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Abstract: In this study, we introduce the concepts of fuzzy subalgebras and fuzzy ideals in TM-algebras 
and investigate some of its properties. Problem statement: Let X be a TM-algebra, S be a subalgebra of X 
and I be a T-ideal of X. Let µ and v be fuzzy sets in a TM-algebra X. Approach: Define  the upper level 
subset µt of µ  and the cartesian product of µ and v from X×X to [0,1] by minimum of  µ (x) and v (y)  for 
all elements (x, y) in X×X. Result: We proved any subalgebra of a TM-algebra X can be realized as a level 
subalgebra of some fuzzy  subalgebra of X and µt  is a T-ideal of X. Also we proved, the cartesian product 
of µ and v is a fuzzy T-ideal of  X×X. Conclusion: In this article, we have fuzzified the subalgebra and 
ideal of TM-algebras into fuzzy subalgrbra and fuzzy ideal of TM-algebras. It has been observed that the 
TM-algebra satisfy the various conditions stated in the BCC/ BCK algebras. These concepts can further be 
generalized. 
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INTRODUCTION 
 
 Isaki and Tanaka introduced two classes of abstract 
algebras BCI-algebras and BCK-algebras. It is known 
that the class of BCK-algebras is a proper subclass of 
the class of BCI- algebra. Hu and Li introduced a wide 
class of abstract algebra namely BCH- algebras. Zadeh 
(1965), introduced the notion of fuzzy sets in 1965. 
This concept has been applied to many mathematical 
branches. Xi applied this concept to BCK-algebra. 
Dudek and Jun (2001) fuzzified the ideals in BCC- 
algebras. Jun (2009) contributed a lot to develop the 
theory of fuzzy sets. 
 We (Megalai and Tamilarasi, 2010) introduced a 
new notion called TM-algebra, which is a generalization 
of Q/BCK / BCI /BCH-algebras and investigated some 
properties. In this study, we introduce the concepts of 
fuzzy subalgebras and fuzzy T-ideals in TM-algebra and 
investigate some of their properties. 
 

MATERIALS AND METHODS 
 
 Certain fundamental definitions that will be used in 
the sequel are described. 
Preliminaries: 

Definition 1: A BCK-algebra is an algebra (X,*, 0) of 
type (2, 0) satisfying the following conditions: 
 
• (x*y)* (x*z) ≤ z* y  
• x* ( x* y) ≤ y  
• x ≤ x, 
• x ≤ y and y ≤ x imply x = y, 
• 0 ≤ x implies x = 0, where x ≤ y is defined by 
• x*y = 0 for all x, y, z∈  X. 
 
Definition 2: Let I be a non- empty subset of a BCK- 
algebra X. Then I is called a BCK-ideal of X if: 
 
• 0∈I, 
• x * y I∈  and y I∈  imply x I∈ , for all x, y x∈   
 
Definition 3: A TM-algebra (X,*,0) is a non-empty set 
X with a constant “0” and a binary operation “* ” 
satisfying the following axioms: 
 
• x*0 = x 
• (x*y)* (x*z) = z*y , for any x, y, z X∈  
 
 In X we can define a binary relation ≤  by x≤ y if 
and only if x*y = 0. 
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Definition 4: Let S be a non-empty subset of a TM-
algebra X. Then S is called a subalgebra of X if 
x * y S∈ , for all x, y X∈ . 
 
Definition 5: Let (X,*, 0) be a TM-algebra. A non-
empty subset I of X is called an ideal of X if it satisfies  
 
• 0 1∈  
• x * y I∈  and y I∈  imply x I∈ , for all x, y X∈ . 
 
Definition 6: An ideal A of a TM-algebra X is said to 
be closed if 0* x A∈  for all x A∈ . 
 
Definition 7: Let (X,*,0) be a TM-algebra. A non-
empty sub set I of X is called a T- ideal of X if it 
satisfies  
 
• 0 ∈  I 
• ( x*y)* z ∈I and y I∈  imply  x * z I∈ , for all  

x, y, z ∈  X. 
 
Fuzzy subalgebras:  
Definition 8: Let X be a non-empty set. A mapping 

: x [0,1]μ →  is called a fuzzy set in X. The complement 
of µ, denoted by (x) 1 (x)μ = −μ , for all  x X∈ . 
 
Definition 9:  A fuzzy set μ  in a TM-algebra X is 
called a fuzzy subalgebra of X if  
 

(x * y) min{ (x), (y)},for allx, y Xμ ≥ μ μ ∈ . 

 
Definition 10: Let µ be a fuzzy set of a set X. For a 
fixed t∈ [0,1], the set µt = { x∈X / µ (x) ≥ t} is called 
an upper level of µ. 
 
Fuzzy T-ideals in TM-algebras: 
Definition 11: A fuzzy subset µ  in a TM-algebra X is 
called a fuzzy ideal of X, if: 
  
• (i) µ(0) µ(x)≥  
• (ii) µ(x) min{µ(x * y),µ(y)}for all x, y,z X≥ ∈  

 
Definition 12: A fuzzy subset µ  in a TM-algebra X is 
called a fuzzy T-ideal of X, if: 
 
• µ(0) µ(x)≥  
• µ (x*z ) ≥ min{ µ ((x*y)* z) , µ (y) }, for all x, y, z 

∈X 

RESULTS  
 
Lemma 13: If µ is a fuzzy subalgebra of a TM-algebra 
X, then µ (0) ≥ µ (x) for any x∈X. 
Proof:  Since x∗ x = 0 for any x∈X, then: 
  
µ (0) = µ ( x*x) ≥ min{ µ (x) , µ (x) } = µ (x). 
 
This completes the proof. 
 
Theorem 14: A fuzzy set µ of a TM-algebra X is a 
fuzzy subalgebra if and only if for every t [0,1]∈ , µt is 
either empty or a subalgebra of X. 
 
Proof: Assume that µ is a fuzzy subalgebra of X and µt 
≠ φ. Then for any x,y ∈  µt, we have: 
  
µ ( x*y) ≥ min{ µ (x) , µ (y) } ≥ t. 
 
Therefore x*y∈  µt. 
Hence µt is a subalgebra of X. 
Conversely, µt is a subalgebra of X .  
Let x, y∈X. Take t = min{ µ (x) , µ (y) }. 
 
 Then by assumption µt is a subalgebra of X 
implies: 
 
x*y ∈  µt 

 
 Therefore µ ( x*y) ≥ t = min{ µ (x) , µ (y) }. 
 Hence µ is a subalgebra of X. 
 
Theorem 15: Any subalgebra of a TM-algebra X can 
be realized as a level subalgebra of some fuzzy 
subalgebra of X. 
 
Proof: Let µ be a subalgebra of a given TM-algebra X 
and let µ be a fuzzy set in X defined by: 
  
µ (x) =     t , if x∈A 
 
                0,  if x A∉  
 
where, t (0,1)∈  is fixed. It is clear that µt = A. 
 Now we will prove that such defined µ is a fuzzy  
subalgebra of X. 
 
Let x, y∈X.  If x, y A∈  then also x * y A∈ .  
 
Hence µ (x) = µ (y) = µ (x*y) = t and  
 
µ (x*y) ≥ min{ µ (x) , µ (y) }. 
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 If x, y A∉  then µ (x) = µ (y) = 0 and in the 
consequence µ (x*y) ≥ min{ µ (x) , µ (y) } = 0. 
 If at most one of x, y belongs to A, then at least one 
of µ (x) and µ (y) is equal to 0. 
 Therefore, min { µ (x) , µ (y) } = 0 so that: 
 
µ (x*y) ≥ 0, which completes the proof  
 
Theorem 16:  Two level subalgebras µs, µt (s < t ) of a 
fuzzy subalgebra are equal if and only  if there is no 
x∈X such that s ≤ µ (x) < t. 
 
Proof:  Let µs = µt for some s < t. If there exits x∈X 
such that s ≤ µ (x) < t, then µt is a proper subset of µs , 
which is a contradiction. 
 Conversely, assume that there is no x∈X such that 
s ≤ µ (x) < t. If x∈  µs, then µ (x) ≥ s and µ (x) ≥ t, since 
µ (x) does not lie between s and t. Thus tx µ∈ , which 
gives s tµ µ −⊆  Also t sµ µ⊆ . Therefore µs = µt 
 
Theorem 17: Every fuzzy T-ideal µ of a TM-algebra X 
is order reversing, that is if  x ≤ y then: 
 
µ (x) ≥ µ (y) for all x, y ∈X. 
 
Proof: Let x.y X∈  such that x ≤ y.  
 Therefore x*y = 0. 
 Now, µ (x) = μ (x*0)  
 
 ≥ min{ µ ( ( x*y )* 0), μ (y) } 
 
= min{ µ (0*0) , µ (y) } 
 
= min{ µ (0) , µ (y) } 
 
= µ (y). 
 
Theorem 18: A fuzzy set µ in a TM-algebra X is a 
fuzzy T-ideal if and only if it is a fuzzy ideal of X. 
 
Proof: Let µ be a fuzzy T-ideal of X  
Then  (i) µ (0) ≥ µ (x) and 
(ii) µ ( x*z) ≥ min { µ ( (x*y) *z) , µ (y) } for all 
x,y, z X∈ .  
By putting  z = 0 in (ii) we have  
µ ( x) ≥ min { µ (x*y) , µ (y) . 
Hence µ is a fuzzy ideal of  X. 
Conversely, µ is a fuzzy ideal of  X.  
 
Then: 
 
µ ( x*z) ≥  min { µ ( (x*z)* y) , µ (y) } 

=  min { µ ( (x*y) *z) , µ (y) }, which proves the result. 
 
Theorem 19: Let µ be a fuzzy set in a BCK-algebra X. 
Then µ is a fuzzy T-ideal if and only if µ is a fuzzy 
BCK-ideal. 
 
Proof: Since every BCK-algebra is a TM-algebra, 
every fuzzy T-ideal is a fuzzy ideal of a TM-algebra 
and hence a fuzzy BCK-ideal. 
Conversely, assume that µ be a BCK-ideal of X.  
 
Then: 
  
µ ( x*z) ≥ min { µ ( (x*z)* y) , µ (y) } 
 
= min { µ ( (x*y)* z) , µ (y)}.  
 
Hence µ is a fuzzy T-ideal of X. 
 
Theorem 20: Let µ be a fuzzy set in a TM-algebra X 
and let t Im(µ)∈ . Then µ is a fuzzy T-ideal of X  if and 
only if the level subset: 
   
µt = { x ∈X / µ (x) ≥ t }  
 
 is a T-ideal of X, which is called a level T-ideal of µ.  
 
Proof: Assume that µ is a fuzzy T-ideal of X. 
Clearly t0 µ∈   
 
Let (x*y) *z∈  µt and t-y µ∈  
 
Then µ ((x*y) *z) ≥ t and µ (y) ≥ t. 
 
Now µ (x*z) ≥ min { µ ((x*y)* z) , µ (y)} 
 
≥ {t, t} = t 
 
Hence µt is T-ideal of X. 
 Conversely, let µt is T-ideal of X for any t [0,1]∈ . 
Suppose assume that there exist some  x0∈X such that 
µ (0) < µ ( x0 ): 
 

Take 0
1s [µ(0) µ(x )
2

= + ] 

 
0s µ(x )and0 µ(0) s 1⇒ < ≤ < <  

 
0 s sx µ and0 µ⇒ ∈ ∉  a contradiction,  since 

 
µs is a T-ideal of X. 
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Therefore,  µ (0) ≥ µ ( x ) for all x X∈  
 If possible, assume that x0,y0,z0∈X such that  
µ ( x0*z0) ≥ min { µ ( (x0*y0) *z0) , µ (y0) }: 
 

Take 0 0 0 0 0 0
1s [µ(x * z ) min{µ(x * y ) * z ),µ(y )}
2

= +  

0 0s µ(x * z )⇒ >    
 
and:  
 
s < min { µ ( (x0*y0) *z0) , µ (y0) } 
 
⇒   s > µ ( x0*z0) , s < µ ( (x0*y0) *z0) and s < µ (y0)  
 

0 0 sx * z µ⇒ ∉ , a contradiction, since µs is a  T-ideal of 

X. 
 Therefore, µ ( x∗ z) ≥ min { µ ( (x*y) *z) , µ (y) } 
for any x,y, z X∈ . 
 
Cartesian product of fuzzy T-ideals of TM-algebras: 
 
Definition 21: Let µ and v be the fuzzy sets in a set X. 
The Cartesian product µ ×v:X×X→ [0,1] is defined by: 
 
 (µ ×v) (x,y) = min{ µ (x), v (y) } for all x, y∈X 
 
Theorem 22: If µ and v are fuzzy T-ideals in a TM-
algebra X, then µ ×v is a fuzzy T-ideal in X×X.  
 
Proof: For any (x,y)∈X×X, we have: 
 
(µ ×v) (0,0) = min{ µ (0), v (0) } 
 
 ≥ min{ µ (x), v (y) } = (µ ×v) (x,y). 
 
Let (x1, x2), (y1, y2) and (z1,z2) ∈X×X. 
 
(µ ×v) ((x1, x2)* (z1,z2)) = (µ ×v)(x1*z1, x2*z2) 
 
= min{µ (x1*z1) , v (x2*z2)} 
 
≥ min { min{ µ ( (x1*y1) * z1) , µ (y1) } , min{v((x2*y2) 
* z2) , v (y2) }} 
 
= min{ min{ µ ( (x1*y1)* z1) , v( (x2*y2)* z2)},   
min{ µ (y1), v (y2) }} 
 
= min{ (µ ×v) ( (x1*y1) * z1 , (x2*y2)* z2 ), 
( µ×v) (y1, y2) } 
 
= min { (µ × v) ( ( x1*y1 , x2*y2) * ( z1,z2) ), 
 (µ ×v) (y1, y2) } 

= min { (µ ×v)( (x1, x2) * (y1, y2) ) * (z1,z2) ) , (µ ×v) 
(y1, y2) } 
 
Hence µ × v is a fuzzy T-ideal of a TM-algebra in 
X×X. 
 
Theorem 23: Let µ and v be fuzzy sets in a TM-algebra 
X such that µ ×v is a fuzzy T-ideal of X×X. Then: 
 
• (i) Either µ (0) ≥ µ (x) or v (0) ≥ v (x) for all x X∈  
• (ii) If µ (0) ≥ µ (x) for all x∈X, then either v (0) ≥ 

µ (x) or v (0) ≥ v (x) 
• (iii) If v (0) ≥ v (x) for all x∈X, then either µ (0) ≥ 

µ (x) or µ (0) ≥ v (x) 
• (iv) Either µ or v is a fuzzy T-ideal of X. 
 
Proof:  µ ×v is a fuzzy T-ideal of X×X. 
 Therefore (µ×v)(0,0) ≥ (µ×v)(x,y) for all 
(x, y) X X∈ ×  and (µ ×v) ((x1, x2) * (z1,z2)) ≥ min {(µ 
×v) ((x1, x2) *(y1, y2)) *(z1,z2)), (µ ×v) (y1, y2)} for all 
(x1, x2), (y1, y2) and (z1,z2) ∈X×X. 
 
 Suppose that µ (0) < µ (x) and v (0) < v (y) for 
some x,y∈X.  
 
Then: 
 
(µ ×v) (x,y) = min{ µ (x), v (y) } 
 > min{ µ (0), v (0)} = (µ ×v) (0,0),  
a contradiction.  
 Therefore either µ (0) ≥ µ (x) or v (0) ≥ v (x) for all 
x X∈ . 
 
 Assume that there exist x,y∈X such that: 
  v(0) < µ (x) and v (0) < v (y).       
Then: 
(µ×v) (0,0) = min{ µ (0) , v (0) }= v (0) and hence  
(µ×v) (x,y) = min{ µ (x), v (y) } > v (0) = (µ×v) (0,0), a 
contradiction. 
 Hence if µ (0) ≥ µ (x) for all x X∈ , then either: 
v (0) ≥ µ (x)  or v (0) ≥ v (x) 
 
Similarly we can prove that if v (0) ≥ v (x) for all 
x X∈ , then either µ (0) ≥ µ (x)  or  µ (0) ≥ v (x). 
 
 First we prove that v is a fuzzy T-ideal of X. 
 Since, by (i), either µ (0) ≥ µ (x) or v (0) ≥ v (x) for 
all x X∈ .  
 Assume that v (0) ≥ v (x) for all x X∈ .  
 It follows from (iii) that either µ (0) ≥ µ (x) or  
µ (0) ≥ v (x). 
 If µ (0) ≥ v (x) for any x X∈ , then: 
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v (x) = min{ µ (0), v (x) } = (µ ×v) (0,x). 
v (x*z) = min{ µ (0) , v (x*z)}  
= (µ× v) (0, x*z) 
= (µ ×v) (0*0, x*z) 
= (µ ×v)((0, x)* (0 , z)) 
≥ min {(µ×v)( (0 , x)* (0 , y))* (0 , z)),  
(µ ×v) (0, y)} 
 = min { (µ×v)( (0*0 , x*y)* (0 , z) ) , (µ×v) (0 , y) } 
= min { (µ×v)( (0*0)* 0 , (x*y)* z ) , (µ ×v) (0 , y) } 
= min { (µ ×v) ( 0 , (x*y)*z ) , (µ ×v) (0 , y) } 
= min { v ( (x*y)* z ) , v (y) } 
 
 Hence v is a fuzzy T-ideal of X. 
 Now we will prove that µ is a fuzzy T-ideal of X. 
 Let µ (0) ≥ µ (x). 
 By (ii) either v (0) ≥ µ (x) or v (0) ≥ v (x). 
 Assume that v (0) ≥ µ (x), Then: 
 
µ (x) = min{ µ(x) , v (0) } = (µ×v) (x,0). 
 
µ (x*z) = min{ µ (x*z) , v (0) } 
 
= (µ×v) (x*z, 0) 
 
= (µ×v) (x*z, 0*0) 
 
 = (µ×v) ((x,0)* (z,0)) 
 
 ≥ min {(µ×v) (((x, 0)* (y, 0))* (z, 0 )), (µ×v) (y, 0)} 
 
= min {(µ×v) ((x*y, 0*0)* (z, 0)), (µ×v) (y, 0)} 
 
= min {(µ×v) ((x*y)* z, 0), (µ×v) (y, 0)} 
 
= min {µ((x*y)* z), µ (y)} 
 
Hence µ is a fuzzy T-ideal of X. 
 
Homomorphism of TM-algebras: 
Definition 24: Let X and Y be TM-algebras. A 
mapping  f : X→Y is said to be a homomorphism if it 
satisfies: 
 
f ( x*y) = f (x)* f (y), for all x, y X∈ . 

 
Definition 25:  Let f: X X→  be an endomorphism and 
µ a fuzzy set in X. We define a new fuzzy set in X by  
µf  in X by µf (x) = µ ( f (x) ) for all x in X. 
Theorem 26:  Let f be an endomorphism of a TM-
algebra X. If µ is a fuzzy T-ideal of X, then so is µf. 
 
Proof:  µf (x) = µ ( f(x) ) ≤ µ (0)  

 = µ ( f (0) ) = µf (0) for all x X∈  
 
Let x, y, z∈X.  
 
Then: 
  
µf (x*z) = µ ( f (x*z ) ) = µ ( f (x) *f (z) ) 
 
≥ min{ µ ( (f (x)* f (y) )* f (z) ) , µ ( f (y) ) } 
 
= min{ µ ( (f(x*y) )*f (z) ) , µ ( f (y) ) } 
 
= min{ µ ( f ( (x*y)* z) ) , µ ( f(y) ) } 
 
= min{ µf ( (x*y)* z) ) , µf (y) ) }. 
 
Hence µf is a fuzzy T-ideal of X. 
 

DISCUSSION 
 
 With minimum conditions in TM-algebra it satisfy 
these results. In other algebras like BCK/BCI/BCH/ 
BCC the number of conditions are more. 
  

CONCLUSION 
 
  In this article, we have fuzzified the subalgebra 
and ideal of TM-algebras into fuzzy subalgebra and 
fuzzy ideal of TM-algebras. It has been observed that 
the TM-algebra satisfy the various conditions stated in 
the BCC/ BCK algebras and can be considered as the 
generalization of all these algebras. These concepts 
can further be generalized. 
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