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Abstract: Problem statement: The Dynamic Quadratic Assignment Problem (DQAP), an NP-hard 
problem, is outlined and reformulated in two alternative models: Linearized model and logic-based 
model. Approach: The solution methods for both models based on combinatorial methods (Benders’ 
Decomposition and Approximate Dynamic Programming) and constraint logic programming, 
respectively, are proposed. Results: Proofs of model equivalence and solution methodology are 
presented. Conclusion: Both proposed models are more simplified leading to possible hybrid 
adaptations of existing techniques for more practical approaches.  
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INTRODUCTION 
 
 A Dynamic Quadratic Assignment Problem 
(DQAP), mathematically formulated as a modified 
QAP, is defined as follows: given n4×t cost coefficients 
cijklt  (i, j, k, l = 1, 2,…, n and t = 1, 2,.., T), determine an  
n2×t  solution matrix X = || xijt || so as to: 
   
Minimize: 
 

n n n n T n n n T 1

ijklt ijt klt ijlt ijt il(t 1)
i 1 j 1 k 1 l 1 t 1 i 1 j 1 l 1 t 1

C X X R X X
−

+
= = = = = = = = =

+∑∑∑∑∑ ∑∑∑∑   (1) 

 
Subject to: 
 

n

ijt
i 1

X 1 , j,  t
=

=∑ i   (2) 

 
n

ijt
j 1

X 1 , i,  t
=

=∑ i   (3) 

 
{ }ijtX 0,1 , i,  j,  t∈ i   (4) 

 
Where: 
N = Represents the number of 

facilities/locations in each period t 

T = Represents the number of discrete time 
periods 

ijklt ikt jltC f *d=  = Represents the cost of assigning 

facility i to location j and facility k to 
location l at period t. 

f ist = The workflow cost from facility i to 
facility k at period t 

djlt = The distance from location j to 
location l at period t 

Rijlt = Represents the rearranging cost when 
facility i located on location j at period 
t is moved to location l at period (t+1) 

X ijt = 1, if facility i is assigned to location j 
at period t. Otherwise, Xijt is 0 

 
 Since the DQAP is NP-hard problem that is 
difficult to deal with in case of solving directly for an 
optimal solution. The objective of this study is to 
reformulate the DQAP into two alternative forms: 
Linearized model and logic-based model and to propose 
solution methods for both models. 

 
MATERIALS AND METHODS 

 
Linearized model: The DQAP can be linearized by 
defining n4×t variables Yijklt  and n3×(t-1) variables 
M ijl(t+1):  
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ijklt ijt kltY X X 1≥ + −  

 
ijl( t 1) ijt il( t 1)M X X 1+ +≥ + −  

 
Model 1: The linearized DQAP therefore becomes:  
 
Minimize: 
 

n n n n T n n n T 1

ijklt ijklt ijlt ijl( t 1)
i 1 j 1 k 1 l 1 t 1 i 1 j 1 l 1 t 1

C Y R M
−

+
= = = = = = = = =

+∑∑∑∑∑ ∑∑∑∑   (5) 

 
Subject to: 
   

ijklt ijt kltY X X 1,i 1,..,n,  j 1, ,n, t 1, T ≥ + − = = … = …   (6) 

 

ijl( t 1) ijt il( t 1)M X X 1,i 1,..,n,  j 1, ,n, t 1, T+ +≥ + − = = … = …   (7) 

 
n

ijt
i 1

X 1, j  1,  ,  n  ,  t  1, T
=

= = … = …∑   (8) 

 
n

ijt
j 1

X 1,i  1, ,  n  ,  t  1, T
=

= = … = …∑   (9) 

 

ijklt ijl( t 1)Y ,M 0,  i,  j,  t+ ≥ ∀   (10) 

 
{ }ijtX 0,1 ,  i,  j,  t∈ ∀  (11) 

 
RESULTS AND DISCUSSION 

 
 Extending the theorem and proof in Lawler (1963), 
it is possible to demonstrate that the linearization of 
DQAP is equivalent to DQAP. Let the DQAP defined 
in (1-4) be designated problem Q and the MILP defined 
in (5-11) be designated problem L. The following 
theorem assures the equivalence of Q and L for any 
given set of cost coefficients. 
 
Theorem 1: The feasible solutions of problems Q and 
L can be placed in one-to-one correspondence with 
equal values of the cost functions. A feasible solution 
X(Q) of Q corresponds to a feasible solution (X(L),Y,V) 
of L if and only if X(Q)=X(L). 
 
Proof: It is sufficient to show that the constraints of 
problem L are such that for any given permutation 
matrix X(L) at a given period t, Y at period t and V from 
period t to t+1 are determined uniquely by the relations: 

 

ijklt ijt kltY X X=  

and: 
 

( ) ( )ijtijl t 1 il t 1M X X+ +=  

 
 Since all of the variables are restricted to the value 
of 0 and 1, these relations are equivalent to: 
 

ijklt ijt kltY 1 X X 1= ⇔ = =  
 
and: 
 

( ) ( )ijtijl t 1 il t 1M 1 X X 1+ += ⇔ = =  

 
 It follows immediately from: 
 

ijklt ijt kltY X X 1≥ + −  

  
That: 
 

ijklt ijt kltY 1 X X 1= ⇒ = =  

  
and: 
 

( ) ( )ijtijl t 1 il t 1M X X 1+ +≥ + −  

  
That: 
 

( ) ( )ijtijl t 1 il t 1M 1 X X 1+ += ⇒ = =  

 
 In order to prove the converse, letijt kltX X 1= = . 

Then, from the constraints: 
  

ijklt ijt kltY X X 1≥ + −  

 

( ) ( )ijtijl t 1 il t 1M X X 1+ +≥ + −  

 
It follows that: 
 

ijkltY 1≥   (12) 
 

( )ijl t 1M 1+ ≥   (13) 
 
 Since the objective function is to minimize: 
 

n n n n T n n n T 1

ijklt ijklt ijlt ijl( t 1)
i 1 j 1 k 1 l 1 t 1 i 1 j 1 l 1 t 1

C Y R M
−

+
= = = = = = = = =

+∑∑∑∑∑ ∑∑∑∑  

 
and ijkltC 0≥  and ijltR 0≥ by definition, Yijklt  and Mijl(t+1) 

must choose the minimum feasible values accordingly 
to (12) and (13). Therefore, it follows that: 
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ijkltY 1=  and ( )ijl t 1M 1+ =  

 
Whenever: 
 

ijt kltX X 1= =  

 
The proposed solution method: For solving large 
scale MILP, Benders’ Decomposition (BD) technique, 
which is presented by Benders (1962), can be applied. 
The algorithm solves a MILP problem via structure 
exploitation by decomposing a MILP into two 
problems-an integer master problem and a linear 
programming sub-problem-which are solved iteratively. 
Note that the solution of MILP in the master problem in 
this approach can further be approximated by the 
round-up of the solution from the relaxed linear 
assignment problem using the original Hungarian 
method. Dynamic Programming (DP) technique based 
on Rosenblatt (1986) can also be applied to the method 
in order to determine the sub-optimal solution and 
accelerate the convergence rate. BD generates a 
database of a subset of feasible solutions for DP to 
determine an approximate optimal solution. In order to 
accelerate BD, a trust-region constraint can be 
implemented into the master problem with a successive 
adaptation procedure (Muenvanichakul and 
Charnsethikul, 2009) to improve its performance. 
 Implementation of BD to linearized DQAP (5-11) 
lead to: 
 A linear programming sub-problem (dual 
problem): 
 
Maximize: 
 

n n n n T
* *
ijt klt ijklt

i 1 j 1 k 1 l 1 t 1

n n n T 1
* *
ijt il(t 1) ijl(t 1)

i 1 j 1 l 1 t 1

(X X 1)U

(X X 1)V

= = = = =

−

+ +
= = = =

+ − +

+ −

∑∑∑∑∑

∑∑∑∑

 (14) 

 
Subject to: 

  

ijklt ijklt0 U C ,i 1,..,n,  j 1, ,n, t 1, T    ≤ ≤ = = … = …     (15) 

 

ijl( t 1) ijlt0 V R ,i 1,..,n,  j 1, ,n, t 1, T    +≤ ≤ = = … = …     (16) 

 
for a given layout { }*

ijtX 0,1 ,   i,  j, t∈ ∀ and 

 A mixed-integer-linear-programming master-
problem: 

Minimize    Z (17) 
 

Subject to: 

 
n n n n T

*
ijt klt ijklt

i 1 j 1 k 1 l 1 t 1

n n n T 1
*

ijt il( t 1) ijl( t 1)
i 1 j 1 l 1 t 1

Z (X X 1)U

(X X )V

= = = = =

−

+ +
= = = =

≥ + −

+ +

∑∑∑∑∑

∑∑∑∑

  (18) 

 
n

ijt
i 1

X 1, j  1,  ,  n  ,  t  1, T 
=

= = … = …∑  (19) 

 
n

ijt
j 1

X 1,i  1, ,  n  ,  t  1, T 
=

= = … = …∑  (20) 

 
{ }ijtX 0,1 ,  i,  j,  t∈ i   (21) 

 
for given *

ijkltU and ijl( t 1)V + . 

 The solution procedure starts by solving the sub-
problem (14-16) from an initial layout *

ijtX either from 

an initial guess value in the first iteration or a solution 
from the previous step (from the master problem) and 
then solving the master problem (17-21) from the 
solution of the sub-problem *

ijkltU and ijl( t 1)V + . The 

procedure repeats until the different between the upper 
bound UB, the minimum of the current upper bound 
and the sub-problem objective value and the lower 
bound LB, the maximum of the current lower bound 
and the master problem objective value , is less than a 
given tolerance δ i.e.: 
 

UB-LB≤δBD 
 

The cost of the total layout is the sub-problem 
objective value and the layout is ijtX from the master 

problem. 
 Note that the constraint (18) in the master problem 
is corresponding to the optimality cut of the linearized 
DQAP. Theorem 2 assures that there exists no 
feasibility cut in BD of linearized DQAP (5-11); 
thereby the sub-problem (14-16) can be determined 
from (22) and (23) given below. 
 
Theorem 2: There exists no feasibility cut in BD of the 
linearization DQAP. 
 
Proof: It is sufficient to show that given ijt kltX ,X  for the 

corresponding the sub problem (14-16), to maximize 
the objective function (14):  
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n n n n T
* *
ijt klt ijklt

i 1 j 1 k 1 l 1 t 1

n n n T 1
* *
ijt il( t 1) ijl(t 1)

i 1 j 1 l 1 t 1

(X X 1)U

(X X 1)V

= = = = =

−

+ +
= = = =

+ −

+ + −

∑∑∑∑∑

∑∑∑∑

 

 
 It follows that ijt klt(X X 1)+ − and ijt il( t 1)(X X 1)++ −  

must be equal to either-1, 0 or 1 with ijkltC 0≥  and 

ijltR 0≥  by  definition. The optimal solution of the sub 

problem  is  forced  to  the maximum value of the 
bound as:  

 
*
ijklt ijklt ijt kltU C if (X X 1) 1

0 otherwise

= + − =

=
 (22) 

 
and: 

 
*
ijl( t 1) ijlt ijt il(t 1)V R if (X X 1) 1

0 otherwise
+ += + − =

=
 (23) 

 
 Consequently, the problem is always feasible with 
no feasibility cut.    

 
Logic-based model:  
Model 2: A logic-based formulation of the DQAP with 
n×t variables Yit×{1, 2,.., n}. The constraint can be 
written as a set of in equations: 

 

it ktY Y≠ , i,k∀   

 
with i ≠ k  at period t. 
 It requires that it ntY ,...,Y be a permutation of 

1,2,3,…,n at period t. These constraints can be only a 
single global constraint for each period as: 
 

{ }1t 2t 3t ntall different Y ,Y ,Y ,...,Y atperiod t−  
 
where, n is a number of facilities and locations of the 
problem and t is a number of considering time periods. 
 Therefore, the logic-based model of DQAP is 
much more compact as:  
 
Minimize: 
 

it kt it i ( t 1)

n n T n T 1

ikt y y Y ,Y
i 1 k 1 t 1 i 1 t 1

F D R
+

−

= = = = =

+∑∑∑ ∑∑   (24) 

 
 Subject to: 

 

{ }
{ }

{ }

11 21 31 n1

12 22 32 n2

1T 2T 3T nT

all different Y ,Y ,Y ,...,Y

all different Y ,Y ,Y ,...,Y

all different Y ,Y ,Y ,...,Y

−

−

−
⋮

 (25) 

 
Where: 
 

it ktijklt ikt Y ,YC F D= ×  

 
 In this form, the constraints with (n×T) real 
variables consist of entirely checkable constraints and 
search variables. A logic-based method can treat the all-
different constraint directly without converting it to 
inequalities as well as constraint satisfaction seeks a 
feasible solution to a set of constraints. 
 It is possible to demonstrate that the logic-based 
model of DQAP is equivalent to DQAP. Let the DQAP 
defined in (5-11) be designated problem Q and the 
logic-based model of DQAP defined in (24-25) be 
designated problem L. The following theorem assures 
the equivalence of Q and L for any given set of cost 
coefficients. 
 
Theorem 3: The feasible solutions of problems Q and 
L can be placed in one-to-one correspondence with 
equal values of the cost functions. A feasible solution 
Y(Q) of Q corresponds to a feasible solution (Y(L),all-
different(Y)) of L if and only if Y(Q)=Y(L). 
 
Proof: It is sufficient to show that the constraints of 
problem L are such that for any given permutation 
matrix Y(L) at a given period t, Y at period t are 
determined uniquely by the relations: 
 

{ }1t 2t 3t ntall different Y ,Y ,Y ,...,Y atperiod t−  
 
where, Yit∈{1, 2,.., n} to represent the facility i 
assigned to location and period Yit  
 Since the constraint for each period t requires that 

1t 2t 3t ntY ,Y ,Y ,...,Y  all take distinct values. It covers the 

idea that each facility is assigned exactly once to the 
location and vice versa. These relations are equivalent 
to: 
 

it ktY Y , i,k with i¹k  at period t≠ ∀   
 
 It follows immediately as: 

 

it ktit kt i( y )k (y )tY Y Y≠ ⇔  

 

it kt it kti( y )k (y )t iy t ky tY X X 1≥ + −  
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That: 
  

it kti( y )k (y )t ijklt ijt kltY Y 1 X X 1= = ⇒ = =  

 

it i ( t 1) it i ( t 1)i (y )(y )( t 1) i(y ) i(y )M X X 1
+ ++ ≥ + −  

 
That: 
 

it i ( t 1)i (y )(y )(t 1) ijl( t 1) ijt il(t 1)M M 1 X X 1
+ + + += = ⇒ = =  

 
 In order to prove the converse, letijt kltX X 1= = . 

Then, from the constraint of ILP: 
  

ijklt ijt kltY X X 1≥ + −  

 

( ) ( )ijtijl t 1 il t 1M X X 1+ +≥ + −  

 
 As proof in Theorem 1: then: 
  

ijkltY 1=  

 
Whenever: 
 

ijt kltX X 1= =  

 
Since: 
 

it ktijt klt ijklt i( y )k (y )tX X 1 Y 1 Y= = ⇒ = =  

 
 From the assignment constraints, therefore: 
  

it kti( y ) k (y )Y Y≠  

 
 And the logic-based constraint can take over to: 
 

{ }1t 2t 3t ntall different Y ,Y ,Y ,...,Y at period t−  

 
The proposed solution method: For solving the logic 
based model, the structural algorithm of finding 
solution is therefore to branch on the search variables. It 
is impractical to keep branching until all search 
variables are determined. Logical inference as domain 
reduction algorithms can be applied to the checkable 
constraint before the variable domains becomes 
singletons. Then, Constraint Logic Programming (CLP) 
(Hooker, 2000) is a way of implementing the constraint 
satisfaction since integer programming methods cannot 
deal directly with an all-different constraint, 
{Y 11,Y21,…, Yn1,…, Ynt}. It uses a programming 

language to specify at least the outline how the problem 
is to be solved. In this problem, ECLiPSe is a possible 
approach to solve the corresponding logic-based model. 
A tree search method in ECLiPSe is directly the way to 
find the solution without adding special inference. 
Especially, constraint propagation enforcing arc-
consistency for general array expression, developed by 
Brand (2001), can be applied as the array constraint 
library to the program. 
 Detail implementation of the method and result are 
presented in Muenvanichakul (2009). 
 

CONCLUSION 
 

     This study reformulated DQAP in two alternative 
forms: Linearized DQAP Model and Logic-Based 
DQAP Model. Both approaches leading to more 
simplified models can help developing more possible 
solution methods.  
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