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Abstract: Problem statement: A comparative investigation was done experimentally for 6 different 
Estimation Techniques of a just-identified simultaneous three-equation econometric model with three 
multi-collinear exogenous variables. Approach: The aim is to explore in depth the effects of the 
problems of multicollinearity and examine the sensitivity of findings to increasing sample sizes and 
increasing number of replications using the mean and total absolute bias statistics. Results: Findings 
revealed that the estimates are virtually identical for three estimators: LIML, 2SLS and ILS, while the 
performances of the other categories are not uniformly affected by the three levels of multicollinearity 
considered. It was also observed that while the frequency distribution of average parameter estimates 
was rather symmetric under the OLS, the other estimators was either negatively or positively skewed 
with no clear pattern. Conclusion: The study had established that L2ILS estimators are best for 
estimating parameters of data plagued by the lower open interval negative level of multicollinearity 
while FIML and OLS respectively rank highest for estimating parameters of data characterized by 
closed interval and upper categories level of multicollinearity.  
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INTRODUCTION 
 
 One of the most frequently suggested solutions to 
the problem of multicollinearity in single equation 
estimation is the use of simultaneous econometric 
model. In the simultaneous model, the problem of 
multicollinearity may still exist in the individual 
equations. If the simultaneous equation solution to this 
problem is adopted there may be an intolerable rise in 
the size of the model with the consequent depletion of 
the number of exogenous variables which are usually 
required for policy simulation. 
 Since some measure of multicollinearity has to be 
tolerated in simultaneous econometric models, this 
study therefore investigates the comparative 
performance of six different estimation techniques 
namely: Ordinary Least Squares (OLS), Limited 
Information Maximum Likelihood (LIML), Two-Stage 
Least Squares (2SLS), Indirect Least Squares (ILS), 
Three-Stage Least Squares (3SLS) and Full Information 
Maximum Likelihood (FIML) under three different 
levels of multicollinearity between the multicollinear 
exogenous variables. The performances of the 
estimators are evaluated based on the average or mean 
values of parameter estimates and total absolute bias of 

parameter estimates. The aim is to explore in depth the 
phenomena effects and examine the sensitivity of 
findings to increasing sample sizes and increasing 
number of replications Goodnight and Wallace (1969),  
Hoerl and Kennard (1970) and Goodnight and 
Wallace ( 1972) . 
 Studies on estimation under multicollinearity 
effects of simultaneous models revealed that a high 
degree of multicollinearity among the explanatory 
variables has a disastrous effect on estimation of the 
coefficients, β by the OLS Fisher (1966). This method 
was considered by Hendry (1976), RAY, (1970) and 
Pleli and Tankovic (2005) as naive approach because 
the estimators are biased and inconsistent. They 
however categorized other methods as limited-
information approach (2SLS, ILS) and full-information 
approach (3SLS, FIML). Adenomon and Fesojaiye 
(2008), Agunbiade and Osilagun (2008)  merely 
compared the Seemingly Unrelated Regression (SUR) 
with the OLS technique and confirmed the superiority 
of the SUR estimator to the OLS estimators. In the 
opinion of Ayinde (2007), where he compared OLS 
with some GLS estimators, he observed that with 
increasing replications OLS estimator is preferred in 
estimating all the model parameters at all levels of 
correlation. However, this opinion negates Pleli and 
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Tankovic (2005) in which they advised an 
econometrician to avoid the use of naïve approach 
(OLS) in estimating the parameters of a system of 
simultaneous equations. 
  
Framework of the model: In this study, a Monte-Carlo 
approach is employed for the following just-identified 
econometric model having three structural equations: 
 

1t 13 3t 11 1t 12 2t 1t

2t 21 1t 21 1t 23 3t 2t

3t 32 2t 32 2t 33 3t 3t

y y x x u
y y x x u
y y x x u

= β + γ + γ +
= β + γ + γ +

= β + γ + γ +

 (1) 

 
Where: 
y1t, y2t and y3t = Endogenous or jointly dependent 

variables 
x1t, x2t and x3t = Predetermined (exogenous or lagged 

endogenous) variables 
 
 The u1t, u2t and u3t denote stochastic disturbance 
terms which are assumed to be independently and 
identically normally distributed with zero means and 
finite covariance matrix, β13, β21, β32 are coefficients of 
endogenous variables while the γ11, γ12, γ21, γ23, γ32, γ33 
are the coefficients of predetermined variables making 
nine structural parameters for the model. 
 Express the model (1) in matrix form yields: 
 
y =   x β+u (2) 
 

MATERIALS AND METHODS 
 
 The methodology employed in this study is the 
Monte-Carlo Approach (MCA). The Monte-Carlo 
method   is    the  nearest thing to a controlled 
laboratory   type experiment in econometrics 
Intrilligator   et   al. (1996); Johnston (1984) , 
Agunbiade (2007), Carlin et al.,  (1992), Kmenta and 
Joseph (1963), Parker (1972), Wagnar (1958), Olayemi 
and Olayide (1981) and Koutsoyiannis (2008). The 
MCA has been applied not only to Multicollinearity 
effect but also to choice of alternative estimators in 
determining the impact of heteroscedasticity, serial 
correlation and other violations of basic econometric 
assumptions on the performance of different estimators 
in a given study. It is also used to solve problems on 
both pure and social sciences Belsley et al., (1992), 
Farrar and  Glauber (1967), Feldstein (1973) and 
Mishra (2004). 
 In order to assemble data that will conform to the 
model specified, our data series are generated as 
follows: 

1. We set sample sizes N at 100, 200 and 300 and 
replication numbers R = 200, 400 and 600 for this 
study. These values are arbitrary although it 
compares favorably with sample sizes in other 
similar studies 

2. The following numerical values are arbitrarily 
assigned to each of the structural parameters of the 
model: 

 
 β13 = 1.8 γ11 = 0.2 γ12 = 1.2 
 β21 = 1.5 γ21 = 2.5 γ23 = 2.1 (3) 
 β32 = 0.9 γ32 = 0.4 γ33 = 3.3 
 
3. Values are assigned to each of the elements of the 

variance-covariance matrix of the disturbance 
terms of the model at any given sample points: 

 

 
e

7.0 5.0 4.0
5.0 4.5 3.5
4.0 3.5 3.0

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

∑  (4) 

 
4. Values of the predetermined variables x1t, x2t and 

x3t are generated from a pool of uniformly (0,1) 
distributed random numbers Kmenta (1971) using 
the Microsoft Excel package such that the 
correlation coefficients ρ (x1, x2), ρ(x2, x3) and 
ρ(x1, x3) are in the following ranges of the three 
levels of multicollinearity considered: 
• Relatively highly  negatively correlated 

(ρxi,xj<-0.05) which is referred to as Lower 
Open Interval Negative (LON) 

• Feebly    negatively or   positively  correlated 
(-0.05≤ρxi,xj≤+0.05) which is referred to as 
Closed Interval Negative or Positive (CNP) 

• Relatively highly positively correlated 
(ρxi,xj>+0.05) which is termed Upper Open 
Interval Positive (UOP) 

 
 Consequently there are three sets of X’s in each 
category of the multicollinearity group. We perform 
the correlation matrices to ascertain the usefulness of 
data set: 
 
5. Values of the disturbance terms u1t, u2t and u3t are 

specified to each sample point. A two-stage 
process is employed to generate these values: 
• Three sets of random normal series were 

generated and standardized to obtain 
independent series εt of random normal 
deviates  

• The generated series are transformed into three 
series of random disturbance in order to obtain 
covariance matrix predetermined in step (3) 
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above for the model. The method presented by 
Nagar (1969) for transformation of 
independent series of standard random deviates 
into series of random deviates with zero mean 
and specified variance-covariance matrices is 
used for this purpose. This is described below 

 
According to Nagar (1969), since ∑ is a positive 

definite matrix, we can decompose it by a non-singular 
upper triangular matrix P such that: 
 
 nc

I PP '⊗ =∑∑  (5) 

 

Letting  
11 12 13

22 23

33

S S S
P 0 S S

0 0 S

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (6) 

 
and Eq. 6 to: 
 

11 12 13

22 23

33

0
0 0

σ σ σ⎛ ⎞
⎜ ⎟σ σ⎜ ⎟
⎜ ⎟σ⎝ ⎠

 

 
where, ij ji , i jσ = σ ≠

 
it can be shown that: 

 

( )

33 33

23 33 33

1 2
22 12 23 33

S

S

S /

= + σ

= σ σ

= σ σ σ

 (7) 

( )

( )

13 31 33

12 12 23 13 22

2 2
11 11 12 13

S

S S S S

S S S

= σ σ

= σ −

= + σ − −

 

 
 The three random disturbance series are thus 
formed using: 
 

1t 11 12 13 1t

t 2t t 22 23 2t

3t 33 3t

u S S S
U u P 0 S S

u 0 0 S

ε⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= = ε = ε⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ε⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (8) 

     
Hence: 
 

 
1t 11 1t 12 2t 13 3t

2t 22 2t 23 3t

3t 13 3t

U S S S
U S S
U S

= ε + ε + ε
= ε + ε
= ε

 (9) 

 
6. The endogenous variables are then generated from 

the values already obtained for the X’s (step 4) and 
the U’s (step 5) and the values assigned to the 

structural parameters (step (2)). This is most 
conveniently done using the reduced form model 
derived as follows: 

 Using our three-equation model: 
 

 
1t 13 3t 11 1t 12 2t 1t

2t 21 1t 21 1t 23 3t 2t

3t 32 2t 32 2t 33 3t 3t

y y x x u
y y x x u
y y x x u

= β + γ + γ +
= β + γ + γ +
= β + γ + γ +

 
 
 Rearranging the model we have: 
 

1t 2t 13 3t 11 1t 12 2t 3t 1t

21 1t 2t 3t 21 1t 2t 23 3t 2t

1t 32 2t 3t 1t 32 2t 33 3t 3t

y 0y x x 0x U
y y 0y x 0x x U

0y y 0x x x U

+ −β γ − γ − γ + =
−β + + − γ + − γ =

−β + γ − − γ − γ =

 
 
 This can be written as: 
 

t t ty X Uβ + Γ =  (10) 

 
Where: 

13

21

32

11 12

21 23

32 33

1 0
1 0

0 1

0
0

0

−β⎛ ⎞
⎜ ⎟β = −β⎜ ⎟
⎜ ⎟−β⎝ ⎠
−γ −γ⎛ ⎞

⎜ ⎟Γ = −γ −γ⎜ ⎟
⎜ ⎟−γ −γ⎝ ⎠

 

1t

t 2t

3t

1t

t 2t

3t

1t

t 2t

3t

y
y y

y

x
x x

x

U
U U

U

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠
⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 

 
 Rewriting Eq. 10, to make yt the subject of the 
relations, we have: 
 

1 1
t t ty X U− −= −β Γ +β  (11) 

 
Where: 
 

 
13 32 13

1
21 21 13

13 32 21
32 21 32

1
1 1

1
1

−

β β β⎛ ⎞
⎜ ⎟β = β β β⎜ ⎟−β β β ⎜ ⎟β β β⎝ ⎠
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So: 
 

13 32 13 11 12

t 21 21 13 21 23
13 32 21

32 21 32 32 33

1t 13 32 13 1t

2t 21 21 13 2t
13 32 21

3t 32 21 32 3t

1 0
1y 1 0

1
1 0

x 1 U
1x 1 U

1
x 1 U

β β β −γ −γ⎛ ⎞ ⎛ ⎞
− ⎜ ⎟ ⎜ ⎟= β β β −γ −γ⎜ ⎟ ⎜ ⎟−β β β ⎜ ⎟ ⎜ ⎟β β β −γ −γ⎝ ⎠ ⎝ ⎠

β β β⎛ ⎞ ⎛ ⎞ ⎛ ⎞
−⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ β β β⎜ ⎟ ⎜ ⎟ ⎜ ⎟−β β β⎜ ⎟ ⎜ ⎟ ⎜ ⎟β β β⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
 Alternatively, Eq. 11 can be written in terms of its 
reduced form parameters: 
 

t t ty X V= Π +  (12) 

 
where, Π is the reduced form of parameters defined as: 
 

1−Π = −β Γ  
 
and: 
 

1
t tV u−= β  (13) 

 
So: 
 

11 12 13 1t 1t

t 21 22 23 2t 2t

31 32 33 3t 3t

x V
y x V

x V

Π Π Π⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= Π Π Π +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟Π Π Π⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (14) 

 
 Equation 14 is expressed as: 
 

1t 11 1t 12 2t 13 3t 1t

2t 21 1t 22 2t 23 3t 2t

3t 31 1t 32 2t 33 3t 3t

y X x x V
y X x x V
y X x x V

= Π +Π +Π +
= Π +Π +Π +

= Π +Π +Π +

 (15) 

 
So: 
 

13 32 13 11 12

21 21 13 21 23
13 32 21

32 21 32 32 33

11 13 32 21 12 13 32 13 32 23 13 33

21 11 21 21 12 21 13 32 23 21 13 33

32 21 11 32 21 32 21 12 32 32

1 0
1 1 0

1
1 0

1
D

β β β γ γ⎛ ⎞ ⎛ ⎞
− ⎜ ⎟ ⎜ ⎟Π = β β β γ γ⎜ ⎟ ⎜ ⎟− β β β ⎜ ⎟ ⎜ ⎟β β β γ γ⎝ ⎠ ⎝ ⎠
γ + β β γ γ + β γ β β γ + β γ

= β γ + γ β γ + β β γ γ + β β γ
β β γ + β γ β β γ + γ β γ23 33

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟+ γ⎝ ⎠

     

 
Thus we have: 
 

1t 13 32 2t 13 3t
1

t t 21 1t 2t 21 13 3t

32 21 1t 32 2t 3t

U U U
1V u U U U
D

U U U

−

+β β +β⎛ ⎞
⎜ ⎟= β = β + +β β⎜ ⎟
⎜ ⎟β β +β +⎝ ⎠

  (16) 

 Thus we have: 
 

11 13 32 21 12 13 32
1t 1t

13 32 23 13 33
2t

1t 13 32 2t 13 3t
3t

21 11 21 21 12 21 13 32
2t 1t

23 21 13 33
2t

21 1t 2t 21 13 3t
3t

y X
D D

X
D

U U UX
D

y X
D D

X
D

U U UX
D

γ + β β γ γ + β γ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

β β γ + β γ⎛ ⎞+ ⎜ ⎟
⎝ ⎠

+ β β +β⎛ ⎞+ ⎜ ⎟
⎝ ⎠

β γ + γ β γ + β β γ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

γ + β β γ⎛ ⎞+ ⎜ ⎟
⎝ ⎠
β + + β β⎛

32 21 11 32 21 32 21 12 32
3t 1t

32 23 33
2t

32 21 1t 32 2t 3t
3t

y X
D D

X
D
U U UX

D

⎞
⎜ ⎟
⎝ ⎠

β β γ + β γ β β γ + γ⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

β γ + γ⎛ ⎞+ ⎜ ⎟
⎝ ⎠
β β + β +⎛ ⎞+ ⎜ ⎟
⎝ ⎠

  (17) 

 
Where: 
 
 ( ) 1

13 32 21D 1 −= − −β β β   
 The Eq. 17 is used to determine the values of the 
endogenous variables at each sample point. 
 
7. The final stage of this experiment is the estimation 

of the structural parameters with the aid of the 
generated data sets 1t 2t 3t 1t 2ty , y , y ,x ,x and 3tx . The 
following estimation methods are employed: 

 
• Ordinary least squares method             
• Two stage least squares method 
• Limited information maximum likelihood method 
• Indirect least squares method 
• Three-stage least squares method 
• Full-information maximum likelihood method 

 
RESULTS AND DISCUSSION 

 
 In theory and as confirmed by Johnston (1984), 
when an equation is just identified, estimates of 
parameters obtained by 2SLS, LIML, ILS and 3SLS 
should be identical. However, the results obtained 
among the six estimation techniques used in the study 
revealed that the estimates are virtually identical for the 
three estimators: LIML, 2SLS and ILS (referred to as 
L2ILS). The performance of the four categories of the 
estimators (OLS, L2ILS, 3SLS and FIML) are not 
uniformly affected by the three levels of 
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multicollinearity. For the three cases of multicollinear 
exogenous variables the frequency distribution of 
average parameter estimates under FIML, 3SLS and 
L2ILS was either negatively or positively skewed with 
no clear pattern while the distribution was rather 
symmetric under the OLS (Fig. 1 and 2). However, the 
performance of these estimators improved better as 
sample size increased. 
 A comparative performance evaluation of the four 
categories of estimators using the Average of parameter 
Estimates revealed that: 
 
• The parameters of the three equations are under-

estimated in 84 present of the entire average 
estimates, this observation is more prevalent for 
Eq. 1 than any of the other two. Under estimation 
is more serious in respect of OLS and 3SLS 

• CNP contains estimates that are closest to the true 
parameter values than the other two  open  intervals 

 

 
 
Fig. 1: Charts of the frequency distribution of OLS 

estimates N = 100, R = 200 for LON, CNP and 
UOP 

 

 
 
Fig. 2: Charts of the frequency distribution of L2ILS 

estimates N = 100, R200 for LON, CNP and 
UOP 

• FIML is best for estimating Eq. 1 at both LON and 
CNP while L2ILS is best at UOP. Both FIML and 
OLS are best for estimating Eq. 2 while FIML is 
recommended for estimation of Eq. 3 

• Ranking of estimators over the three 
multicollinearity levels indicates that L2ILS 
estimators are best for estimating parameters of 
data plagued by the lower open interval negative 
while FIML ranks high in the closed feebly 
interval. Also, OLS gave a clear lead in estimating 
parameters of the upper open interval positive 

• The estimates of most parameters of Eq. 1 and 3 
are peaked at the middle closed interval where 
exogenous variables are feebly correlated. The 
reverse is noted for parameters of Eq. 2 (trend type 
“v”) where most estimators attain their minimum 
when multicollinearity level is feebly closed 
negative or positive interval 

• No remarkable asymptotic pattern is noticed in the 
performance of the estimates of the parameters of 
each estimator 

• The performance of estimators is not affected by 
changes in the replication numbers, that is, no 
evidence of sensitivity of the distribution of 
estimators to number of replications which appears 
to attest to the stability of the results obtained in 
this study 

 
 The following are the main findings based on the 
use of Total Absolute Biases (TAB) of parameters 
estimates: 
 
• The estimates of the absolute biases for the 

estimators are relatively smaller when compared 
with some earlier work Oduntan (2004)  where he 
studied two just identified equations 

• The Model Total Absolute Bias (MTAB) of OLS 
and 3SLS estimators increased asymptotically 
while the estimates of MTAB do not reveal any 
such asymptotic behavior for L2ILS and FIML 
(though the sample size N = 200 appears to be the 
turning point) 

• Model total absolute bias as expected did not 
reveal any sensitivity to changes in replication 

• The ranking of estimators based on the Average 
Model Total Absolute Bias (AMTAB) and the 
Coefficient of Variation (CV) revealed that the four 
estimators rank uniformly in the following order: 
OLS, 3SLS, FIML and L2ILS 
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• As correlation levels changes from LON through 
CNP to UOP MTAB decreased consistently (\) 
falls for OLS, rose consistently (/) for L2ILS and 
has the minimum at the middle level (\/) for FIML. 
The behavior is inconclusive for 3SLS 

• Expectedly, the trends ranked as follows in 
decreasing order of frequency; the concave “\/” 
type the downward sloping ‘/’ and the capital 
lamda ‘/\’  

• The asymptotic distribution of ‘best’ estimators 
revealed that L2ILS are best in estimating the 

parameters of LON. FIML is best in the CNP while 
OLS consistently remained the best estimator for 
positively multicollinear exogenous variables 
(UOP). The findings are similar when average of 
estimates was used 

 
 The Table 1-9 in the appendices are attached as 
part of the tables generated in the course of the analysis. 
They were used to arrive at our conclusion. Also, the 
charts are attached to reveal our claim of the nature of 
distribution.

 
Table 1: Performance of estimators using average N = 100, R = 200 
  Equation 1   Equation 2   Equation 3 
  -------------------------------------------- -----------------------------------------  ----------------------------------------- 
Estimator Correlation level β13(1.8) γ11(0.2) γ12(1.2) β23(1.5) γ21(2.5) γ23 (2.1)  β32(0.9) γ32(0.4) γ33(3.3) 
OLS LON  1.2754 0.9597 0.5078 1.1877 -1.6168 -1.62220 0.6659 0.0868 -1.6067 
 CNP 1.2798 0.7404  0.6351 1.1858 -1.7576 -1.72440 0.6646 0.3619 -1.6150 
 UOP 1.2766 1.1768 0.6132 1.1780 -0.9822 -1.21120 0.6685 0.0263 -1.5004 
LIML LON 1.6295 -0.2063 -1.3197 2.0743 -1.0381 -2.34030 0.3431 0.4827 1.0405 
 CNP 1.5990 -0.2075 -0.3553 1.5521 -3.4071 -3.37100 0.7056 0.2711 -1.7960 
 UOP 1.5354 0.5446 -0.1800 -5.7211 5.3293 25.30070 0.8182 1.5853 -3.8157 
2SLS LON 1.6295 -0.2064 -1.8119 2.0743 -1.1068 -2.34030 0.3200 0.4827 1.1718 
 CNP 1.5990 -0.2075 -0.3553 1.5520 -3.4070 -3.37120 0.7056 0.2711 -1.7961 
 UOP 1.5354 0.5446 -0.1801 -5.7211 5.0279 25.35070 0.8181 1.5853 -3.8157 
ILS LON 1.6295 -0.2063 -1.3197 2.0743 -1.1067 -2.34030 0.3420 0.4827 1.0405 
 CNP 1.5991 -0.2076 -0.3550 1.5521 -3.4070 -3.37120 0.7056 0.2710 -1.7960 
 UOP 1.5354 0.5446 -0.1800 -5.7211 5.3293 25.35070 0.8181 1.8853 -1.8157 
3SLS  LON 1.2292 0.8744 0.5412 1.1864 -1.3959 -1.56870 0.6660 0.0867 -1.6067 
 CNP 1.2701 0.8483 0.6438 1.1981 -1.6400 -1.52600 0.6677 0.4292 -1.5360 
 UOP 1.2600 1.0866 0.6404 1.1768 -1.0293 -1.17610 0.6684 0.2633 -1.5016 
FIML LON 1.2588 0.8669 0.5297 1.1861 -1.3966 -1.59970 0.6650 0.0980 -1.6067 
 CNP 1.2480 0.3251 0.9408 1.1990 -1.0151 -1.44560 0.6681 0.4716 -1.4832 
 UOP 1.1875 -0.5734 -0.5883 0.8336 -0.1137 -1.41765 1.0979 0.9303 -0.0066 

 
Table 2: Performance of estimators using average N = 100, R = 400 
  Equation 1   Equation 2   Equation 3 
  --------------------------------------------  -----------------------------------------   ----------------------------------------------- 
Estimator Correlation level β13(1.8) γ11(0.2) γ12(1.2) β23(1.5) γ21(2.5) γ23 (2.1)  β32(0.9) γ32(0.4) γ33(3.3) 
OLS LON  1.2744 0.9452 0.5158 1.1867 -1.62010 -1.5670 0.66770 0.1600 0-1.5899 
 CNP 1.2807 1.2591 0.7718 1.1809 -11.24820 -1.1984 0.67240 0.3253 -1.54300 
 UOP 1.2730 1.0590 0.5338 1.1730 -0.99820 -1.4350 0.67240 0.3253 -1.50070 
LIML LON 21.5492 0.2310 1-1.693 1.3490 -2.17500 -1.9721 0.64460 0.2647 -1.03910 
 CNP 1.5291 -0.2075 0.9593 -0.4286 1.07090 0.4082 -0.54190 0.3864 1.20150 
 UOP 1.5180 0.2179 -1.2211 -2.4245 5.06240 23.4516 0.78770 1.3781 -3.26200 
2SLS LON 1.5491 0.2310 -1.6931 1.3490 -2.17650 -1.9720 0.64460 0.2647 -1.03870 
 CNP 1.5291 0.9593 -0.4286 1.0709 0.40820 -0.5302 0.38640 1.2015 -1.52780 
 UOP 1.5180 0.2179 -1.2210 -1.4423 `5.06250 23.4510 6.07877 1.3780 -3.26200 
ILS LON 1.5491 0.2310 -1.6931 1.2490 -2.17510 -1.9721 0.64460 0.2647 -1.03900 
 CNP 1.5292 0.9591 -0.4286 1.0710 0.40850 -0.5303 0.38640 1.2016 -1.52760 
 UOP 1.5180 0.2178 -1.2211 -2.4245 5.06250 23.4515 0.78770 1.3781 -3.26200 
3SLS  LON 1.2547 0.9570 0.3782 1.2081 -1.73220 -1.4841 0.67300 0.0793 -1.46620 
 CNP 1.2219 1.1562 0.8135 1.1800 -1.39200 -1.1753 0.66520 1.2507 -1.46540 
 UOP 1.2810 1.0570 0.5345 1.1716 -1.08710 -1.1631 0.61200 0.4500 -1.50510 
FIML LON 1.2542 0.9566 0.3784 1.2091 -1.46320 -1.7331 0.67260 0.0795 -1.51510 
 CNP 0.9539 0.6391 -0.3102 1.2251 0.05040 -1.4592 0.65850 0.3414 -1.20720 
 UOP 1.1647 -0.6858 -1.0105 0.6650 -0.04740 -1.3985 1.24620 0.9243 -0.08150 
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Table 3: Performance of estimators using average N = 100, R = 600 
  Equation 1   Equation 2   Equation 3 
  ------------------------------------------ ----------------------------------------   --------------------------------------------- 
Estimator Correlation level β13(1.8) γ11(0.2) γ12(1.2) β23(1.5) γ21(2.5) γ23 (2.1)  β32(0.9) γ32(0.4) γ33(3.3) 
OLS LON  1.2860 0.7744 0.6784 1.1650 -14341 -1.9785 0.6660 0.1542 -1.2714 
 CNP 1.2915  1.2240 0.8452 1.1788 -1.2065 -1.2334 0.6542 0.3153 -12.7742 
 UOP 1.2695 1.2642 0.6645 1.1914  -1.5942 -1.4472 0.6771 0.4366 -1.5071 
LIML LON 1.5293 1.6521 -1.4680 1.1431 -1.6762 -1.3765 0.7158 0.3073 -1.5146 
 CNP 1.3892 1.3962 -1.7714 1.1673 -1.0675 -1.9080 0.6367 0.3777 -1.6672 
 UOP 1.5921 0.2179 -1.5212 1.3561 -1.3760 -2.5926 0.6882 0.4159 -1.5693 
2SLS LON 1.5293 1.6520 -1.4681 -1.2430 -1.6760 -1.3765 0.7158 0.3072 -1.5146 
 CNP 1.3890 1.3962 -1.7710 1.1613 -1.0675 -1.9080 0.6368 0.3777 -1.6670 
 UOP 1.5923 0.2179 -1.5210 1.3561 -1.3760 -2.5921 0.6882 0.4159 -1.5692 
ILS LON 1.5294 1.1521 -1.4680 -1.1432 -1.6761 -1.3766 0.7159 0.3073 -1.5146 
 CNP 1.3890  1.3962 -1.7713 1.1614 -10.675 -1.9081 0.6368 0.3778 -1.6671 
 UOP 1.5921 0.2179 -1.5311 1.3562 -2.36761 -2.5927 0.6882 0.4155 01.5693 
3SLS LON 1.2661 1.2620 0.6026 1.1942 -1.8403 -1.716 0.6801 0.1543 -1.9912 
 CNP 1.2914 1.2240 0.8452 1.1787 -1.2066 -1.2335 0.6541 0.3150 -1.7741 
 UOP 1.2692 1.2640 0.6843 1.1912 -1.5940 -1.4470 0.6770 0.4371 -1.5070 
FIML LON 1.2660  1.2621 0.6026 1.1940 -1.8401 -1.7102 0.6720 0.1540 -1.9901 
 CNP 1.2914 1.2240 0.8520 1.1787 -1.2064 -1.2333 0.6542 0.3153 -1.7741 
 UOP 1.1914 -1.5940 -1.4470 0.6771 0.4366 -1.5071 1.2814 0.5393 -0.0103 

 
Table 4: Performance of estimators using average N = 200, R = 200 
  Equation 1   Equation 2   Equation 3 
  ---------------------------------------- ----------------------------------------- ------------------------------------------------ 
Estimator Correlation level β13(1.8) γ11(0.2) γ12(1.2) β23(1.5) γ21(2.5) γ23 (2.1)  β32(0.9) γ32(0.4) γ33(3.3) 
OLS LON  1.2727 1.0506 0.5946 1.2016 -1.8306 -1.9605 0.6637 0.07650 -1.8643 
 CNP 1.2834 1.0068 0.5390 1.1934 -1.4695 -1.3598 0.6661 023830 -1.7775 
 UOP 1.2556 1.0571 0.5599 1.1782 -1.3179 -1.4356 0.6687 0.21540 -1.5906 
LIML LON 1.6082 -1.0314 -0.7975 1.4243 -1.5840 -2.5461 0.7962 0.13150 -2.6240 
 CNP 1.5536 -0.7173 -0.7303 1.4062 -2.6744 -2.4881 0.7167 0.02057 -1.9184 
 UOP 1.7210 -1.9232 0.8270 1.5058 -1.9106 -1.9950 0.4900 0.71770 -1.9487 
2SLS LON 1.6082 -1.0313 -0.7959 1.4242 -1.5841 -2.5461 0.7962 0.13150 -2.6242 
 CNP 1.5535 -0.7173 -0.7303  1.4062 -2.0744 -2.4881 0.7167 0.20570 -1.9184 
 UOP 1.7210 -1.9232 0.8270 1.5057 -1.9105 -1.9950 0.4700 0.71770 -1.9487 
ILS LON 1.6082 -1.0314 -0.7959 1.4242 -1.5841 -2.5461 0.7962 0.13150 -2.6242 
 CNP 1.5535 -0.7173 -0.7305 1.4061 -2.0745 -248810 0.7167 0.20570 -1.9184 
 UOP 1.7211 -1.9233 0.8271 1.5057 -1.9106 -1.9950 0.7010 0.71780 -1.9482 
3SLS LON 1.2753 0.9973 0.7320 1.1834 -1.5576 -1.7442 0.6738 0.08900 -1.8642 
 CNP 1.2445 0.6317 0.8584 1.1928 -1.1309 -1.4843 0.6829 0.05250 -1.7919 
 UOP 1.2551 1.0574 0.8913 1.1747 -1.2150 -1.4172 0.6814 0.53130 -1.7919 
FIML LON 1.2723 0.9943 0.7458 1.2016 -1.8301 -1.9635 0.6694 0.07650 -1.8640 
 CNP 1.2908 0.7905 0.9496 1.1864 -1.3412 -1.3597 0.6626 0.50670 -1.4426 
 UOP 1.1748 -1.3170 -1.4177 0.6813 0.0587 -1.7916 1.2825 0.93880 -1.0815 

 
Table 5: Performance of estimators using average N = 200, R = 400 
  Equation 1   Equation 2   Equation 3 
  ------------------------------------------ ------------------------------------------- -------------------------------------------- 
Estimator Correlation level β13(1.8) γ11(0.2) γ12(1.2) β23(1.5) γ21(2.5) γ23 (2.1)  β32(0.9) γ32(0.4) γ33(3.3) 
OLS LON  1.27730 0.7043 0.9268 1.1827 -1.4498 -1.3200 0.6637 0.4579 -1.5924 
 CNP 1.26600 0.9280 1.1190 1.1216 -1.0115 -1.2094 0.6541 0.4154 -1.4687 
 UOP 1.25950 0.6891 1.1934 1.2027 -1.3204 -1.1870 0.6649 0.3563 -1.0018 
LIML LON 1.51870 1.4902 0.7635 3.7819 -1.8406 0.7651 0.6404 0.0685 -1.8759 
 CNP 0.64920 0.8809 1.1260 1.7665 -1.7314 -4.4351 0.7189 0.3516 -2.1434 
 UOP 1.58350 0.2482 -0.7098 1.8379 -3.5292 -3.2115 0.7736 0.2491 -1.7203 
2SLS LON 1.51870 1.4902 0.7636 3.7819 -1.8408 0.7652 0.6404 0.0698 -1.8763 
 CNP 0.64920 0.8812 1.1263 1.7667 -1.7314 -4.4551 0.7189 0.3516 -2.1435 
 UOP 1.58360 0.2482 -0.7099 1.8378 -2.5290 -3.2116 0.7740 0.2491 -1.7201 
ILS LON 1.51870 1.4903 0.7635 3.7829 4.8409 0.7652 0.6404 0.0699 -1.8765 
 CNP 0.64920 0.8810 1.1261 1.7668 -1.7314 -4.4549 0.7189 0.3516 -2.1430  
 UOP 1.58360 0.2482 -0.7099 1.8378 -3.5290 -3.2115 0.7740 0.2490 -1.7200 
3SLS LON 1.26540 0.0891 0.4072 1.1815 -1.7476 -1.5438 0.6645 0.3291 -1.4909 
 CNP 1.26201  0.9279 1.1194 1.2001 -0.6335 -1.3669 0.6650 0.1203 -1.6836 
 UOP 1.26500 0.8079 0.4069 1.1810 -1.7470 -1.5406 0.6641 0.3285 -1.4906 
FIML LON 1.26500 0.8079 0.4069 1.1812 -1.7470 -1.5406 0.6641 0.3285  1.4906 
 CNP 1.26210 0.9278 1.1194 1.2005 -0.6329 -1.3667 0.6646 0.1202 -1.6837 
 UOP 1.16440 -1.6063 -0.7131 0.6742 0.0371 -1.7175 0.6749 0.5394 -1.5556 
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Table 6:  Performance of estimators using average N = 200, R = 600 
  Equation 1   Equation 2   Equation 3 
  -------------------------------------------- ----------------------------------------- --------------------------------------------- 
Estimator Correlation level β13(1.8) γ11(0.2) γ12(1.2) β23(1.5) γ21(2.5) γ23 (2.1)  β32(0.9) γ32(0.4) γ33(3.3) 
OLS LON  1.2381 0.9633 0.6870 1.1615 -1.2390 -1.7460 0.67140 -0.0390 -1.8957 
 CNP 1.2426 0.9895 0.2829 1.1680 -1.2037 01.946 0.68390 0.4224 -1.4258 
 UOP 1.2449 1.5186 1.2984 1.1972 -1.7290 -1.1683 0.67200 0.3232 -1.8184 
LIML LON 1.3087 0.7384 0.3025 1.5126 -0.7987 -2.7836 0.73360 0.2915 -2.1426 
 CNP 0.8928 1.5664 13.5267 1.3024 -2.1758 -1.3090 0.51980 0.9387 -0.0848 
 UOP 1.4440 2.2965 -1.3974 1.3280 -1.2032 -2.1286 0.75090 0.3323 -3.2624 
2SLS LON 1.3085 0.7383 0.3024 1.5125 -0.2987 -2.7836 0.73360 0.2915 -2.1426 
 CNP 0.8928 1.5664 3.5267 1.3014 -2.1758 -1.3091 0.51980 0.9387 -0.0848 
 UOP 1.4440 2.2965 -1.3974 1.3281 -1.3024 -2.1286 0.78090 0.3323 -3.2623 
ILS LON 1.3088 0.7383 0.3025 1.5125 -0.7987 -2.7836 0.73370 0.2915 -2.1426 
 CNP 0.8930 1.5660 3.5268 1.3015 -2.1758 -1.3091 0.51980 0.9387 -0.0848 
 UOP 1.4443 2.2964 -1.3974 1.3281 -1.3024 -2.1286 0.78090 0.3323 -3.2623 
3SLS  LON 0.8395 -1.3294 1.0388 1.1840 1.6564 -1.2007 0.65840 0.1067 -1.7245 
 CNP 0.8544 -1.0475 1.7214 1.1659 -1.2335 -1.9890 0.65970 0.1835 -1.2606 
 UOP 1.3807 1.8994 0.2365 1.2018 -1.4270 -1.3316 0.67460 0.0454 -1.4465 
FIML LON 1.2382 0.9625 0.6870 1.1616 -1.2394 -1.7460 0.67150 -0.0394 -1.8957 
 CNP 0.8501 -1.2316 1.0604 1.1685 1.4590 -1.2257 06.6601 0.3951 -1.1736 
 UOP 1.1507 -1.0913 -1.1638 0.6523 -0.0259 -1.5526 1.27320 1.3586 0.45700 

 
Table 7: Performance of estimators using absolute bias estimates N = 100, R = 200 
  Equation 1   Equation 2   Equation 3 
  ------------------------------------------- --------------------------------------------- ----------------------------------------------- 
Estimator Correlation level β13(1.8) γ11(0.8) γ12(1.2) β21(1.5) γ21(2.5) γ23 (2.1)  β32(0.9) γ32(0.4) γ33(3.3) 
 LON 0.4942 0.6156 1.0265 0.2321 4.3553 3.6829 0.2488 0.3138 4.8255 
OLS CNP 0.5140 0.8031 0.8280 0.3004 3.9220 3.6639 0.2119 0.2431 4.7746 
 UOP 0.5473 0.8212 0.3813 0.3057 3.8813 2.8298 0.2172 0.2037 4.7653 
 LON 0.4760 0.1123 1.0491 0.8240 2.5860 1.5318 0.0288 0.0388 4.1323 
L2ILS CNP 0.2717 0.6921 0.6371 0.0894 4.3832 4.0169 0.0306 0.0116 4.2654 
 UOP 0.5115 0.8587 0.1646 0.1960 3.2937 3.9453 0.0045 0.0285 4.8924 
 LON 0.3931 0.7540 1.2323 0.5193 4.5253 3.7152 0.2066 0.0116 4.6169 
3SLS CNP 0.2891 0.9201 0.6343 0.0772 4.6109 3.3892 0.1214 0.0285 1.7512 
 UOP 0.4577 0.7245 0.4926 0.2396 3.7741 2.6789 0.2032 0.0476 4.6823 
 LON 0.4790 0.4400 1.0484 0.3390 4.2450 4.3041 0.2575 0.2528 4.6500 
FIML CNP 0.4589 0.9031 0.3428 0.1466 4.8620 4.7718 0.2610 0.1160 5.1917 
 UOP 0.5258 0.7432 0.3972 0.1786 3.9094 4.3087 0.1018 0.1769 4.7609 

 
Table 8:  Performance of estimators using absolute bias N = 100, R = 400 
  Equation 1   Equation 2   Equation 3 
  ---------------------------------------- ----------------------------------------- -------------------------------------------------- 
Estimator Correlation level β13(1.8) γ11(0.8) γ12(1.2) β21(1.5) γ21(2.5) γ23 (2.1)  β32(0.9) γ32(0.4) γ33(3.3) 
 LON 0.4529 0.3865 0.3205 0.3155 4.9627 4.2183 0.2339 0.4363 5.6683 
OLS CNP 0.5603 0.5383 0.5265 0.3437 3.8650 3.6558 0.2106 0.5072 5.2518 
 UOP 0.5541 0.0864 0.1414 0.3130 4.2930 2.8957 0.2177 0.0488 5.0494 
 LON 0.4478 0.0411 1.5486 0.4089 6.9714 5.5440 0.2837 0.0265 5.1042 
L2ILS CNP 0.6973 8.3829 2.2347 38.3893 412.3580 58.3370 24.6602 277.8090 53.2742 
 UOP 0.5003 0.9963 3.0000 0.2455 6.7980 6.9953 0.1762 0.4848 5.6115 
 LON 0.4478 0.0411 1.5486 0.4089 6.9714 5.5440 0.2837 0.0265 5.1044 
3SLS CNP 0.4298 0.9873 0.3918 0.1197 6.0204 7.0993 0.2925 0.5875 4.8938 
 UOP 0.6512 1.2496 0.2093 0.2103 5.3973 5.6804 0.2176 1.7704 5.9290 
 LON 0.5047 0.2116 2.5459 2.9107 4.7264 4.9437 0.2330 1.9180 4.4676 
FIML CNP 0.4575 0.9134 0.1415 0.2008 9.6492 5.4389 0.2132 0.5254 4.5740 
 UOP 0.5979 0.7562 2.6659 0.1767 9.6426 4.2057 0.3266 1.9602 5.2569 

 
Table 9: The ‘best’ estimators arranged according to their ranks 
Equation 1   Equation 2   Equation 3  All Equations 
------------------------------------------------ ------------------------------------ -------------------------------- ------------------------------------- 
LON CNP UOP LON CNP UOP LON CNP UOP LON CNP UOP 
FIML FIML L2ILS L2ILS FIML OLS L2ILS 3SLS FIML L2ILS FIML OLS 
L2ILS 3SLS 3SLS 3SLS 3SLS 3SLS 3SLS L2ILS L2ILS FIML 3SLS 3SLS 
OLS OLS 0LS FIML OLS L2ILS FIML OLS OLS 3SLS OLS L2ILS 
3SLS L2ILS FIML OLS L2ILS FIML OLS FIML 3SLS OLS L2ILS FIML 
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CONCLUSION 
 
 This study has established that L2ILS estimators 
are best for estimating parameters of data plagued by 
the Lower Open Interval Negative level of 
multicollinearity, while OLS performed poorly for this 
category. In the closed interval which yielded estimates 
that are closest to the true parameter values, FIML 
ranks highest while OLS gave a clear lead in estimating 
parameters of data characterized by the UOP. When 
compared with some earlier research, this study exhibit 
smaller biases and suggest that the higher number of 
equations and parameters may likely reduce the adverse 
effects of multicollinearity. We further, recommend that 
only CNP estimates should be used when faced with 
multicollinearity problems.  
 Finally, since a Monte Carlo simulation technique 
was used the scope of generalization is unavoidably 
limited to all the assumptions made in generating the 
data sets used.  
 
Areas for further research: The following areas may 
be explored by other researchers for further 
contribution to knowledge:  
 
• The effect of inclusion of structural equations with 

different status of identification (just or over 
identified) 

• The effect of multicollinearity of exogenous 
variables under more than three levels of 
correlation coefficients 

• The effect of multicollinearity of exogenous 
variables for models with three structural equations 
for both upper and Lower triangular 
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