\mu_{t} = \{ x \in X / \mu(x) \ge t \}$

is a T-ideal of X, which is called a level T-ideal of μ .

Proof: Assume that μ is a fuzzy T-ideal of X. Clearly $0 \in \mu_1$

Let $(x^*y)^*z \in \mu_t$ and $y \in \mu_t$.

Then μ ((x*y) *z) \geq t and μ (y) \geq t.

Now $\mu(x^*z) \ge \min \{ \mu((x^*y)^*z), \mu(y) \}$

 \geq {t, t} = t

Hence μ_t is T-ideal of X.

Conversely, let μ_t is T-ideal of X for any $t \in [0,1]$. Suppose assume that there exist some $x_0 \in X$ such that $\mu(0) < \mu(x_0)$:

Take
$$s = \frac{1}{2} [\mu(0) + \mu(x_0)]$$

 $\Rightarrow s < \mu(x_0) \text{ and } 0 \le \mu(0) < s < 1$

 \Rightarrow x₀ $\in \mu_s$ and $0 \notin \mu_s$ a contradiction, since

```
\mu_s is a T-ideal of X.
```

Therefore, $\mu(0) \ge \mu(x)$ for all $x \in X$ If possible, assume that $x_0, y_0, z_0 \in X$ such that $\mu(x_0^*z_0) \ge \min \{ \mu((x_0^*y_0)^*z_0), \mu(y_0) \}$:

Take
$$s = \frac{1}{2} [\mu(x_0 * z_0) + \min \{\mu(x_0 * y_0) * z_0), \mu(y_0)\}$$

 $\Rightarrow s > \mu(x_0 * z_0)$

and:

 $s < \min \{ \mu ((x_0 * y_0) * z_0), \mu (y_0) \}$

 $\Rightarrow s \ge \mu (x_0^*z_0)$, $s \le \mu ((x_0^*y_0)^*z_0)$ and $s \le \mu (y_0)$

 $\Rightarrow x_0 * z_0 \notin \mu_s$, a contradiction, since μ_s is a T-ideal of X.

Therefore, μ (x * z) \geq min { μ ((x*y) *z), μ (y) } for any x,y, $z \in X$.

Cartesian product of fuzzy T-ideals of TM-algebras:

Definition 21: Let μ and v be the fuzzy sets in a set X. The Cartesian product $\mu \times v: X \times X \rightarrow [0,1]$ is defined by:

 $(\mu \times v)(x,y) = \min\{\mu(x), v(y)\}$ for all $x, y \in X$

Theorem 22: If μ and v are fuzzy T-ideals in a TMalgebra X, then $\mu \times v$ is a fuzzy T-ideal in X×X.

Proof: For any $(x,y) \in X \times X$, we have:

$$(\mu \times v) (0,0) = \min\{\mu (0), v (0)\}$$

 $\geq \min\{ \mu(\mathbf{x}), \mathbf{v}(\mathbf{y}) \} = (\mu \times \mathbf{v})(\mathbf{x}, \mathbf{y}).$

Let (x_1, x_2) , (y_1, y_2) and $(z_1, z_2) \in X \times X$.

 $(\mu \times v) ((x_1, x_2)^* (z_1, z_2)) = (\mu \times v)(x_1^* z_1, x_2^* z_2)$

 $= \min\{\mu(x_1^*z_1), v(x_2^*z_2)\}$

 $\geq \min \{ \min \{ \mu ((x_1 * y_1) * z_1), \mu (y_1) \}, \min \{ v((x_2 * y_2) * z_2), v (y_2) \} \}$

= min{ min{ μ ((x₁*y₁)* z₁), v((x₂*y₂)* z₂)}, min{ μ (y₁), v (y₂) }}

= min{ ($\mu \times v$) ((x_1*y_1) * z_1 , (x_2*y_2)* z_2), ($\mu \times v$) (y_1 , y_2) }

= min { $(\mu \times v)$ ($(x_1^*y_1, x_2^*y_2) * (z_1, z_2)$), $(\mu \times v) (y_1, y_2)$ } = min { $(\mu \times v)((x_1, x_2) * (y_1, y_2)) * (z_1, z_2)), (\mu \times v) (y_1, y_2) }$

Hence $\mu \times v$ is a fuzzy T-ideal of a TM-algebra in $X{\times}X.$

Theorem 23: Let μ and v be fuzzy sets in a TM-algebra X such that $\mu \times v$ is a fuzzy T-ideal of X \times X. Then:

- (i) Either μ (0) $\ge \mu$ (x) or v (0) $\ge v$ (x) for all $x \in X$
- (ii) If μ (0) $\geq \mu$ (x) for all $x \in X$, then either v (0) $\geq \mu$ (x) or v (0) $\geq v$ (x)
- (iii) If $v(0) \ge v(x)$ for all $x \in X$, then either $\mu(0) \ge \mu(x)$ or $\mu(0) \ge v(x)$
- (iv) Either μ or v is a fuzzy T-ideal of X.

Proof: $\mu \times v$ is a fuzzy T-ideal of X×X.

Therefore $(\mu \times v)(0,0) \ge (\mu \times v)(x,y)$ for all $(x,y) \in X \times X$ and $(\mu \times v) ((x_1, x_2) * (z_1,z_2)) \ge \min \{(\mu \times v) ((x_1, x_2) * (y_1, y_2)) * (z_1,z_2)), (\mu \times v) (y_1, y_2)\}$ for all $(x_1, x_2), (y_1, y_2)$ and $(z_1,z_2) \in X \times X$.

Suppose that μ (0) < μ (x) and v (0) < v (y) for some x,y \in X.

Then:

 $\begin{array}{l} (\mu \times v) \ (x,y) = \min \{ \ \mu \ (x), \ v \ (y) \ \} \\ > \min \{ \ \mu \ (0), \ v \ (0) \} = (\mu \times v) \ (0,0), \\ \text{a contradiction.} \\ \text{Therefore either } \mu \ (0) \ge \mu \ (x) \ \text{or } v \ (0) \ge v \ (x) \ \text{for all} \\ x \in X \ . \end{array}$

Assume that there exist $x, y \in X$ such that: $v(0) < \mu(x)$ and v(0) < v(y). Then: $(\mu \times v) (0,0) = \min\{ \mu(0), v(0) \} = v(0)$ and hence $(\mu \times v) (x,y) = \min\{ \mu(x), v(y) \} > v(0) = (\mu \times v) (0,0)$, a contradiction. Hence if $\mu(0) \ge \mu(x)$ for all $x \in X$, then either:

 $v(0) \ge \mu(x)$ or $v(0) \ge v(x)$

Similarly we can prove that if $v(0) \ge v(x)$ for all $x \in X$, then either $\mu(0) \ge \mu(x)$ or $\mu(0) \ge v(x)$.

 $\begin{array}{l} \mbox{First we prove that } v \mbox{ is a fuzzy T-ideal of } X.\\ \mbox{Since, by (i), either } \mu \ (0) \geq \mu \ (x) \mbox{ or } v \ (0) \geq v \ (x) \mbox{ for } all \ x \in X \ .\\ \mbox{Assume that } v \ (0) \geq v \ (x) \mbox{ for all } x \in X \ .\\ \mbox{It follows from (iii) that either } \mu \ (0) \geq \mu \ (x) \mbox{ or } \\ \mu \ (0) \geq v \ (x).\\ \mbox{If } \mu \ (0) \geq v \ (x) \mbox{ for any } x \in X \ , \mbox{ then:} \end{array}$

110

 $v (x) = \min\{ \mu (0), v (x) \} = (\mu \times v) (0, x).$ $v (x*z) = \min\{ \mu (0), v (x*z) \}$ $= (\mu \times v) (0, x*z)$ $= (\mu \times v) (0*0, x*z)$ $= (\mu \times v)((0, x)* (0, z))$ $\geq \min\{ (\mu \times v)((0, x)* (0, y))* (0, z)),$ $(\mu \times v) (0, y) \}$ $= \min\{ (\mu \times v)((0*0, x*y)* (0, z)), (\mu \times v) (0, y) \}$ $= \min\{ (\mu \times v)((0*0)* 0, (x*y)* z), (\mu \times v) (0, y) \}$ $= \min\{ (\mu \times v) (0, (x*y)*z), (\mu \times v) (0, y) \}$ $= \min\{ v ((x*y)*z), v (y) \}$

Hence v is a fuzzy T-ideal of X. Now we will prove that μ is a fuzzy T-ideal of X. Let μ (0) $\geq \mu$ (x). By (ii) either v (0) $\geq \mu$ (x) or v (0) $\geq v$ (x). Assume that v (0) $\geq \mu$ (x), Then:

 μ (x) = min{ μ (x), v (0) } = (μ ×v) (x,0).

$$\mu$$
 (x*z) = min{ μ (x*z), v (0) }

 $= (\mu \times v) (x^*z, 0)$

 $= (\mu \times v) (x^*z, 0^*0)$

 $= (\mu \times v) ((x,0)^* (z,0))$

 $\geq \min \{ (\mu \times v) (((x, 0)^* (y, 0))^* (z, 0)), (\mu \times v) (y, 0) \}$

= min {($\mu \times v$) (($x^*y, 0^*0$)* (z, 0)), ($\mu \times v$) (y, 0)}

= min {($\mu \times v$) ((x*y)* z, 0), ($\mu \times v$) (y, 0)}

= min { $\mu((x^*y)^* z), \mu(y)$ }

Hence μ is a fuzzy T-ideal of X.

Homomorphism of TM-algebras:

Definition 24: Let X and Y be TM-algebras. A mapping $f: X \rightarrow Y$ is said to be a homomorphism if it satisfies:

 $f(x^*y) = f(x)^* f(y)$, for all x, $y \in X$.

Definition 25: Let f: $X \to X$ be an endomorphism and μ a fuzzy set in X. We define a new fuzzy set in X by μ_f in X by $\mu_f(x) = \mu(f(x))$ for all x in X.

Theorem 26: Let f be an endomorphism of a TMalgebra X. If μ is a fuzzy T-ideal of X, then so is μ_{f} .

Proof: $\mu_{f}(x) = \mu(f(x)) \le \mu(0)$

 $= \mu (f(0)) = \mu_{f}(0) \text{ for all } x \in X$ Let x, y, z \epsilon X. Then: $\mu_{f}(x^{*}z) = \mu (f(x^{*}z)) = \mu (f(x)^{*}f(z))$ $\geq \min\{ \mu ((f(x)^{*}f(y))^{*}f(z)), \mu (f(y)) \}$ $= \min\{ \mu ((f(x^{*}y))^{*}f(z)), \mu (f(y)) \}$ $= \min\{ \mu (f((x^{*}y)^{*}z)), \mu (f(y)) \}$ Hence μ_{f} is a fuzzy T-ideal of X.

DISCUSSION

With minimum conditions in TM-algebra it satisfy these results. In other algebras like BCK/BCI/BCH/ BCC the number of conditions are more.

CONCLUSION

In this article, we have fuzzified the subalgebra and ideal of TM-algebras into fuzzy subalgebra and fuzzy ideal of TM-algebras. It has been observed that the TM-algebra satisfy the various conditions stated in the BCC/ BCK algebras and can be considered as the generalization of all these algebras. These concepts can further be generalized.

REFERENCES

- Dudek, W.A. and Y.B. Jun, 2001. Fuzzification of ideals in BCC-algebras. Glasnik Matematicki, 36: 127-138.
- Imai, Y. and K. Isaeki, 1966. On axiom systems of propositional calculi, XIV. Proc. Jap. Acad., 42: 19-22. DOI: 10.3792/pja/1195522169
- Jun, Y.B., 2009. Generalization of (∈, ∈ vq) –fuzzy subalgebras in BCk /BCI-algebras. Comput. Math. Appl., 58: 1383-1390. DOI: 10.1016/j.camwa.2009.07.043
- Megalai, K and A.Tamilarasi, 2010. TM-algebra An Introduction. Int. J. Comput. Applied., Special Issue Computer Aided soft Computing Techniques for imaging and Biomedical Application. DOI: 10.5120/996-29
- Zadeh, L.A., 1965. Fuzzy sets. Inform. Control, 8: 338-353. DOI: 10.1016/S0019-9958(65)90241-X