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Abstract: We consider the self-similar solution of non-linear diffusion equation with convection term. 
We examine the existence and uniqueness of solution of the problem. The numerical result is presented 
as concentration profile for various values of m, the diffusion index. 
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INTRODUCTION 

 
 The study of solution of mathematical equation 
describing diffusion problems has over the years 
attracted the interest of many researchers. Cherniha and 
Serov[1] considered the Lie and Non-lie symmetries of 
non-linear diffusion equation with convection term. 
They presented new ansätze and exact solution for the 
non-linear diffusion equations. 
 Kuske and Mileniski[2] derived new modulation 
equations for hexagonal patterns in reaction-diffusion 
systems. These systems include additional non-
linearities, which are not present in Rayleigh-Bernard 
convection or Smith-Hohenberg type models. The 
investigation demonstrates instabilities and a new 
phenomenon not found in other systems, and is applied 
to patterns of flame fronts in certain models of burner-
stabilized flames. 
 Nakamura et al.[3] studied reaction diffusion 
equations with a spatially inhomogeneous reaction 
term. If the coefficient of this reaction term is much 
larger than the diffusion coefficient, a sharp interface 
appears   between two different phases. They showed 
that the equation of motion of such interface involves a 
drift term despite the absence of drift in the original 
diffusion equations. In particular, they showed that the 
same rich spatial patterns observed for Chemotaxis-
growth model can be realized by a system without a 
drift term. 
 Ayeni and Agusto[4] investigated the existence and 
uniqueness of solution of self-similar diffusion 
equation. The paper examined the models of fast flow 
of gas in porous medium and microwave heating of 
various materials. 
 Popoola et al.[5] investigated a system of reaction 
diffusion problem with a characteristic diffusion term. 
They presented the similarity solution of the problem 
and stated the condition for the existence of similarity 
solution. They discussed the effect of the diffusion 
parameter on the reaction. 
 In this paper, we consider the self-similar solution 
of non-linear diffusion equation with convection term. 

Of particular interest is the question of existence and 
uniqueness of the solution. We also present the 
numerical result as a concentration profile for various 
values of m, the diffusion index. 
 
Mathematical problem: We consider the non-linear 
diffusion equation of the form  
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),( txu  is the concentration, m is the diffusion index 

and  0λ  is an arbitrary constant.  
 
Remark 1: 
Equation (1) reduces to classical heat equation, if A=1, 
B=C=0. 
Equation (1) reduces to non-linear heat equation, if 
B=C=0. 
Equation (1) reduces to non-linear equation with a 
source term, if B=0. 
 
Similarity transformation: Define a similarity 
variableη , as  

x
tα

η =  (6) 

Such that  
( , ) ( )u x t U f η=  (7) 

Using equations (3), (4), (5), (6) and (7) in equation (1) 
then equation (1) together with the boundary condition 
(2) becomes  
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(0) 1 , ( ) 0f f= ∞ =  (9) 

Remark 2: Self-similar solution exists for 1
2

α =  

Existence and uniqueness 
Theorem 1: For each m >0, equation (1) with the 
boundary condition (2) has a unique solution. 
Remark 3: The existence and uniqueness of solution of 
problem (8) satisfying   
Boundary condition (9) implies the existence and 
uniqueness of solution of problem (1) satisfying 
boundary condition (2). Resolve problem (8) into a 
system of equations  
Let 
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So we consider  
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Together with the initial conditions, 
1
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3

(0) 0
(0) 1
(0)

y
y
y β

   
   =   
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 (12) 

1 2 30 , 1 , 0y y L yβ≤ ≤ ∞ ≤ ≤ − ≤ ≤  (13) 
Where β  is guessed such that the boundary condition 
(9) is satisfied. β,L are positive constants. 
Remark 4: Problem (1) can be re-written as 

1 1 2 31

2 2 1 2 3

3 3 1 2 3

( , , )
( , , )
( , , )

f y y yy
y f y y y
y f y y y

  
   =   

   
   

 (14) 

Theorem 2: For m >0, 0λ >0, problem (11) satisfying 
the initial conditions (12) is Lipschitz continuous. 
Proof: By remark (4), equation (11) can be written as 
(14). 

Clearly, , , 1, 2,3i

j

f
i j

y
∂

=
∂

 are bounded and so, there 

exists a constant k>0 
Such that  

max , , 1,2,3i

j

f
k i j

y
∂

= =
∂

 Where k is the Lipschitz 

constant. Hence 1 2 3( , , ) , , 1,2,3if y y y i j =  is Lipschitz 
continuous and so, problem (11) satisfying the initial  
 

condition (12) is Lipschitz continuous. 
 
Remark 5: The system of equations (14) can also be 
re-written as 

' ( , )Y F Yη=  (15) 
and the initial condition (12) is written as  

0(0)Y Y=  (16) 

Theorem 3: Let m >0, 0λ >0, suppose ( , )F Yη is 
continuous and satisfy the Lipschitz condition 

( , ) ( , )F Y F X L Y Xη η− ≤ −  

For all { }0, /nX Y B Y R Y Y r∈ = ∈ − ≤  

Then, there exist 0>δ  such that problem (15) 
satisfying initial condition (16) has a unique solution 
over 0 0 0 0[ , ] [ , ] [0, ]whereη η δ η η δ+ + ⊂ ∞ . 
Proof:  By (15) 

( ) ( , ( ))
o

oY Y F s Y s ds
η

η

η = + ∫  (17) 

Define a mapping 0 1: [ , ] nY Rη η → and denote it 
by ( )( )UY η , we write (17) as  

( ) ( )( )Y UYη η=  (18) 
where ( )( )UY η  is continuous in η . 
Define a Banach space M and a closed set MS ⊂  
such that U maps S into S and is contraction over S. 
Let,  

0 0[ , ]M C η η δ= +  (19)    
with norm  

0 0[ , ]
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C
Y Y

η η η δ
η

∈ +
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{ } )21(/ 0 rYYMYS

C
≤−∈=

               
Where r is the radius of the ball B and 0.δ >   

Clearly, ( )Y η denotes a norm on nR and 

CY denotes a norm on M. 
 Also, B is a ball in Rn and S is a ball in M. By 
definition, U maps M into M. We shall show that U 
maps S into S. 
Equation (17) and (18) imply that,  

0

0( )( ) ( , ( ))UY Y F s Y s ds
η

η

η − =∫  (22) 

[ ]
0
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η

η
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By the virtue of theorem 2, ( , )F Yη is bounded 
on 0 1[ , ]η η . Let, 

0 1
0[ , ]]
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η η η

η
∈
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Using the Lipschitz condition and the fact that for each 
,SY ∈   

0 0 0( ) , [ , ]Y Y rη η η η δ− ≤ ∀ ∈ +  (25) 

 
We obtain, 
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Therefore choosing  

( )
r
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ensures  U maps S into S. 
Next, we show that U is a contraction mapping over S. 
Let SYandX ∈  and consider,   

0
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η
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Therefore,  
,C C CUX UY L Y X Y X

for
L

δ ρ

ρδ

− ≤ − ≤ −

≤
 (30) 

Choosing 1, .and
L
ρρ δ≤ ≤  then, clearly U is a 

contraction mapping over S  
Choosing, 

1 0min , , , 1r for
Lr k L

ρδ η η ρ ≤ − < + 
 

 Then, (17) has a unique solution in S. 
Thus since any solution of (17) in M will lie in S. So, 
the uniqueness of the solution in S implies uniqueness 
in M. Hence, problem (15) has a unique solution. 
 
Proof of theorem 1: The uniqueness of solution of 
problem (15) implies the uniqueness of solution of 
problem (11). The uniqueness of solution of problem 

(11) implies the uniqueness of solution of problem (8). 
Also the uniqueness of solution of problem (8) implies 
the uniqueness of solution of problem (1) satisfying 
condition (2). This completes the proof. 
Numerical solution: Resolving problem (8) into 
system of equations we have, 
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 Together with the initial conditions, 
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 Where ß is guessed such that the boundary 
condition (9) is satisfied. The numerical result is 
presented in the figure below as concentration profile. 
 

THE CONCENTRATION PROFILE
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RESULTS AND DISCUSSION 
 
 The existence and uniqueness of solution of the 
non-linear diffusion problem has been established in 
theorems (1), (2) and (3). The fact that the problem has 
a unique solution showed that the mathematical model 
(1) represents a physical situation. The concentration 
profile is as shown in the figure. It is clearly shown 
from the figure that the system observed a high rate of 
diffusion with low diffusion index m. This study has 
greater application in many engineering and scientific 
processes.    
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