
Journal of Mathematics and Statistics 5 (1): 24-31, 2009
ISSN 1549-3644
© 2009 Science Publications

Corresponding Author: Davood RezaeiPour, Institute for Mathematical Research (INSPEM), University Putra Malaysia,
43400 UPM Serdang, Selangor Darul Ehsan, Malaysia Tel: +601-73507481, Fax: +603-89423789

24

The New Variable-Length Key Symmetric Cryptosystem

1Davood Rezaei Pour, 1Mohamad Rushdan Md Said, 1Kamel Ariffin Mohd Atan and 2Mohamed Othman
1Institute for Mathematical Research (INSPEM)

2Faculty of Computer Science and Information Technology
University Putra Malaysia, 43400 UPM Serdang, Selangor Darul Ehsan, Malaysia

Abstract: Problem statement: In this study, we proposed a new 64-bit block cipher that accepted a
variable-length key up to 512 bits, which was suitable for implementation in a variety of environments.
Approach: The cipher algorithm was a 16-round Feistel network with a bijective function f and was
made up of two key-dependent 16×16 S-boxes, bitwise rotations, and a carefully designed key
schedule. Results: The block cipher, what we called NBC08, was designed to perform under the
powerful operations supported in today’s computers, resulting in an improved security/performance
tradeoff over existing block ciphers. Conclusion: The study concluded the differential, linear and
algebraic cryptanalysis on the NBC08 and showed that the cipher cannot be analyzed by any
cryptanalytic attack. The statistical test results for NBC08 did not indicate a deviation from random
behavior.

Key words: Block ciphers, Feistel structure, key dependent s-boxes, attacks

INTRODUCTION

 We describe NBC08 a new block cipher supporting
64-bit blocks and variable key size, ranging from 192 to
512 bits. The “cryptographic core” of the NBC08
cipher is a Feistel structure, consisting of sixteen
rounds. It is surrounded by two Non-Feistel keyed
transformations, and thus, the algorithm structure is
non-homogeneous[1]. These transformations in the first
part and the last part are inverse of each other. These
transformations increase the complexity of attacks on
NBC08, resulting in improved security. The round
function in the main core of encryption process is
designed on the basis of this theory: The provable
security against both linear and differential attacks[2].
This algorithm is used in all the standard modes of
operation for block ciphers.

In this study, we describe the design principles of
NBC08. It covers the high-level structure of the cipher,
initial and final transforms, and used functions in
NBC08. The key schedule is included the key
expansion and the sub keys generation.

 The statistical randomness tests investigate to
existence of special weaknesses in algorithm. If an
algorithm is accepted in all of statistical tests, then it
doesn’t have known weaknesses. The results show that
these tests do not identify any deviation from random
behavior.

NBC08 uses key dependent S-boxes, round
dependent function and the rotation based on sub key
value. This creates suitable shield against both linear
and differential cryptanalysis.

MATERIALS AND METHODS

Specification:
The basic operations of NBC08: NBC08 cipher uses a
variety of operations on 16-bit words. It combines
exclusive-ors (XORs), additions, subtractions, rotations
and S-box lookups. We describe these operations in
Table 1.
 The first three operations are used to “mix
together” data values and key values (on 16-bit words),
which are done very fast on modern processors.
 Also, we use a left-rotation by y, for a 16-bit word
x, inside the round function. Here y is viewed as a 4-bit
integer, and the rotation amount (between 0 and 15) is
specified by it.

Table 1: Symbol of operations

Operating symbols Operations

 Additions modulo 216
 Subtractions modulo 216

⊕ XORs

 Rotations

 S-box

J. Math. & Stat., 5 (1): 24-31, 2009

25

Fig. 1: High-level structure of the cipher

S7 and S9: S7 and S9 are 7×7 S-box and 9×9 S-box,
respectively. These S-boxes are the main sources of
nonlinearity in NBC08 which are designed by the
nonlinear functions. Their inverses are S7−1 and S9−1,
respectively.

S: S function is a 16×16 (keyed) S-box, which is made
by two S-boxes (S7 and S9). Similarly, S−1 is the
inverse of S, which is made by S7−1 and S9−1.

f: f is the round function in the encryption process and
the cryptographic strength depends only on the
properties of this function.

High-level structure of the cipher:
The cipher consists of three parts: Initial Transform,
Main Core and Final Transform. The main core is a
Feistel structure, consisting of sixteen rounds. The
general structure of NBC08 cipher is depicted in Fig. 1.
 This process uses a total of 1792 bits of sub key
material, for encryption and decryption procedures.
These sub keys are derived from the master key using
the key schedule:

• 4 160-bit sub keys FK[0]∼FK[3] for the first 4

rounds(Initial Transform)

• 16 32-bit sub keys RK[0]∼RK[15] for 16 rounds of
main core

• 4 160-bit sub keys LK[0]∼LK[3] for the last 4
rounds(Final Transform)

 Below, we describe the block cipher in details:

Initial transform: The operations of initial transform
are shown in Fig. 2. This transformation is formed by
the same four rounds. First, 64-bit input data block is
divided into 4 16-bit sub blocks X1∼X4. Then, it is
repeated four rounds on 16-bit sub blocks.
 The operations for the first round of Initial
Transform are depicted in Fig. 2. In the first round,
160-bit sub key FK[0] is divided into 10 16-bit sub keys
FK[0][0]∼FK[0][9], which mid operations , ⊕ and S
function make the round operations. In the next rounds,
the sub keys FK[1]∼FK[3] are used.

Final transform: These operations are the inverse of
initial transform, such that if the same key is used for
these two transformations, then the operations thwart
each other. This transformation is depicted in Fig. 3.
 The 160-bit sub key LK[3] is used in the first
round of final transform and sub keys LK[0]∼LK[2] are
used in the next rounds of final transform.

The round function f: Figure 4 shows the round
function f in the encryption process of NBC08. First,
32-bit half block input is divided into 2 16-bit sub
blocks left and right. Also, the input sub key of function
f in the ith round, RK[i], is divided identically into
RK[i][0] and RK[i][1].
 In this function, the operations are done over all the
16-bit sub blocks. First, the input sub key of the
function is combined with 2 input data sub blocks
through a nonlinear process. Then, these 2 16-bit sub
blocks create a 32-bit half block output duration of
operations (3 rounds) with using of S function.

S function and its inverse S−−−−1: In the function f, S
function is a 16×16 (keyed) S-box. For implementation,
the dimensions of S-box are as a big called table. So,
we choose the structure of Fig. 5 for S functions[3].
 As Fig. 5 shows, the 16-bit input to S is divided
into two parts, 9-bit and 7-bit. This non-identical
division causes more resistance of algorithm against
linear and differential attacks, because the bijective
functions with odd dimensions are better than the
functions with even dimensions, from the viewpoint of
the provable security against both linear and differential
attacks[4].

J. Math. & Stat., 5 (1): 24-31, 2009

26

Fig. 2: Initial Transform in encryption process

Fig. 3: Final Transform in encryption process

 In Fig. 5, two S-boxes S7 and S9 are used with 7-
bit and 9-bit input, respectively. These S-boxes are
objective and designed by the nonlinear functions[5-8].
When S9 output bits are XORed with 7-bit data, it is
expanded to 9-bit by adding two zero bits to the left and
when S7 output is XORed with 9-bit data, it is
decreased to 7-bit by truncating from the left.
 The perfect nonlinear functions in GF(29) and
GF(27) are used for generating of substitution tables
(S-boxes) S9 and S7, respectively.

 As a result, these S-boxes provide good resistance
against linear and differential attacks[9].
The functions used are:

S7(X) = (47X+123)111 mod 131
S9(X) = (47X+213)383 mod 529

 For achieving high speed in software, all outputs of
S7 and S9 are calculated for different inputs. Each of
these outputs is stored in memory arrays which are used

J. Math. & Stat., 5 (1): 24-31, 2009

27

in the program as called tables. In C implementation,
we can define the called tables (corresponding S7 and
S9), as shown below:

unsigned short const
S7[128] = {
71, 95, 16, 5, 17,103, 38, 89, 68, 23,111,125, 48, 42,
80, 4, 37, 36, 30, 91,117, 97, 52, 43, 76, 13, 93, 96,120,
27, 60,105, 65, 53, 26, 81, 84,121, 61, 49,113, 33, 66,
6, 59,102,123, 3, 18,124, 85, 55, 99, 14, 83, 64,126, 50,
15, 51,108, 92, 56, 87, 75, 29, 19, 25,109, 63,116,
58,114, 70, 82,119, 78, 94, 73, 88, 110, 28, 45,100, 12,
79, 98,106, 10, 77, 8, 46, 67, 54, 86, 72, 74,104,115,
57, 11, 35, 34, 32, 1,122,118, 7,127,112, 69, 41, 0, 44,
40, 62, 2, 9, 22,101, 21,107, 31, 39, 20, 47, 24, 90
};

S9[512] = {
458,11,257,116,381,511,256,469,260,270,169,308,358,
210, 26,489, 177,163,416,273, 66,323, 18,367,337,
19,114,335,397, 69,245, 80, 383, 6,431,296, 97,133,
23, 59, 49,173,175,174, 15, 50,477, 76,406,468,
57,409,421,111,120,376,232, 51, 65,291,238, 28,494,
95,364,189,298,119,289,390,492,139,242,216,456,251,
165,64,433,91,161,37,462,14,290,274,109,400,317,239,
354,389,219,386,322,201,193,309,0,247,501,496,300,3
56,328,286,440,181,89,204,265,196,357,62,370,295,22
4,186,79,485,12,441,22,326,123,124,378,74,7,185,345,
203,395,84,304,70,214,244,369,205,88,403,197,125,23
1,411,336,234,437,113,466,321,218,457,158, 73, 36,
17,240, 46, 282,442,384,276, 47,327,424,380, 71,473,
41,429,510,211,63,314,344,31,208,452,140,147,233,0,2
78,305,217,475,443,207,118,225,200,303,425,474,407,
268,453,172,90,199,48,191,509,162,426,227,318,506,3
3,319,280,94,379,263,448,507,85,83,347,194,132,235,1
37,112,447, 60,253,320,117,104,460,215,341,258,131,
39, 4,275,145, 93, 9,188,159,294,168,226,497,372,285,
53,266,222,495,151,373,220,135,272,377,2,449,255,39
9,254,110,54,334,446,153,67,228,338,130,350,213,385,
44,353,316,243,434,82,170,96,43,187,108,164,154,351,
81,329,310,279,198,16,136,77,483,455,391,281,121,14
3,348, 87,502,283,362,157,410,146,331,423,382,166,
21,106,293,396,105,271,343,418,122,299,413,183,
1,288,156,241, 10,171,464, 98,179, 25, 24,129,107,484,
61,142,436,428,499,393,401,180,32,292,508,486,363,2
30,366,284,209,445,375,155, 75,361,467, 29,346,102,
13,38,45,355,432,478,419,115,488,387,430,249,398,48
7,307,20,269,439,86,306,42,287,144,435,127,99,472,40
4,202,103,149,371,229,3,490,52,461,427,264,325,463,
8,480,394,236,126,342,360,58,479,134,374,35,212,339,
352,27,68,206,252,315,405,182,402,392,148,451,160,1
52,190,454,470,55,302,250,92,101,450,333,150,503,31

2,237,471,340,141,349,481,223,505,500,412,465,417,
246,178,438,330,476,30,267,221,5,262,167,491,359,49
3,72,176,195,498,482,259,415,332,365,192,368,301,29
7,459,504,184,313,261,408,248,128,277,100,56,420,13
8, 78,444,324,388,422,414,311, 34
};
 S7 and S9 are not keyed and are used as fixed
tables. In Fig. 5, it uses XOR operation for making S,
which is dependent on the key. As noticed, 16-bit key K
is divided into 7-bit K7 and 9-bit K9, which are 7-bit
from right and 9-bit from left, respectively. The
interference of key K in S structure increases
the complexity of system.
 The function S−1 is the inverse of S function. The
inverses of S7 and S9 are used in this function, namely
S7−1 and S9−1. The tables S7−1 and S9−1 are obtained
easily from S7 and S9, respectively. The operations of
S−1 are depicted in Fig. 6.

Key schedule: The key schedule has been chosen
according to the following criteria:

• The main key is from 192 to 512 bits
• The bits in each sub key should depends on the all

bits in the master key
• There are no specific relations between the sub

keys

Since the conditions above are satisfied, the
algorithm NBC08 has no weak keys.
 For generating of required sub keys in the
encryption process, we mainly utilize the round
function in 3-round Feistel structure using CBC mode.
The key schedule consists of two algorithms, the Key
Expansion procedure which expands master key to 512-
bit key length, and Sub keys Generation which
generates the sub keys FK[0]∼FK[3], RK[0]∼RK[15]
and LK[0]∼LK[3].

Key expansion: In our study, the master key length
increases to 512-bit. We use 2 512-bit arrays consisting
of 32 16-bit words EK and SK. These arrays and the
bits numbering manner are depicted in Fig. 7.
 The master key bits settle in the array EK. The first
bit of master key is bit 0 in EK. The remaining bits of
EK are completed by bit 0. SK is a fixed key array
consisting of random binary sequence 512-bit. This
vector is constant for an algorithm; actually it plays the
user key role. The information about SK contents is not
important because it satisfies the random conditions.
Below we define SK.

J. Math. & Stat., 5 (1): 24-31, 2009

28

Fig. 4: The Round Function f

Fig. 5: S Function

unsigned short const SK[32] =
{
0x9e59, 0xc9ac, 0xfb36, 0x7a45, 0xa1ab, 0x146d,
0xfb96, 0x36f8,
0xea17, 0x183c, 0xc200, 0xaddc, 0x9099, 0xd956,
0x4fe2, 0x1c1c,
0x2afe, 0xc694, 0x1fc0, 0xbb5b, 0x1e89, 0x5f4c,
0x6e6f, 0x8da7,
0x7c98, 0xe31e, 0xdb92, 0x3076, 0x4245, 0xeb86,
0x90a5, 0x7678
};

Fig. 6: S−1 Function

For the expanding of master key length to 512-bit, we
add the SK contents to EK using accumulation manner.
The following C program is used for this purpose,
EK [0] += SK[0]
for (int i=1; i<31 ; ++ i)
 EK [i] += EK [i-1]+ SK[i] ;

Sub keys generation: We use the structure shown in
Fig. 8, for the sub keys generation:
 As seen in Fig. 8, a 3-round Feistel structure using
f function in CBC mode is used for sub keys
generation. The initial inputs are:
(EK[26],EK[27]),(EK[28],EK[29]),(EK[30],EK[31])
which are used as 3 sub keys for 3 rounds.
(EK[26],EK[27]) means that 2 16-bit words are put
together and make a 32-bit word.
 (EK[0] ,EK[1], EK[2] ,EK[3]) is 64-bit input and
(EK[22] ,EK[23], EK[24] ,EK[25]) is initial value for
CBC method.
 The output of the first step with CBC creates the
first 64-bit sub key. So, for generating the required sub
keys, the structure of Fig. 8 should perform 28 times.
 The elements of EK array are used in quadric sets
as the inputs of CBC method. When this array ended,
the elements, again as quadric sets settle in the input.
 The sub keys in the encryption process are
generated by the outputs of the sub key generation
algorithm as follows:
 FK[0] is fulfilled by the first 160-bit and also
FK[3] by the fourth 160-bit. Afterward, the next
generated 32-bit is used as RK[0] and continues till
RK[15] is also fulfilled. The remaining bits are used for
LK[0] ∼LK[3].

J. Math. & Stat., 5 (1): 24-31, 2009

29

Fig. 7: The arrays SK and EK

Fig. 8: Sub keys generation

RESULTS AND DISCUSSION

Security analysis: To estimate security of NBC08,
some known attacks of block ciphers are considered
below.

Statistical analysis: The NBC08 block cipher is tested
using sixteen statistical tests[10,11]. We used 500 samples
of about 106 bit sequences for each test. Table 2 shows
results of the NIST statistical test suite for NBC08. In
Table 2, the parenthesis beside the name of the
statistical test shows the input parameters used in the
test. From the Table 2 we see that the statistical test
results for NBC08 do not indicate a deviation from
random behavior. These tests are essential but not
sufficient for security.

Differential and linear cryptanalysis: NBC08 uses
key dependent S-boxes, round dependent function and
the rotation based on sub key value. This creates
suitable shield against both linear and differential
cryptanalysis.
 Suppose that we have a set of n pairs of
plaintexts/ciphertexts, and then the attacker will try to
find differential or linear property between the
plaintext/ciphertext pairs with a high probability to
utilize it in extracting some bits of the master key. In
the proposed algorithm, the attacker will not be able to
know the sequences of the operations and the rotations
used in the algorithm since the order of the sequences
and operations depends on the master key.

J. Math. & Stat., 5 (1): 24-31, 2009

30

Table 2: Results of statistical analysis of NBC08
 Proportion

Statistical test High density Low density
Frequency 0.995 (pass) 0.988 (pass)
Block Frequency (m = 100) 0.994 (pass) 0.992 (pass)
Runs 0.991 (pass) 0.981 (pass)
Long Runs of Ones 0.990 (pass) 0.993 (pass)
Rank 0.989 (pass) 0.991 (pass)
Spectral DFT 0.998 (pass) 0.990 (pass)
Non-overlapping Templates (m = 9) 0.989 (pass) 0.991 (pass)
Overlapping Templates (m = 9) 0.981 (pass) 0.982 (pass)
Universal 0.989 (pass) 0.980 (pass)
Lempel-Ziv Complexity 0.989 (pass) 0.982 (pass)
Linear Complexity (M = 500) 0.985 (pass) 0.990 (pass)
Serial (m = 5) 0.990 (pass) 0.983 (pass)
Approximate entropy (m = 5) 0.983 (pass) 0.989 (pass)
Cusum 0.989 (pass) 0.985 (pass)
Random Excursions 0.986 (pass) 0.988 (pass)
Random Excursions Variant 0.987 (pass) 0.982 (pass)

 In this algorithm, we have 6 different operations,
and 32 different rotations. The permutation of the
operations is 6! and the permutation of the rotation is
32!. This provides us 6!×32!≈2127 different sequences. It
means that the attacker should try 2127 different cases.
For every case, the attacker has to find the linear or
differential properties, and then uses the available pairs
of plaintexts/ciphertexts to find some bits of the key.
However, this attack is more effective than the
exhaustive key search.
 Moreover, with having n pairs of
plaintexts/ciphertexts, attacker should use all the pairs
to extract ℓ bits from the key, and apply
plaintexts/ciphertexts n(2127) times depending on the
different sequences. These operations are considered
better than the exhaustive key search.
 For a 192-bit key length, the operations are O(2192).
By considering that the attacker has extracted ℓ bits,
then the operations are n(2127), and the exhaustive
search for the rest of the remaining bits is 2192-ℓ.
Therefore, the attack will be better than exhaustive key
search if 2192>2192−ℓ (n)2127, namely 2ℓ>n(2127).
However this is so difficult to attain. For example, if the
attacker has n = 50 plaintexts, then he/she should
extract more than 130 bits from the user key to be able
to achieve the attack faster than the exhaustive key
search, that is ℓ>130 bits. With n = 50 plaintexts, it is
very difficult to extract these bits from the input user
key faster than the exhaustive key search. The same
case can be performed for other key lengths.

Algebraic cryptanalysis: In performing algebraic
attack[12] to block ciphers, we have to derive an over-
defined system of algebraic equations. Since the full-
round NBC08 has a high degree as a vector Boolean

function, so it is impossible to convert any equation
system in NBC08 into an over-defined system.

CONCLUSION

 The cipher algorithm NBC08 is designed to
perform the encryption and decryption processes over
64-bit data blocks. The key length is from 192 to 512
bits. It is used in all the standard modes of operation for
block ciphers. NBC08 is easy and fast. The
implementation NBC08 is done with less volume, high
speed and is optimum over the 8, 16 and 32-bit
processors, since the operations are done on 16-bit
words. The current implementation is written in C and
runs at rates of about 64 M bit sec−1, on an 800MHz
Pentium with the Windows XP operating system.
 NBC08 is used as “building blocks” in the design
of other cryptographic algorithms, such as stream
ciphers, Message Authentication Codes (MACs) and
hash functions.

The statistical test results for NBC08 do not indicate
a deviation from random behavior: NBC08 has
provable security against both linear and differential
attacks. This algorithm is resistant against exhaustive
key search. The other known attacks over block ciphers
are not practical on the NBC08.

REFERENCES

1. Schneier, B., 1996. Applied Cryptography:

Protocols, Algorithms and Source Code in C. 2nd
Edn., John Wiley and Sons, Inc. USA., pp: 758.
ISBN-10: 0471117099.

2. Nyberg, K. and L.R. Knudsen, 1995. Provable
security against a differential attack. J. Cryptol.,
8: 27-37.

 https://eprints.kfupm.edu.sa/59816/1/59816.pdf
3. Matsui, M., 1997. New block encryption algorithm

MISTY. Proceedings of the 4th International
Workshop on Fast Software Encryption. Jan. 20-
22, Springer-Verlag London, UK., pp: 54-58.
http://portal.acm.org/citation.cfm?id=740728

4. Matsui, M., 1996. New structure of block ciphers
with provable security against differential and
linear cryptanalysis. Proceedings of the 3rd
International Workshop on Fast Software
Encryption, Feb. 21-23, Springer-Verlag London,
UK, pp: 205-218.

 http://portal.acm.org/citation.cfm?id=740582

J. Math. & Stat., 5 (1): 24-31, 2009

31

5. Nyberg, K., 1991. Perfect nonlinear S_boxes.
Proceeding of the Workshop on the Theory and
Application of Cryptographic Techniques on
Advances in Cryptology, April 8-11, Brighton,
UK., pp: 378-386.
http://dsns.csie.nctu.edu.tw/research/crypto/HTML
/PDF/E91/378.PDF

 6. Nyberg, K., 1993. On the construction of highly
nonlinear permutations. Lecture Notes in Comput.
Sci., 658: 92-98.
http://www.tcs.hut.fi/Publications/info/knyberg.ny
berg:ec92.shtml

7. Pieprzyk, J., 1990. Nonlinearity of exponent
permutations. Proceedings of the Workshop on the
Theory and Application of Cryptographic
Techniques on Advances in Cryptology, Apr. 10-
13, Houthalen, Belgium, pp: 80-92.
http://portal.acm.org/citation.cfm?id=111563.111573

8. Beth, T. and C. Ding, 1994. On almost perfect
nonlinear permutations. Proceedings of the
Workshop on the Theory and Application of
Cryptographic Techniques on Advances in
Cryptology, May 23-27, Lofthus, Norway, pp: 65-76.
http://portal.acm.org/citation.cfm?id=188324

9. Knudsen, L.R., 1994. Practically secure feistel
ciphers, fast software encryption. Proceeding of the
Cambridge Security Workshop, Dec. 1993,
Springer-Verlag, Cambridge, UK., pp: 211-221.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.36.1000

10. Menezes, A.J., P.C. Van Oorschot and
S.A. Vanstone, 1997. Handbook of Applied
Cryptography. Reviser Edn., CRC Press, Inc., Boca
Raton, FL, USA., ISBN 0849385237, pp: 780.

11. Rukhin, A., J. Soto, J. Nechvatal, M. Smid,
E. Barker, S. Leigh, M. Levenson, M. Vangel,
D. Banks, A. Heckert, J. Dray and S. Vo, 2001. A
statistical test suite for random and pseudorandom
number generators for cryptographic applications.
http://csrc.nist.gov/publications/nistpubs/800-22-
rev1/SP800-22rev1.pdf

12. Courtois, N. and J. Pieprzyk, 2002. Cryptanalysis
of block ciphers with over-defined systems of
equations. Proceedings of the 8th International
Conference on the Theory and Application of
Cryptology and Information Security: Advances in
Cryptology, Dec. 1-5, Springer-Verlag London,
UK., pp: 267-287.

 http://portal.acm.org/citation.cfm?id=647098.7171
46&coll=GUIDE&dl=GUIDE

