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Abstract: Integral transforms find special applicability within scientific and mathematical disciplines. 
A powerful and efficient homotopy methodology in evaluating integrals arises in integral transforms 
was presented. The method depends on solving a related first order linear differential equation by 
homotopy analysis method HAM. The Laplace transform, Fourier transform and the moment 
generating function of the standard normal distribution were used as test examples to show the 
efficiency of the method. The results obtained justify the advantage of this methodology. MATLAB 7 
was used to carry out the computations.  
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INTRODUCTION 

 
 In mathematics, an integral transform is any 
transform T of the following form: 
 

  
2

1

t

t

(Tf )(u) K(t,u)f (t)dt= �  (1) 

 
 The input of this transform is a function f and the 
output is another function Tf. An integral transform is a 
particular kind of mathematical operator.  
 There are numerous useful integral transforms. 
Each is specified by a choice of the function K of two 
variables, the kernel function or nucleus of the 
transform. Some kernels have an associated inverse 
kernel K−¹(u,t) which (roughly speaking) yields an 
inverse transform. 
 Mathematical notation aside, the motivation behind 
integral transforms is easy to understand. There are 
many classes of problems that are difficult to solve in 
their original representations. An integral transform 
maps an equation from its original domain (e.g., 
functions where time is the independent variable are 
said to be in the time domain) into another domain. 
Manipulating and solving the equation in the target 
domain is, ideally, much easier than manipulation and 
solution in the original domain. The solution is then 
mapped back to the original domain with the inverse of 
the integral transform. 
 As an example of an application of integral 
transforms, consider the Laplace transform and Fourier 
transform. The Laplace transform finds wide 

application in physics and particularly in electrical 
engineering, where the characteristic equations that 
describe the behavior of an electric circuit in the 
complex frequency domain correspond to linear 
combinations of exponentially damped, scaled and 
time-shifted sinusoids in the time domain. Other 
integral transforms find special applicability within 
other scientific and mathematical disciplines. 
 Sometime evaluating the integral in (1) is not easy. 
In this work an approximate method to evaluate such 
integrals will be introduced. The method depends on 
solving a related first order ordinary differential 
equation by the  Homotopy  Analysis  Method 
(HAM)[3-5]. 
 

MATERIALS AND METHODS 
 
 Consider the initial value problem 
 
   y p(t)y f (t)′ + =  (2a) 
 
    y(0) = 0 (2b) 
 
 A possible way to solve the general first order 
linear equation (2a), is to multiply it by a suitable 
integrating factor µ(t) and thereby transform the 
equation into an integrable form. The simplest possible 
function for µ, namely: 
 

t

0

(t) exp( p( )d )µ = τ τ�  
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 Having found the function µ, we obtain the 
solution of the initial value problem (2a-2b), HAM well 
addressed in Liao[3+5] is employed. Consider: 
 

y(t)
N[y(t)] p(t)y(t) f (t)

t
∂= + −

∂
 

 
where, N is an operator, y(t) is unknown function and t 
the independent variable. Let y0(t) denote an initial 
guess of the exact solution y(t), h ≠ 0 an auxiliary 
parameter, H(t) ≠ 0 an auxiliary function and L an 
auxiliary linear operator with the property L[y(t)] = 0 
when y(t) = 0. Then using q∈[0,1] as an embedding 
parameter, we construct such a homotopy: 
 

  0

0

Ĥ[ (t;q);y (t),H(t),h,q]

(1 q)L[ (t;q) y (t)] qhH(t)N[ (t;q)]

φ =
− φ − − φ

 (3) 

 
 It should be emphasized that we have great 
freedom to choose the initial guess y0(t), the auxiliary 
linear operator L, the non-zero auxiliary parameter h 
and the auxiliary function H(t). 
 Enforcing the homotopy (3) to be zero, i.e.: 
 

0Ĥ[ (t;q);y (t),H(t),h,q] 0φ =  
 
we have the so-called zero-order deformation equation: 
 
 0(1 q)L[ (t;q) y (t)] qhH(t)N[ (t;q)]− φ − = φ  (4) 
 
 When q=0, the zero-order deformation Eq. 4 
becomes: 
 
    0(t;0) y (t)φ =  (5) 
 
and when q = 1, since h ≠ 0 and H(t) ≠ 0, the zero-order 
deformation Eq. 4 is equivalent to: 
 
   (t;1) y(t)φ =  (6) 
 
 Thus, according to (5) and (6), as the embedding 
parameter q increases from 0 to 1, φ(t;q) varies 
continuously from the initial approximation y0(t) to the 
exact solution y(t). Such a kind of continuous variation 
is called deformation in homotopy. 
 By Taylor's theorem, φ(t;q) can be expanded in a 
power series of q as follows: 
 

   m
0 m

m 1

(t;q) y (t) y (t)q
∞

=

φ = +�  (7) 

where  
 

   
m

m q 0m

1 (t;q)
y (t) |

m! q =
∂ φ=

∂
 (8) 

 
  If the initial guess y0(t), the auxiliary linear 
parameter L, the nonzero auxiliary parameter h and the 
auxiliary function H(t) are properly chosen so that the 
power series (7) of φ(t;q) converges at q = 1. Then, we 
have under these assumptions the solution series: 
 
  0 m

m 1

y(t) (t;1) y (t) y (t)
∞

=

=φ = +�  (9) 

 
 For brevity, define the vector: 
 
  n 0 1 2 ny (t) {y (t), y (t), y (t), , y (t)}=�

�  (10) 
 
 According to the definition (7), the governing 
equation of ym(t) can be derived from the zero-order 
deformation Eq. 4. Differentiating the zero-order 
deformation Eq. 4 m times with respective to q and then 
dividing by m! and finally setting q = 0, we have the so-
called mth-order deformation equation: 
 
  m m m 1 m m 1L[y (t) y (t)] hH(t) (y (t))− −− χ = ℜ �  (11) 
 
where 
 
  

m 1

m m 1 m 1

1 N[ (t;q)]
(y (t))

(m 1)! q

−

− −

∂ φℜ =
− ∂

�  (12)  

 
and 
 

m

0, m 1
1, m 1

≤�
χ = � >�

 

 
 Using y0(t) = 0, H(t) = 1 and (t;q)

L[ (t;q)]
t

∂φφ =
∂

 

with the property L(C) = 0, where C is integral 
constant. The mth-order deformation Eq. 11 for m ≥ 1 
becomes: 
 

t

m m m 1 m 1
0

m 1 m

y (t) y (t) h [y ( )

p( )y ( ) (1 f ( )]d

− −

−

′= χ + τ

+ τ τ − − χ τ τ

�  

 
 When solving the first order DE: 
 

   tK (t,u)
y y f (t), y(0) 0

K(t,u)
′ + = =  (14) 
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we have that: 
 

t

0

y(t)K(t,u) K( ,u)f ( )d= τ τ τ�  

 
and so: 
 

2

2 1
1

t

t t t t
t

K(t,u)f (t)dt lim y(t)K(t,u) lim y(t)K(t,u)
− +→ →

= −�  (15) 

  
RESULTS AND DISCUSSION 

 
 In this study, the Laplace transform, Fourier 
transform and the moment generating function of the 
standard normal distribution will be used as test 
examples to show the efficiency of the method (15). 
 
Example 1: The Laplace transform of f(t), t ≥ 0 is 
defined by[2]: 
 

st

0

[f (t)] e f (t)dt
∞

−= ��  

 
and by (15), we get that: 
 

st
mt

m 1

[f (t)] lim[e y (t)]
∞

−

→∞ =

= ��  

 
 Let f(t) = cost. Choosing h = -1, we have from (13) 
that: 
 

2 4 6 8
m

m 1

3 5 7 2 2 3 3

st
2 2 2

y(t) y (t) (sint scost)(1-s +s -s +s )

1 1
(s-s +s -s - )(1+st+ s t + s t + )

2 6
1 s s

sin t cos t e , 0 s 1
1 s 1 s 1 s

∞

=

= = − − +

= − + < <
+ + +

� �

� �  

 
and when choosing 
 

1
h

s
= − , 

 

m 2 4 6 8
m 1

3 5 7

2 2 3 3
3 5 7

st
2 2 2

1 1 1 1
y(t) y (t) sint[ - - ]

s s s s
1 1 1 1

cos t[ - - ]
s s s s

1 1 1 1 1 1
[ - - ][1+st+ s t + s t + ]
s s s s 2 6

1 s s
sin t cos t e , s 1

1 s 1 s 1 s

∞

=

= = + + −

+ + +

+ +

= − + >
+ + +

� �

�

� �

 

 In this line, we can obtain for s > 0: 
  

st
mt

m 1

st st
2 2 2t

2

[cos t] lim[e y (t)]

1 s s
lim( sin te cos te )

1 s 1 s 1 s
s

1 s

∞
−

→∞ =

− −

→∞

=

= − +
+ + +

=
+

��

 

 
Example 2: Considering Eq. 15 as a definite integral 
over the range from -� to �, then the right hand side of 
this equation defines the Fourier transform[2] of f(t). 
That is: 
 

i t

i t i t
m mt t

m 1 m 1

1
F[f (t)] e f (t)dt

2

1
[lim(e y (t) ) lim (e y (t))]

2

∞
ω

−∞

∞ ∞
ω ω

→∞ →−∞= =

=
π

= −
π

�

� �
 

 
 Let tf (t) 2 e−= π  From (13), we have for t > 0: 
 

2 4 6 8
m

m 1

2 3

2 2 3 3

t i t
2

y(t) y (t) [1- + - + ]

1 1
[(1 i )(1 t t - t )-

2 6
1 1

(1 i )(1-i t- t + i t + )]
2 6

(1 i )
[e e ]

1

∞

=

− − ω

= = − ω ω ω ω −

+ ω − + +

+ ω ω ω ω

+ ω= − −
+ ω

� �

�

�

 

 
and for t < 0: 
 

2 4 6 8
m

m 1

2 3

2 2 3 3

t i t
2

y(t) y (t) [1- + - + ]

1 1
[(1 i )(1 t t t )-

2 6
1 1

(1 i )(1-i t- t + i t + )]
2 6

(1 i )
[e e ]

1

∞

=

− ω

= = ω ω ω ω −

− ω + + + +

− ω ω ω ω

− ω= −
+ ω

� �

�

�

 

 
 We can conclude that: 
 

t i t i t
m mt t

m 1 m 1

t i t t i t
2 2t t

2

F[ 2 e ] lim(e y (t) ) lim (e y (t))

(1 i ) (1 i )
lim( [e e 1]) lim ( [e e 1])

1 1
2

.
1

∞ ∞
− ω ω

→∞ →−∞= =

− ω ω

→∞ →−∞

π = −

+ ω − ω= − − − −
+ ω + ω

=
+ ω

� �
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Example 3: Let X be a continuous random variable 
with probability density function f(x) on a < x < b and 
zero elsewhere. The moment generating function of X 

is given by[1], 
b

tx

a

M(t) e f (x)dx, h t h= − < <� . To evaluate 

the moment generating function of a pdf and with the 
help of (15), we can use that: 
 

tx tx

t b t a
M(t) lim e y(x) lim e y(x)

− +→ →
= −  

 
 A random variable X that has a pdf of the form 

2x
21

f (x) e , x
2

−
= − ∞ < < ∞

π
 is said to have a standard 

normal distribution. We can find the moment 
generating function of the standard normal distribution 
as follows. By (13) we obtain: 
 

2 2

tx 2 4 6

tx 2 4 6

t t
tx tx2 2

2 2 2 1 1 1
y(t) e erf ( x t)[1+ t + t + t ]

2 2 2 2 8 48
2 2 1 1 1

e erf ( t)[1+ t + t + t ]
2 2 2 8 48

2 2 2 2 2
e erf ( x t)e e erf ( t)e

2 2 2 2 2

−

−

− −

π= − + +

π +

π π= − +

�

�  

 
 In this line it is easy to verify that: 
 

2 2

2

tx tx

t t

t t
2 2

t t

t
2

1
M(t) [lime y(x) lim e y(x)]

2

1 2 2 2
[limerf ( x t)e lim erf ( t)e ]

2 2 2 2

e , t

→∞ →−∞

→∞ →−∞

= −
π

= − −

= − ∞ < < ∞

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

CONCLUSION 
 
 The HAM was used for evaluating integrals arises 
in integral transforms. Three examples were discussed 
as demonstrations. It was concluded that the homotopy 
methodology is very powerful and efficient technique 
in evaluating a wide class of integral transforms and 
problems. It is also worth noting to point out that the 
advantage of the homotopy methodology is the fast 
convergence of the solutions.  
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