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Abstract: Problem Statement: Many boundary value problems that arise in real life situations defy 
analytical solution; hence numerical techniques are desirable to find the solution of such equations. 
New numerical methods which are comparatively better than the existing ones in terms of efficiency, 
accuracy, stability, convergence and computational cost are always needed. Approach: In this study, 
we developed and applied three methods-standard cubic spline collocation, perturbed cubic spline 
collocation and perturbed cubic spline collocation tau method with exponential fitting, for solving 
fourth order boundary value problems. A mathematical software MATLAB was used to solve the 
systems of equations obtained in the illustrative examples. Results: The results obtained, from 
numerical examples, show that the methods are efficient and accurate with perturbed cubic spline 
collocation tau method with exponential fitting been the most efficient and accurate method with little 
computational effort involved. Conclusion: These methods are preferable to some existing methods 
because of their simplicity, accuracy and less computational cost involved.  
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INTRODUCTION 

 
 Fourth order boundary value problems occur in a 
number of areas of applied mathematics among which 
are fluid mechanics, elasticity and quantum mechanics 
as well as science and engineering. Only small class of 
differential equations can be solved by analytical 
methods. Hence, several authors have investigated 
some numerical techniques for solving boundary value 
problems, among which include cubic spline method, 
Ritz method, finite difference method, multi-derivative 
method and finite element method; see for 
instance[3,6,8,10]. 
 The general fourth-order boundary value problem 
considered is of the form: 
 

1v

0

y (x) p(x)y (x) q(x)y (x) r(x)y (x)
           s(x)y(x) f (x),  x x xn

′′′ ′′ ′+ + +
+ = ≤ ≤

 (1) 

 
with the boundary conditions: 
 

1 0 1 o 1y y′δ + ξ = η   (2) 
 

2 0 2 0 2 0 2 o 2y y y y′′′ ′′ ′α + β + δ + ξ = η  (3) 
 

3 n 3 n 3y y′δ + ξ = η   (4) 
 

4 n 4 n 4 n 4 n 4y y y y′′′ ′′ ′α + β + δ + ξ = η  (5) 
 
where: 
p, q, r, s and f are smooth functions of x  
δi, αi, βi and ξ are known constants 
 
Derivation of governing equations: The cubic spline 
linear equation is given as follows: 
 

i 1 i
i i 1

i 1 i

S (x) M M
h h

(x x ) (x x)= + ,

                        x x x
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−

′′ − −
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i 1 i 1 i i i i 1where, M =S (x ),   M =S (x )  and h x x− − −′′ ′′ = − . 

 We rewrite (6) as: 
 

1 2S (x) = I I′′ +   (7) 
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Where: 

    i 1

1 i
(x x )I Mh

−−=   (8) 

 
And 
 

    i
2 i 1

(x x)I Mh −
−=   (9) 

 
 Integrating Eq. 8 and 9 with respect to x, we obtain 
respectively: 
 

2(x x )i 1I M c11 i i2h
− −= +  

 
And 

2
i

21 i 1 i

(x x)
I M d2h −

−= +  

 
 Thus, (7) becomes: 
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 Likewise, we have: 
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where, ci and di are constants of integration to be 
determined. Thus collocating (11) at point x = xi-1 and x 
= xi respectively, we obtain: 
 

   i 1

3

i 1 i
1 hS(x ) hch 6 −
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− � �
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= Μ +  (12) 

 
And  
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i ii
1 hS(x ) M hdh 6

� �
� �
� �
� �

= +  (13) 

 
 Hence, making use of the above definitions, we can 
conveniently rewrite Eq. 12 and 13 as follows: 
 
    i 1 i i

2
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� �

=  (14) 
 
And 
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i i i
1 hd y Mh 6

� �
� �
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� �

= −  (15) 

 Thus substituting (14) and (15) in (11), we obtain: 
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 (16)  

 
 Hence, differentiating (16), we obtain: 
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 (17)  

 
 Since S”(x) is continuous, collocating (17) at point 
x = xi-1 and moving in clockwise direction, we obtain: 
 

 i i i 1 i i 1
hh 1S'(x ) M M (y y ),3 6 h

                                             i 1,2,...,N
− −− = + + −

=
 (18) 

 
 Again collocating Eq. (17) at point x = xi-1 and 
moving in anti-clockwise direction, we obtain: 
 

 i i i 1 i 1 i
h h 1S'(x ) M M (y y ),3 6 h

                                       i 0,1,2,....N 1

+ +
−+ = − + −

= −
 (19) 

 
 Thus, the comparison of  (18) and (19) leads to the 
recurrence relation: 
 

 i 1 i i 1 i 1 i i 12
6M 4M M (y 2y y ),h

                                   i 1,2,3,..,N 1
− − − ++ + = − +

= −
 (20) 

 
 We can also work with S’(x) = mi, the Spline first 
derivatives. Therefore, combining (18) and (19) in 
appropriate manner, we obtain the recurrence relation 
for the mi: 
 

   i 1 i i 1 i 1 i 1
3m 4m m (y yh− + + −+ + = −  (21) 

 
Differentiating (17), we obtain: 
 

  i 1 i 1i i
1S (x) (x x )M (x x)Mh − −

� �
� �� �

′′ = − + −  (22) 

 
Collocating (22) at point x = xi-1, we have: 
 
    i iS (x ) M′′ =  (23) 
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 Again by differentiating (22) once more, 
collocating at point x = xi-1 and moving in clockwise 
direction, we obtain: 
 

   i i i 1
1S (x ) (M M )h −′′′ − = −  (24) 

 
 Similarly, for anti-clockwise direction, we obtain: 
 

   i i 1 i
1S (x ) (M M )h +′′′ + = −  (25) 

 
MATERIALS AND METHODS 

 
The descriptions of the three methods considered in 
this study are given as follows: 
 
Standard Spline collocation Tau method: Here, we 
collocate (1) at the point x = xi-1 and then substitute 
(17)-(19) back into (1). After re-arranging and on 
carrying out all necessary simplifications, we obtain: 
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 (26) 

 

where, i
(b a)ix a  , i 1,2, ....N-1.N

−= + =   

 In general, equation (26) together with the four 
boundary conditions given by  (2)-(5) and the 
recurrence relation given by (20), constitute 2(N+1) 
algebraic equations in 2(N+1) unknowns. These 2(N+1) 
algebraic equations can be put in matrix form as Ax = 
b, where, A is the coefficient matrix, b is the column 
vector and x is the column vector of the unknowns, 
which are then solved using a mathematical software-
MATLAB to obtain the unknown constants yi and Mi (i 
= 0,1,…, N).  
 
Perturbed Spline collocation Tau method: This 
method is aimed at improving the accuracy and 
efficiency of the standard collocation Tau method. Eq. 
1 is slightly perturbed to give: 
 

 
( ) ( ) ( ) ( ) ( )

( ) ( )N o n

y x p x y x (x)y (x) r x y x
 s(x)y(x) f x H x , x x x

′′′′ ′′′ ′′ ′+ + +
+ = + ≤ ≤

 (27) 

 
where, ( ) ( ) ( )N N 2 N 1H x T T' x x−= τ τ+  and TN(x) is the 

Chebyshev polynomial of first kind of degree N defined 
by TN(x) = cos[Ncos−1x], -1 ≤ x ≤ 1. 

 Following the same procedure under standard 
spline collocation Tau method, we obtain: 
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 (28) 

 

where, i
(b a)ix a  ,   i 1,2, ....N 1N 2

−= + = ++   

 In general, equation (28) together with the four 
boundary conditions given by (2) –(5) and (20) 
constitute 2(N+3) equations in 2(N+4) unknowns. 
Therefore in order to have a complete system, we 
impose the end conditions: 
 
     M0 = 0 (29) 
 
     Mn = 0 (30) 
 
 The resulting 2(N+3) algebraic equations in 
2(N+3) unknowns are then solved to obtain the 
unknown constants   yi(i = 0,1,…N+2)  
Mi (i = 1,2,…N+1), τ1 and τ2.  
Perturbed Spline Collocation Tau method with 
exponential fitting: Eq. 1 is slightly perturbed to give: 
 

  
( ) ( ) ( ) ( ) ( )

( ) ( )N

y x p x y x (x)y (x) r x y x
     s(x)y(x) f x F x

′′′′ ′′′ ′′ ′+ + +
+ = +

 (31) 

 
 where, FN(x) = τ,TN(x). 
 We now have the boundary conditions as: 
 
   0

1 0 1 0 2 1
xy y e′δ + ξ + τ = η  (32) 

 
 n

2 0 2 0 2 0 2 0 2 2
xy y y y e′′′ ′′ ′α + β + δ + ξ + τ = η  (33) 

 
   n

3 n 3 n 2 3
xy y e′δ + ξ + τ = η  (34) 

 
 n

4 n 4 n 4 n 2 n 2 4
xy y y y e′′′ ′′ ′α + β + δ + ξ + τ = η  (35) 

 
 Following the same procedure under perturbed 
spline collocation Tau method, we obtain 
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i 1 i i 1 n i

p(x )1 1 h 5 2q(x ) r(x ) M q(x ) M
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where, i
(b a)ix a  , i 1,2, ....N 1N 2

−= + = ++ .  

 In general, Eq. 36 together with the four boundary 
conditions given by Eq. 32-35 and 20 constitute 2(N+3) 
Equations in 2(N+4) unknowns. Therefore in order to 
have a complete system, we impose the end conditions 
given by Eq. 29 and 30. The resulting 2(N+3) algebraic 
equations in 2(N+3) unknowns are then solved to 
obtain the unknown constants where, yi(i = 
0,1,…,N+2), Mi(i = 0,1,…,N+1).  
 

RESULTS 
 
 Carrying out all the analysis involve for each of the 
methods discussed above on some specific problems 
with selected uniform values of N(4, 6, 8 and 10), we 
show the results of the problems considered. 
 We define our error estimate in all cases as: 
 

Error =  Y(x) y(x)Maxx x xn0
−

< <
 

 
Example 1: 
 

iv     Solve      y (x) y(x) 0,   
                   y(0) 1,    y (0) 1

                   y (1) y(1) 0,  y (1) y(1) 0

− =
′= =

′ ′′− = − =
 

 
 The analytical solution is: 
 

 y(x) exp(x)=  
 
Example 2: 
 

2Solve  y (x) 3601y (x) 3600y(x) 1 1800x
            y(0) 1.0;  y(1) 1.5 sinh(1)
            y (0) 1.0;  y (1) 1.0 cosh(1)
The analytical solution is 

21           y(x) 1 x sin h(x)2

′′′′ ′′− + = − +
= = +

′ ′= = +

= + +

 

 
DISCUSSION 

 
 Tables 1 and 2 show the numerical solutions in 
terms of the maximum errors obtained for the problems 
considered. It is observed that the perturbed collocation 
Tau method with exponential fitting converges faster 
than the standard and the perturbed collocation Tau 
methods. 
 The perturbed collocation Tau method and 
exponential fitting collocation Tau method involve 
large matrix system of equations of the same degree. It  

Table 1: Max error for example 1 
 Standard Perturbed Exponential 
Method/ collocation collocation fitting 
N Tau method Tau method Tau method 
4 5.363021E-05 6.521463E-07 4.204866E-08 
6 1.202621E-05 2.085333E-07 1.287704E-09 
8 4.049993E-06 7.083514E-08 4.055816E-10 
10 1.721575E-06 2.213888E-08 3.780911E-10 

 
Table 2: Max error for example 2 
 Standard Perturbed Exponential 
Method/ collocation collocation fitting 
N Tau method Tau method Tau method 
4 2.518238E-07 3.185140E-08 1.825102E-09 
6 7.257185E-08 2.861825E-10 2.868296E-11 
8 2.666267E-08 3.815309E-10 1.024003E-12 
10 1.175959E-08 1.001205E-11 1.005006E-13 

 
is interesting to compare the accuracy and the 
computational cost involved. In Table 1 for example, 
for the case N = 4 the two methods involve 14×14 
systems of algebraic equations with maximum errors of 
6.521463E-07 and 4.204866E-08 respectively, while 
the standard collocation Tau method involves 10×10 
systems of algebraic equations with maximum error of 
5.363021E-05. Exponentially fitting collocation Tau 
method converges faster in all cases as the value of N 
increases at no extra computational cost when 
compared with the other two methods.  
 We observed that the perturbed collocation Tau 
method and exponential fitting collocation Tau method 
described in this paper are more efficient and accurate 
than parameter expansion method proposed by Taiwo 
in[8] and quintic and sextic Spline methods proposed by 
Usmani in[11]. 
 

CONCLUSION 
 
 Standard cubic spline collocation tau method, 
perturbed cubic spline collocation tau method and 
exponential fitting collocation tau method have been 
showed for solving fourth order boundary value 
problem. Numerical examples have also been used to 
demonstrate the efficiency and accuracy of the 
methods.  
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