Journal of Mathematics and Statistics 3 (3): 134-141, 2007
ISSN 1549-3644
© 2007 Science Publications
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Abstract: We give sufficient and necessary conditions for the existence of the maximum likelihood
estimate in a class of multivariate regression models for correlated Bernoulli random variables. The
models use the concept of threshold crossing technique of an underlying multivariate latent variable
with univariate components formulated as a linear regression model. However, in place of their
Gaussian assumptions, any specified distribution with a strictly increasing cumulative distribution
function is allowed for error terms. A well known member of this class of models is the multivariate
probit model. We show that our results are a generalization of the concepts of separation and overlap
of Albert and Anderson for the study of the existence of maximum likelihood estimate in generalized

linear models. Implications of our findings are illustrated through some hypothetical examples
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INTRODUCTION

The question of the existence of the maximum
likelihood estimate (MLE) for correlated binary
regression models arises primarily because of the
iterative nature of the estimation process. Typi-
cally, when the score equations do not have closed
form solutions, resources and time can be saved if
a prior study on the existence of a finite solution
is undertaken. Without a proper precaution. es-
timates from a Newton-Raphson or any other op-
timization algorithm output may look fine even
though, analytically, solutions to the equations
are infinite. Although the identifiability issues
are common to all models for which parameters
are obtained using numerical techniques, the ex-
tent of the difficulties increase with the complex-
ity and the high dimensionality of the models
under investigation. A good example of a high
dimensional model is the multivariate regression
models for correlated Bernoulli random variables.
This family of models, besides location parame-
ters which account for the effects the regressors
hawve on univariate probabilities, have association
parameters which correct these probabilities for
potential correlation among the Bernoulli ran-
dom variables.

Multivariate regression models for correlated
Bernoulli random wvariables are widely used in al-
most all areas of research (see for example the
work of Muthénl®l; Muthén and Muthénl®! imple-

mented in the statistical software package Mplus;
and Todem, Kim and Lesaffre[!? il

A well known member of this class of models
is the multivariate probit regression model rou-
tinely used in medical research. General areas of
application include situations where realizations
of multiple binary random variables are recorded
on the same experimental unit. For instance, in
medical decision making, one is often confronted
with the problem that patients can suffer from
more than one disease. Tt is then important not
only to know the risk factors for each disease, but
also to have an individual prediction rule to clas-
sify patients in the different possible combination
of diseases. The same is true in clinical trials,
where the profile of a new drug is usually evalu-
ated tfrom the joint distribution of a response vec-
tor comprising information on efficacy and safety
parameters. Although separate models can be
fitted to each Bernoulli random wvariable, such an
approach can fail to borrow strength across the
correlated random wvariables. By exploiting the
correlation structure with a multivariate model,
efficiency and power could be greatly increased
(O’Brien').

Considerable attention has been given to the
existence and uniqueness of maximum likelihood
estimate (MLE) in univariate probit and logit

models [Silvapullc[m] : and Albert and Anderson!?!).

For univariate survival data, similar work has
been done for some special models such as the
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Weibull distribution tampered failure rate model
(see, for example, the work of Wang et al.[1]).
In the context of correlated responses, Demi-
denko and Massam!®l: and Birkes et all3] have
studied the conditions for the existence of MLE
in the class of variance component models. These
authors have shown that the MLE exists if and
only if the outcome wvector does not belong to
the space spanned by columns of the fixed ef-
fects and random effects. This approach was
limited to the identity link and assumes a nor-
mal response. From a Bayesian perspective, an
important piece of work is that of Sun et al.[H4]
who established a necessary and sufficient condi-
tion for the propriety of the posterior distribution
in hierarchical linear mixed effects models for a
collection of improper priors. Although most of
these previous work have focused on univariate
outcomes, a number of authors have also investi-
gated a family of multivariate models for corre-
lated binary /ordinal data such as the multi-group

logistic regression and the multivariate probit mod-

els (see, for example, Albert and Anderson'l; and
Lesaffre and Kaufmann[ﬁ]). Specifically, Lesaf-
fre and Kaufmann(® have studied the existence
and uniqueness of the MLE for the joint estima-
tion of the location parameters as well as the
polychoric correlation coefficient in a multivari-
ate probit model. Although the behavior of the
maximum likelihood estimators in this restricted
class of models for correlated data is well under-
stood, there seems to he a gap in the literature
for models that allow any family of link functions.
Specifically, no theoretical work on the joint es-
timation of the location and association param-
eters has bheen conducted for multivariate binary
regression models with link functions beyond the
probit.

This paper proposes a simple proot for the
existence and uniqueness conditions of the maxi-
mum likelihood estimate in regression models for
correlated Bernoulli data. Our proof relies on
the concept of data separation, which is funda-
mental to this research area. As described by
Lesaffre and Kaufmann[e'], our results are derived
in a stepwise fashion where association compo-
nent is first profiled out from the likelihood. The
joint MLE results are later derived using continu-
ity arguments of the profile likelihood and other
known functional analysis results. The model is

described in section 2; section 3 discusses exis-
tence results of the maximum likelihood estimate
and gives some implications of the results in a hy-
pothetical example..

MODEL UNDER INVESTIGATION

Consider a random vector Y = (¥i,Y2,--- ,Y,)

g = 2, recorded for each experimental unit, and
taking values in the product space @j_,{0,1},
where 0 refers to failure and 1 to success. In
addition, a non random design component g,
assumed to be a potential predictor of Y;, £ =
1,2,--- .4, is also recorded for each experimen-
tal unit & = 1,--- , N, where N is the number
of independent realizations of the random wvec-
tor Y. Multivariate regression models make ex-
plicit assumptions on the distribution of the vec-
tor Y. They are based on the threshold crossing
technique of a multivariate latent variable model
W = (W, Wa, .- ,W,). In turn, each univari-
ate component of this latent vector is modeled as
a linear regression model. However, in place of
their Gaussian assumptions, the error vectors are
allowed to have any specified strictly increasing
cumulative distribution function (cdf). Specifi-
cally, for an experimental unit £ = 1,2,--. | N,
and for a realized value 7 of the random wvari-
able Yy, we have the following model,

P(Yer = yor, 6= £y, L) =

P(ser(Wer —ag) < 0,8=11,-- ,£y), (1)
for any ordered series £; < fo < --- < {4 with
any dimension ¢’ such that 1 < ¢’ < g. The
quantities ag, £ =1,2,--- , g are threshold values
and sg, = (—1)¥*. In particular, if all events are
successes, we have, p(Yi.=1,--- .Y =1) =
plar < Wig, - ,a, < W) .

As stated above, each univariate random vari-
able Wy, £ =1,2,--- g, of the this latent model
is modeled as a linear regression. Specifically, we
assume that,

Wi, = :r:;f;c_ﬁf—l—EEk, £i=1,2,---,g: k=1,2,--- ,N,
(2)
where the random vector e, = (g1x,€25 .-+ , gk )

is the residual vector. We assume that the ran-
dom vector £ can take any a parametric dis-
tribution with a strictly increasing cdf, a zero
mean and a variance-covariance matrix with en-
tries cov(eer, gprr) = peer, £,8 =1,2,--- | g. Since
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the observed responses are dichotomized versions
of the latent responses, the probability distribu-
tion of the observed responses contains no in-
formation on the scale of the latent responses.
Therefore, the individual variances of the ran-
dom error terms, var(sg), £ = 1,2,--- . g, are
not estimable and therefore fixed to unity (To-
dem et ai.[lsl). The parameter 3, is the slope
parameter associated to the design matrix =y,
£=1,2,---,g. Without any loss of generality,
the threshold values ay,f = 1,2,---,g, are typ-
ically set to zero if intercept terms are included
in the latent regression models. If £ is gener-
ated from a multivariate normal distribution, the
model reduces to the classical multivariate probit
model.

An alternative to this class of parametric mod-
elz is the widely known generalized estimating
equations (GEE) model of Liang and Zeger(™],
which does not require a full specification of the
association among the univariate components of
Y. It provides consistent and asvmptotically nor-
mal estimates of the marginal covariate effects
even when the association structure is misspec-
ified. The GEE model has several advantages
over a fully parametric model in that it is com-
putationally tractable in applications where the
parametric approaches are computationally very
demanding, if not impaossible. Although the GEE
does not require a full specification of the data
distribution, this assumption is unavoidable if a
profile analysis 1s required.

The contribution of subject & to the likelihood
function is given by,

(3)

where yr = {y1x, Y2k, - - Ygk } is the observed vec-
tor, 3= (B1,---,3;) and p is a vector of dimen-
sion g(g — 1)/2 with entries being the polychoric
correlation coefficients pger, £ < £. The quantity
Uy, (.), is the distribution function of the ran-
dom vector (S1p814, -+, Sgpfgr) and eg. = ), Bp
is the expectation of the random variable Wy,
£=1,2,---,g. The matrix Hy is the correlation
matrix of the random vector (s1p€1k, -+ . Sgpgk)
with below diagonal entries sgpspppeer, £ < €. If
£ has a symmetric distribution, it is clear that,

(4)

P(Yr = uk) = Vg, (—S1r€1k. "+, —Sgkegk)

d
(S1k€1ks " - » SgkEgk) ~ (E1ks -~ 1 Egk)s

where “2” stands for equality in distribution.

MLE EXISTENCE AND UNIQUENESS
RESULTS

‘We now examine the conditions for the existence
and uniqueness of the MLE of parameters from
this marginal distribution. We first review the
concepts of data configuration that are funda-
mental in this area.

Brief review of data configuration

The concepts of separation and overlap for the re-
gression parameters have been central in the work
on the existence of MLE in the independence pro-
bit and logit models. Albert and Anderson(!! first
used these concepts to represent three separate
data configurations in a univariate logit model.
Lesaffre and Kaufmann/®l generalized these con-
cepts to establish existence conditions of the MLE
in a fixed effects multivariate probit model. Speck-
man et al.13] also extended these notions to study
necessary and sufficient conditions for the exis-
tence of the MLE for a wide class of discrete
(or multinomial) choice models. Basically, it is
known that some degree of overlap in the data is
necessary to guarantee the existence of MLE for
the location parameters. For example, in fitting
logistic models for quantal bioassay, there should
be an overlap in the doses that produces response
and no response. We extend these concepts to the
context of multivariate data for which we con-
sider the following arbitrary sets:

E»(f = {kaﬂfgk,k = 1, ._.1“\"}._. g 112._.- . g.
(5)
The set U, { = 1,2--- , g, has a complete sep-
aration, or the sample has a complete separation
with respect to the regression parameter, if there
is a vector 3y = 0 of RFP* such that,

uw' Bp < 0; for all u € U,. (6)

In other words, complete separation means that
it is possible to classify the outcomes using a sin-
gle rule. The set Uy, £ =1,2--- g, has a quasi-
complete separation if there is a vector 3y = 0 of
RPt such that,

' B < 0; for all u € U,. (7)
Finally, 4y, £ =1,2-.- | g, is overlapped if for any
vector 3y =% 0 of RP¢, we have,

u' By > 0; for some u € U,.

(8)
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Existence and unigqueness results for fixed
p

‘We now state in the following theorem, the condi-
tions for the existence and uniqueness of the MLE
for the location parameters 3,, £ = 1,---,g
when the association component p is held fixed.

Theorem 1 We assume that the association com-

ponent represented by p with |peer| # 1,0,0(0 <
£y =1,2,--- g, is fired. The MLE of 5 exrists
and is unigque if and only if allly , £ =1,2,--- , g
are overlapped.

To establish the proof of this theorem, we
first define some key concepts in the theory of
convex sets and review some known results that
have been beautifully summarized by Speckman
et all3l. A subset C of R? is a cone, if for all
points w € C and A = 0, we have Au € C. A cone
C C RP, is called a convex cone if it is closed
under addltloll ie. for all {wy, - ,u,} C C,
the vector >, u; € C. Elements of the form
Z% 1 Aiu; where {ug,--- ,u,} C Cand {Aq,--

Lemma 1 The following conditions are equiva-
lent.
(a) Up, £ = 1,2, --- g, are all overlapped.
(b} The conical hull of Uy is RPe, £ =1,2,--- g
(e} Conditions C1 and C2 hold.

Proof of Lemma 1

The proof of this theorem is given by Speck-
man et al.'3 in the context of multinomial choice
models. We will show that the three conditions
are equivalent for the first random wvariable Y3
and the corresponding conical set I{;. Similar
results can be established for the other random
variables Yo, --- Y.
(a) = (b) Aseume that (a) is true but suppose
that (b) is false, i.e. Hull(lfy) ¥ RPt. Then
there is a nonzero 8} € Hull(l{1)*, the dual cone
of Hull(l4y), defined as,

Hull(Uy)" = {1 :u' By < 0for all u € Uy }.

2k
is a set of positive real 11u1nbers are conical com- Since u'3] < 0 for all u € U, the quasi-complete

binations. The conical hull of (’_ which we denote
by Hull(C), is the smallest cone containing all
convex combinations of points in C. It can easily
be shown that the conical hull of a set C is given
by,

—{Z)\gug weCand Ay >0,i =1,

i=1

Hull(C

We now introduce a quasi-norm function on
RP associated with a set C when its conical hull
18 the p-dimensional space RP. For any subset C

of R? and any 3 € R¥ define,

18]le = max(u'B). (9)

This guasi-norm clearly satisfies the nsual tri-
angular inequality, that is, for 3,3, € R?, |7 +
Belle < 18)le + | B4llc. However, for this function
to be a norm, we need the following conditions
to hold as well,

C1. |Bllc =2 0 forall 3eRF
C2. [Zllc =0 if and only if 3=0
'3, laBllc =] ||B]lc for all a < R.

‘We should note that for a > 0, the condition C'3
is always satisfied. Now we establish a connection
between this quasi-norm and the data configura-
tion in the following lemma.

<L ik

separation of I{; with respect to the first outcome
then follows. This therefore contradicts the con-
dition in (a) which assumes that i4; is overlapped.

(b) = (c) Assume that Hull({{;) = RPt. Hence,
for all 3; € R¥1, we can then find a sequence of
parameters A; > 0 and a sequence of elements
w; € Uy, j=1,---i, such that 3; = Zj‘:l Ajuj.
Therefore we get,

0< 818 = NuiB <D NlIBalls = [1Ballees D As-
=1 =1 i=1
(10)
Hence, to show that ||51 |z, = 0, suppose 6’1 #0
but ||31||u1 < 0. Sinceall A; >0,5=1,---,4,
the right hand side of (10) is strictly negatlve
and thus leads to {3 < 0, which is impossi-
ble. Therefore condition C1 holds. Similarly, if
|51llesy, = O then 5151 = 0 by (10). Therefore
#1=0 and condition C2 holds. It iz also easy to
show that if 31 = 0, then | 51|z, = 0.

(c) = (a) If conditions C1 and C2 hold, therefore
for any nonzero 3; € R, we get

_ ’
151 eny = max(u’f1) > 0.
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Thus, for any nonzero 31 € RF! there exists a
u € Uy such that w'(3; > 0, which establishes
that {; 1s overlapped.

We will use the results of this lemma to estab-
lish a connection between the quasi-norm defined
earlier and the Euclidean norm under some con-
ditions. This is presented in the following lemma.

Lemma 2 If any of the conditions stated in Lemm

1 holds, then there are constants Cy > 0 such
that,

Coll Bl < 118lu, for all B € RPe£=1,2,.

where ||3|| = /77 is the Euclidean norm of 3.
The connection between the two norms i1s made
to define compact sets on RP¢ which are eas-
ily constructed using spheres with the Euclidean
norm.

Proof of Lemma 2

We also present the proof for the first ran-
dom variable Y7 and its corresponding space U
as that of the other random variables can be sim-
ilarly derived. The proof, which we include here
for completeness, is essentially the same as that
of equivalence of norms in a finite-dimensional
space. Suppose that the conclusion of the lemma
does not hold. We can then find a sequence 3y,
such that

||.Bln||bf1
[|B1n ||

Since condition C3 holds for positive a, we get

1 1B
Iz X Bunlles = Tz

of generality we assume |51, || = 1 for all n. The
unit sphere in R¥P! is compact, so for any 5i,
there is a convergent subsequence f3i,; — [5;
with [|51]] = Since the quasi-norm |.||y, is
continuous, we get ||Fin;lle, — |51t In ad-
dition, since [|Bin;lly, — 0 as a subsequence
of 1, we get from the uniqueness of the limits
that ||31]|e, = O for some nonzero 31, contradict-
ing condition C2 of Lemma 1.

— 0 as n — oc.

. Hence without a loss

Proof of Theorem 1

Necessity: To show this, we assume that the
MLE is finite and then we attempt to show that
all Up, £ =1,2, -, g are each overlapped. First,
let us assume for example that there exists at
least one of the sets, say {1, which does not have

an overlap. Therefore for this set, we have quasi-
complete (which includes complete) separation
and there exists a nonzero (31, such that,

81671, P < 0 for all k.

(i) If L4y is of full rank, therefore there exists k*
such that, sy« rlk,‘ F1. < 0. Hence, for any finite
A, the profile likelihood function, L(3 | po)

Hk 1 P(Ye = yi) at fixed p = py, is respectively
given and bounded as follows,

N
LB | po) = [ ¥n, (—sexztnBe.€=1,2---,g)
k=1
N
< H Vi (—s1k@ie (B + Bre ) —serzinBe. £ = 2)
k=1

= L(ﬁl +_J31+_~.32:g | PO):

where 35, is the collection of all vectors 3, £ =
2,3, ,g. The strict inequality holds because of
the strict inequality in the quasi-complete separa-
tion equation for k" and because Wy, (.) is strictly
increasing in its coordinates. Thus no finite 3
can maximize the profiled likelihood L(31, 32,4 |
pa) for all 3.

(ii) If the equality in the quasi-complete separa-
tion inequality holds for all k, therefore 4] is not
of full rank and the likelihood function is given
by,

L(3 | po) L(B1 + B1es Pag | po)

L(B1 + vB1x,P2:9 | po) V7 €R.

By taking ~ large enough, this finding contradicts
the assumption that the MLE is finite.
Sufficiency: We assume that allify, ¢ = 1,2,

are each overlappecl and we need to show that
the MLE of 3 is finite. If the likelihood func-
tion L(3 | po) = 0, the existence of the MLE for
3 is obvious. Now assume that L(3 | pa) £ 0.
The likelihood function for any finite vector 3, is
bounded as follows,

L(3 ] po) ,9)

where the inequality is due to the fact that ¥y, (.)
is hounded by 1. We consider the quantity func-
tion ming Uy, (.). If the distribution of = is
symmetrie, the cdf Uy, (.) does not depend on
the sign of the product sese, £ # £, according
to (4). Therefore, min, ¥y, (.) = U,(.), where
W,,(.) is the cdf of s,.. Now assume that the

< minWy, (—sexzonBe, £ =1,2,-- -

PO
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distribution of 4 is not symmetric. The mag-
nitude of Wy, (.) as a function of index k, then
depends on the sign of quantity sgsp relative
to that of pogpr. Moreover, the function ¥y, (.) is
continuous on the set & = {sp.spp, £ # {1k =
1,2-.. N} which is closed and bounded, so com-
pact due to the fact that |sgpsei| = 1, for all £ £
¢’. The function Wy, (.), therefore, has a maxi-
mum value on & which we denote by W, ..(.) =
maxy (U, (.)). The function ming ¥y, (.) is then
bounded by ¥, 4. (.). We also note that the max-
imum function W¥,,,.(.) is a strictly monotone
function due to the fact that Wy, (.) is strictly
monotone function and indices k& belong to a fi-
nite set. An upper bound of the likelihood func-
tion is then given by,

LB 1po) < W (min(—smaimfe),£>1) (11)

where the function W(.) is defined as,

(.
M_):{ ()

U, pae () if otherwise.
Furthermore, since,

it g5 is symmetric

min { —seery, S} = —max {spwy Ge} = — | Bellece
for £=1,2,---, g, we then hawve,
L(-Slpﬂ) < g(_HBEHME"g:]"g‘ -g)

From the assumption of the theorem and using
results from Lemma 1, there exist constants Cy >
0, £=1,2,---,g, such that,

L(B|po) <=

2(_01'”81'”!8 = 152:' o sg) (12)

Since L{3 | po) is not trivial, there exists j3,
such that L(B. | po) > 0. The quantity on the
right of (12) is bounded by 0 and 1 and takes
values throughout this range, we can then find
g constants Dy, Do, --- and D, such that for all
|Bell = De, €=1,2,---, g, we have,

L(B|po) < W(-CyDp,f=1,2,---,g)

< L(B" | po).
Therefore we get,

sup
BreRPE f=1,... g

L(3 | po)= sup

= L(3 | po).
1Bl <Dgot=1,--- g

The function L(5 | po) is continuous in § and
the spheres |G¢|| < Dy,f = 1,2,--- g, are all

bounded and closed (compact), the maximum
then exists and any MLE is finite.

Since the distribution function of =4 is strictly
log-concave on RY, then strict log-concavity of
the probability function Wp, (.) applies based on
Prékopal!’l | Thus uniqueness results from The-
orem 1 immediately follow.

MLE existence results for joint estimation
of 7 and p

When we let both the location parameter vector
3 and the polychoric correlation coefficient vector
g vary, things become more complicated. It can
easily be shown that, the probability Wy, (.) is
not strictly log concave as a function of the vector
@, which comprises unique elements of the matrix
Hj, (see, for example, Lesaffre and Ka,ufma,nn[s]).
We therefore state below a partial result pertain-
ing to the existence theorem for a joint maximum
likelihood estimation of  and p.

Theorem 2 If the estimated vector of polychoric
correlation coefficient is not on the boundary af
its parameter space, i.e. |pger| = 1, for all 1" < £,
then the joint MLE of 3 and p exists if allldp, £ =
1,2,--- , g, are overlapped.

Proof of Theorem 2

Let L(3, p) be the likelihood function for the
location parameter vector 3 and association vec-
tor p. Before we proceed with the proof of the
theorem, let us first investigate the behavior of
the profile likelihood when /3 is held fixed at its
MLE g(,o) for fixed p. We denote the corre-
sponding profile likelihood of p as L(p | g(p)} —
supg L(3, p). The set N = {p = (p)eer : |peer| <
1,/ # {'} is compact and moreover the profile
likelihood function supg L(/3, p) is continuous in
p € N. Hence, the existence of MLE of p from
the profile likelihood then follows. For the joint
estimation, we use a standard continuity argu-
ment which states that if log{ L(3,p)} > —<isa
continuous function in 7 and p and log{ L(3, p)}
< h(B) for all vector p, with h(3) — —oc as
|Zel| — oo for £ = 1,2,--. g, then log L(3, p)
attains its maximum. To complete the proof,
we then need to construct a dominating function
h(.). For this, consider the function defined as,
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which is an increasing function on the support of
5. As all |G| — o0, £ =1,2,--- g, the func-
tion W (—Cy||Bel|, € =1,2,--- ,9) — 0. There-
fore, h(8) — —ocas |G| — o for£=1,2,--- ,g.
The condition that none of the sets iy, £ = 1,2, - -
is quasi-separated ensures that the inequality in
(12) holds. Therefore, we have log{L(3,p)} =
h(3) for all p, which completes the proof. Nec-
essarily, the estimated p should not be on the
boundary of A’, otherwise the multivariate model

under investigation becomes questionable and should

be reduced to a lower dimension.

Example 1 We assume a no intercept model on
both univariate margins of a bivariate latent vari-
able formulated as follows:

W = Bexer. + a1, £=1, 2.

Here we assume that xp. takes values in the set
O =11,2,3,4}, forallk e {1,--- ,N}.

(a) Assume that for all z1; € Op and all
ke{l,--- N}, we have s1j. = —1. It is straight-
forward to show that the condition specified in
Theorem 1 is not fulfilled for the first component,
that is Uy is not marginally overlapped. First,
note that, the half line (—o0,0) is the solution to
the inequalities,

S1eTepid =0, for xg € O, ke {1,--- N}
Therefore, for 31 = 0 there are no indices k so
that sipxe31 > 0. The most extreme case of
separation in given in the figure 1. Here it is
assumed that G and G2 arve all two-dimensional
vectors so that the linear combinations of covari-
ates are straight lines in R%. All four quadrants,
excluding the boundaries represented by x}, 3
0 and z,, 32 = 0, are the solutions to the in-
equalities s17), 31 > 0 and sopxh, G2 > 0 where
spp € {—1,1}, £ = 1,2, is the transformed out-
come. For erample, the quadrant with outcomes
(1,1), or the (+,+) half space, coincides with the
solution of inequalities x4, 51 > 0 and x4, 5z > 0.
By including the regression lines =}, 31 = 0 and
xhy B2 = 0 in these inequalities, we have a quasi-
complete separation in the data.

(b) However, if we modify the data so that for
some ki and kg, we have s1;,, = —1 and sy, = 1,
the condition specified in Theorem 1 is satisfied.
Indeed for 31 < 0, by taking k = ki, we have
S1k, T1ky, 01 > 0, and for 51 = 0, by taking k = ko

3 (3): 134-141, 2007

‘T’:lk-‘rjl =0
a‘ak,ﬁg =0

Figure 1: Schematic representation of complete sep-
aration (excluding the regression lines) and quasi-
complete separation (including the regression lines)

we have sy, 71,01 > 0. Similar findings can be
obtained for the second component. Therefore,
the existence of the MLE for the parameters (31
and (G2 is guaranteed only if there exist two dis-
tinct realizations (success and failure) for each
corresponding outcome.

Quasi-complete separation detection and
computational difficulties

We now discuss a practical method for check-
ing the conditions for the existence of the MLE
for the location parameters. Of equal impor-
tance is early detection of possible divergence
problems in determining whether the vector of
polychoric correlation coefficients p lies on the
boundary. For location parameters, the existence
and uniqueness conditions of the joint probability
model can be related to the univariate model. It
is well known that the univariate MLE of /3; con-
sistently estimates the true location parameter
of the joint model. As reported by Lesaffre and
Kaufmannl®! in the multivariate probit model,
the univariate solution &y lie close to the mul-
tivariate solution B¢, ¢ = 1,2,---, g, in practice.
This result is important for early detection of the
divergence of the location parameters in the mul-
tivariate model. An informal check consists of
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looking at the estimates and standard errors of
Fe, £ =1,2,---, g from the univariate models. If
ane ar more Wald statistics for the corresponding
parameters converge to zero or the standard er-
rors blow up to infinity, computational difficulties
will arise in the multivariate context.

An alternative approach consists of using the
linear programming strategy. This approach re-
lies heavily on the convex theory concepts for
which the concept of full-dimensional set is some-
times used interchangeably with that of quasi-
complete separation. A dual cone in RP is full-
dimensional if it has non-empty interior. It can
be shown that the dual cone € = {z € RP : 2’3 <
0} is full-dimensional it and only if the system of
equations '3 < 0 has a solution. By Farkas’
1902 lemma, it follows that C is full-dimensional
if and only if there does not exist a nonnegative
and nonzero y £ R¥ such that 4’3 = 0. Hence,
our conditions reduces to checking the feasibility
of a system of linear equations, which is a stan-
dard problem in linear programming and which
can be solved using commercial software such as

CPLEX (CPLEX Optimizationll).
REFERENCES

1. Albert, A and J. A. Anderscn, 1984. On the ex-
istence maximum likelihood estimates in logistic re-
gression models. Biometrika, 71:1-10.

2. Albert, A. and J.A. Anderson, 1981, Probit and
legistic discriminant functions. Communications in
Stofistics, A 10:641-4657.

3. Birkes, D. and 5. 5. Wullf, 2003. Existence of
maximum likelihood estimates in normal variance-
components models. Jouwrnal of Statisticad Planming
and Inference, 113(1):35-47.

141

(¥

10.

11.

12.

13.

14.

16.

CPLEX Optimization, 1992, CPLEX. Incline Vil-
lage, Nevada: CPLEX Optimization Inc..
Demidenko, E. and H. Massam, 1999, Existence of
the maximum likelihood estimate in variance com-
ponents models. Sankhya, 61:431-443.

Lesaffre, E. and H. Kaufmann, 1992, Existence and
unicqueness of the maximum likelihood estimator for
a multivariate probit model. Journal of the Ameri-
can Statistienl Association, 8T:805-811.

Liang, K. Y. and 5. L. Zeger, 1986. Longitudi-
nal data analysis using generalized linear models.
Biometrika, 73:13-22.

Muthén, B., 1979. A structural probit model with
latent variables. Jowrnal of the American Statistical
Association, T4:807T-811.

Muthén, B. and L. Muthén, 1998-2004. Mplus [Com-
puter software/. Muthén & Muthén, Los Angeles.
O'Brien, P. C., 1984, Procedures for comparing mul-
tiples endpoints. Biometrics, 40:1079-1087.
Prékopa, A, 1973, On logarithmic concave measures
and functions. Acta Scientiarum mathematicarum
{Szeged), 34:355-343.

Silvapulle, M.J., 1981. On the existence of maximum
likelihood estimates for binomial response models.
Journal of the Royal Statistical Society, B 43:310-
a13.

Speckman, P. and J. Lee, and D. Sun, 2000. Ex
istence of the mle and propriety of posteriors for a
general multinomial choice model. Technical report,
Department of Statistics, University of Missouri-
Columbia.

Sun, D). and R. K. Tsutakawa, and Z. He, 2001. Pro-
priety of posteriors with improper priors in hierarchi-
cal linear mixed models. Statistica Sinica, 11:77-95.
Todem, D. and K. Kim, and E. Lesaffre, 2006.
Latent-variable models for longitudinal data with bi-
variate ordinal outcomes. Statistics in Medicine, in
press.

Wang, R. and H. L. Fei, 2003. Uniqueness of the
maximum likelihood estimate of the Weibull dis-
tribution tampered failure rate model. Communi-
cations in Statistics: Theory and Methods, 32(12):
2321-2338,



