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Abstract: Problem statement: The problem of finding the minimum value of objective function, 
when we know only some values of it, is needed in more practical fields. Quadratic interpolation 
algorithms are the famous tools deal with this kind of these problems. These algorithms interested with 
the polynomial space in which the objective function is approximated. Approach: In this study we 
approximated the objective function by a one dimensional quadratic polynomial. This approach saved 
the time and the effort to get the best point at which the objective is minimized. Results: The quadratic 
polynomial in each one of the steps of the proposed algorithm, accelerate the convergent to the best 
value of the objective function without taking into account all points of the interpolation set. 
Conclusion: Any n-dimensional problem of finding a minimal value of a function, given by some 
values, can be converted to one dimensional problem easier in deal. 
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INTRODUCTION 

 
 Many optimization problems can be occur in 
practice, for example, in most of labs, one obtains data 
for certain phenomena and wants know that the point at 
which this phenomena is minimized. Also the problems 
which they arise in economic, social fields, engineering 
field and many others fields.  
 Many researchers had been construct several useful 
algorithms for dealing with this kind of problems. 
These algorithms, are classified as, algorithms use finite 
difference approximations of the objective functions 
derivatives[2-4], the second class is pattern search 
methods which are based on the exploration of the 
variables’ space using a well specified geometric 
pattern, typically a simplex[8]. Finally, algorithms are 
based on the progressive building and updating of a 
model of the objective function[9,10]. 
 There is also a related class of “global modeling 
methods” that use design of interpolation models[1,6,7]. 
 In the following discussion we  present analysis on 
which the proposed algorithm for finding the minimal 
point of tabulated function is based. 
 

RESULTS AND DISCUSSION 
 
 Let I be denote to the set of points nx X R∈ ⊂  at 
which the function nf : X R R⊂ →  is given in the Table 
1. 

Table: 1 Initial interpolated set 
x x0 x1 …….. xj 
f(x) f(x0) f(x1) ……. f(xj) 

  
 Choose kx I∈  such that ( ) ( )kf x f x≤ , for each 

x I∈  and consider real quadratic convex function ( )φ α  
such that 
 

( ) ( )pxf k α+=αϕ , 
  
Where: 
 

np B R∈ ⊂ , 
 
B is the trust region with radius �, i.e, 
 

{ }∆≤−∈= kn xx:RxB
, 

 
 p is chosen such that ( ) ( )kf p f x≥  and ( ) ( )f p f x<  

for each kx I, x x∈ ≠ . 
 The quadratic convex function ( )φ α is constructed 
by interpolating the points 0 1 2, , Rα α α ∈  such that the 
function f is given, at least, at two of α,s. If f is known 
for each 1 2 3, ,α α α , then we can easy to construct ( )φ α . 
If f is known for only two points of α1, α 2, α 3 then we 
can assume that the value of f at third point is z which 
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is calculated from the knowledge of differentiability of 
φ . If f is known only at one point of α, s, then we can 
consider one of the other two values (say ( )2αϕ ) is less 
than ( )1φ α  and ( )3φ α  
 
Main results: The basic idea of this study is based on 
constructing a one dimensional real valued quadratic 
function ( )φ α  by interpolating. The function ( )φ α  is 

constructed such that ( ) ( )kf x pφ α = + α  where kx  is the 

point in the set I at which the least value of f and the 
point p is chosen as indicated in above. 
 The following results show that the direction p is 
the descent direction and how we can build our 
algorithm. 
Proposition 1: If α  is a minimal solution of the 
problem�.

R

( )min
α∈

ϕ α and p I∈  is chosen as indicated 

before. Then 
 
  ( ) ( )k 1 kf x f x+ ≤   

 
Where k 1 kx x p,+ = + α  i.e., p is the descent direction . 
  
Proof: Since α  is a minimal solution of the problem 
  min ϕ(α) 
  α∈R  
So 
 

 ( ) ( ) R     , ∈∀≤ ααϕαϕ . 
 
Thus 
 

 ( ) ( )k kf x P f x P  ,    R+ α ≤ + α ∀α∈ . 

 
Hence  
 

 ( ) ( )     xfPxf kk ≤+ α  
 
 But ( ) ( )kf x f x≤  for each x∈Ι, therefore the 

direction p is the decreasing direction of f. 
 
Proposition 2: If k 1 k kx x p x ,+ = + α =  then there is no 
other point k ˆx̂ x p I= + α ∈  such that: 
 

k kˆf (x p) f (x )+ α ≤ . 

Proof: Since k 1 kx x+ = , so 

( )
R

arg min  
α∈

α = φ α . ( ) ( )k k f x pφ α = + α . Also on the 

direction pk there is no x̂  such that  
 

( ) ( )kk pxfx̂f α+<  because if there is such as that point, 

then there is α̂  such that 
kk pˆxx̂ α+= and 

 

( ) ( )kkkk pxfpˆxf α+<α+  i.e., ( ) ( )ˆφ α < φ α  which is a 

contradiction. 
 Now, let p̂  be another descent direction, p̂  in the 
set I such that 
 

( ) ( ) ( )k kˆf p f p f x> > . 
 
 Assume k ˆ ˆx̂ x p= + α  is such that 

( ) ( )k k kˆ ˆˆf x f (x p) f x p= + α < + α . 

 
 By constructing a function ( )Ψ α  such that 

( ) ( )p̂xf k α+=αΨ  we get 
 

 ( ) ( ) ( ) ( ) ( )
2

k 2 k k kˆ ˆ ˆ ˆ0 p f x p f x p f x p
2

αΨ α = Ψ + α ∇ + ∇ < + α   

 
Since p̂ is the descent direction and ( )Ψ α  is convex,  
 

 ( ) ( ) ( )k k kf x 0 f x p= Ψ < + α  

 
Which is a contradiction. 
 
Theorem: The sequence generated by  
 
 k 1 k kx x p+ = + α  
 
is convergent, where ( )

R
arg min  

α∈
α = φ α and Pk is in the 

trust region Bk 
 
Proof:  Since the trust region Bk is defined as 
 

 n k
k

1
B x R : x x

k
� �= ∈ − ≤ ∆� �
� �

. 

 
 This set is closed and bounded. Furthermore 
 

 k
kk1k Bpxx ∈+=+ α  
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Also, 
 
 k 2 k 1 k 1

k 1
ˆx x p B+ + +

+= + α ∈ , 
 
Where k 1B +  is also closed and  ϕ≠∩+ k1k BB  . 
 By repeating this process, we find the sequence 

{ }kx  is contained
m

k k
k 1

B B
=

⊃ ∩ . Since Bk is closed, it 

contains the limit point of{ }kx , thus { }kx  is 

convergent. 
 
The Algorithm: From the previous discussion we can 
seek the following algorithm: 
 
Initial step: 
0.1: Set k=1 
0.2: Choose 1x I∈  such that ( ) ( )1f x f x≤  for each x I∈  
0.3: Let � be the radius of the trust region B1, 
 

 { }∆≤−∈= 1
n

1 xx:RxB  
 
0.4: Choose 

1 1p B∈  such that 
1

p I∈  and 1 1f (p ) f (x )≥ ,  

 
 ( ) ( )

1 1f p f x , x I, x x< ∀ ∈ ≠  

 

 0.5: Set ( ) ( ) R,pxf 1 ∈+= αααϕ  
 
The first Step: 
 1.1: Choose 1 2 3, , Rα α α ∈  such that  
 

 ( ) ( )1111 pxf ααϕ +=  
 

 ( ) ( )1212 pxf ααϕ +=    
 

( ) ( )1313 pxf ααϕ += . 
 
1.2: If ,  I    px  ,px  ,px 131  121  111 ∈+++ ααα then 
interpolate the points 1 2 3, ,α α α  to obtain a quadratic 

function ( )φ α . 

1.3: Determine 
( )   minarg

R
αϕα

α∈
=

 and go to step 2. 
 
1.4: If one of the points 1 i 1  x p I,i 1,2,3+ α ∉ =  then put it 
equals z, 
 
 i.e., ( ) ( )j 1 j 1f x p zφ α = + α = . 

1.5: Determine z that makes ( ) 00 =′ϕ  and hence 
substitute z in φ  to obtain ( )φ α  and go to step 1-2. 
  
1.6: If two of the points 

( )Ipx  ,  psay  x  Ipx 1m11l1  1i1 ∉++∉+ ααα ,  then choose 
l m,α α  such that 

 ( ) ( )l i ,φ α < φ α  ( ) ( ) ( ) ( ) or        ,  imml αϕ=αϕαϕ<αϕ  
 

( ) ( ) ( ) ( ) ( )m l i m i  ,       φ α <φ α <φ α φ α =φ α   
 
and go to step 1.2. 
 
The second step : 
2.1: If no improvement in value of f, then opposite the 
direction of   P 1to obtain ( ) ( )1 1f x pφ α = − α  and go to 

step 1. Otherwise go to step 3. 
 
2.2: If 1 1  x p− α does not improve the value of f, then let  
 
 1 1 1( ) f(x (p x ))ϕ α = +α −  
 
 Such that ( )1 1 1p x B− ∈  and go to step 1. 
Otherwise go to step 3. 
 
 2.3: If ( )1 1 1p x B− ∉  , then extend the radius of B1 to 

contain 1 1p x−  and go to step 1. 
 
The third step: 
 3.1: Inter 

( )( )1
1 1 1 1 1 1 1 1x x p     or    x p     or    x p x= + α − α + α −  in the 

set I and reduce the radius of the trust region to become 
 

 �
�
�

�
�
� ∆≤−∈=

2
1

xx:RxB 1
1

n
2

 . 
 
 Hence go to step 0. 
 

 3.2: If 
1
1

2
1 xx = , then stop and the minimal point is in 

the ball ( )2
1B x  with radius 

2
∆  . Otherwise go to step 0. 

 
Example: Determine the minimal point of the function 

f(x) given by the Table 2.  
 
Table 2: Initial set values of f 
x (-2, 0) (1, 1) (0, 1) (1, 0) (0, 2)  (1, 2) 
f(x) 4 2 1 1 4 5 
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Choose ( )1x 0,1=  and 2∆ =  , then  
 

( ) ( ) ( ){ }1B x, y : x,y 0,1 2= − ≤  

 
Choose ( )1p 1, 0=  

Let:   
 

( ) ( ) ( )[ ] ( )1,f0,11,0f α=α+=αϕ  . 
 
Take 1 2 30, 1, 1α = α = α = − , then 

( ) ( ) ( ) z   set    .  2   ,   1 321 === αϕαϕαϕ   
 
By using Maple Package we can obtain 
 

 ( ) 12 += ααϕ and 
( )   minarg0

R
αϕ==α

∈α . 
 
Thus ( ) ( )0

f ,1 f 0, 1 1
α=

α = = , i.e., no improvement in the 
value of f, then consider the opposite direction 

( )p 1, 0− = −  

 
Therefore, 
 
 ( ) ( )f , 1φ α = −α  
 
Which by interpolating the points  
  

   :     1       2    3
j( )     :   1           2         z
α α α α

α
 

 
and by using Maple Package we get  
 

( ) 2 1φ α = α +  

 Which it has 0α =  as the minimal point and no 
improvement in the value of f. Therefore we will 
consider the direction 1 1p x− , such that 1 1 1p x B− ∈ . 
Since ( )1 1 1p x 1, 1 B− = − ∉ , so extend the radius of B1 to 
be �=3 . In this case we option  
 

( ) ( )f , 1φ α = α − α  . 
 

Since 1 0α =  implies ( )0, 1 I∈  , then choose 2

1
2

α =  and 

α3 = 1 with letting corresponding values of ϕ(α) as 0,1 
respectively. 
 By interpolating ϕ(α) we obtain 
 
 ( ) 24 4 1φ α = α − α +  

Which it has 1
2

α =  as the minimal point. Then inter the 

point 2 1 1
x ,

2 2
� �= 	 

� �

 in the set I with a corresponding 

value 1
0

2
� �φ =	 

� �

, i.e., the set I becomes 

 

 ( ) ( ) ( ) ( ) ( ) ( )1 1
x : 2, 0  1, 1    0, 1  ,  1, 0   0 , 2   1, 2

2 2
f(x) :    4         2          1        0          1          4          5

� �− 	 

� �

 

 
Reduce the trust region to become 
 

 
( ) ( )

�
�
�

�
�
�

=∆≤

�

�
	
�

�−=
2
3

2
1

2
1

,
2
1

y,x:y,xB 2
 

 

And choose 2 2 2 2

1 1
p B , p I , , p (1, 0)

2 2
� �∈ ∈ ∪ =	 

� �

. By 

using Maple we get ( ) 1 1
f ,

2 2
� �φ α = α +	 

� �

 , ( ) 2φ α = α , 

which has the minimal point α=0. 
 Now no improvement, then consider the opposite 
direction –p = (-1,0) for which  
 

( ) 1 1
f ,

2 2
� �φ α = − α	 

� �

 

 
and for the points 
 

 
: 1 0 1

( ) : 1 0 1
α −
ϕ α  

 
the function 2( )ϕ α = α  and also no improvement. 

Hence consider the direction 2 2

1 1
p x ,

2 2
−� �− = 	 


� �
. By 

using Maple we get ( ) 2φ α = α  and z = 1 and no 

improvement in the consider three direction, then stop 

and the minimal point is in the ball 1 1
B ,

2 2
� �
	 

� �

 with 

radius 3
2

. 

CONCLUSION 
 
 The presented algorithm in this paper enables us to 
find the point at which the value of objective function, 
in optimization, problem is the best value when some 
values are known at some points. The idea of this 
algorithm is interpolating the points to one dimensional 
quadratic function from which we can obtain the 
desired point. 
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