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Abstract: Recurrent neural networks have recently been demonstrated to have the ability to learn 
simple grammars. In particular, networks using second-order units have been successfully at this task. 
However, it is often difficult to predict the optimal neural network size to induce an unknown 
automaton from examples. Instead of just adjusting the weights in a network of fixed topology, we 
adopt the dynamic networks (i.e. the topology and weights can be simultaneously changed during 
training) for this application. We apply the idea of maximizing correlation in the cascade-correlation 
algorithm to the second-order single-layer recurrent neural network to generate a new construction 
algorithm and use it to induce fuzzy finite state automata. The experiment indicates that such a 
dynamic network performs well.  
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INTRODUCTION 

 
 Choosing an appropriate architecture for a learning 
task is an important issue in training neural networks. 
Because general methods for determining a “good” 
network architecture prior to training are generally 
lacking, algorithms that adapt the network architecture 
during training have been developed.  
 Constructive algorithm determines both the 
architecture of the network in addition to the parameters 
(weights, thresholds, etc) necessary for learning the 
data. Compared to algorithms such as back propagation 
they have the following potential advantages: 
* They grow the architecture of the neural network in 

addition to finding the parameters required. 
* They can reduce the training to single-node 

learning hence substantially simplifying and 
accelerating the training process. Constructive 
algorithms such as cascade correlation have at least 
an order of magnitude improvement in learning 
speed over back propagation.  

* Some constructive algorithms are guaranteed to 
converge unlike the back propagation algorithm, 
for example. 

* Algorithms such as back propagation can suffer 
from catastrophic interference when learning new 
data, that is, storage of new information seriously 
disrupts the retrieval of previously stored data. The 
incremental learning strategy of constructive 
algorithms offers a possible solution to this 
problem. 

 Rather than growing neural networks destructive or 
pruning[1] algorithms remove neurons or weights from 
large and trained networks and retain the reduced 

networks in an attempt to improve their generalization 
performance. Approaches   include removing the 
smallest  magnitude  or insensitive weights or by 
adding a penalty term to the energy function to 
encourage weight decay. However, it is difficult to 
“guess”  the  initial  network which is bound to 
solve the problem. 
 Recurrent neural networks have been demonstrated 
to have the ability to learn simple grammars[2-6]. 
However, the problem associated with recurrent 
networks of fixed topology is apparent. We have to 
empirically choose the number of hidden neurons, there 
is no general methods for determining an appropriate 
topology for specific application. Consequently, the 
convergence can’t be guaranteed. Constructive or 
destructive methods that add or subtract neurons, layers, 
connections, etc. might offer a solution to this problem 
though it is complementary. We propose a construction 
algorithm for second-order single-layer recurrent neural 
network which adds a second-order recurrent hidden 
neuron at a time to adapt the topology of the network in 
addition to the change of the weights and use it to learn 
fuzzy finite state machines and experimentally find it 
effective.  
 
Fuzzy finite state automata: We begin by the class of 
fuzzy automata which we are interested in learning: 
 
Definition: A fuzzy finite-state automaton (FFA) is a 
6-tuple =< Σ , Q, Z, q 0 ,δ ,ω > where Σ is a finite 
input alphabet and Q is the set of states; Z is a finite 
output alphabet, q 0 is an initial state, δ : 
Σ × Q× [0,1] → Q is the fuzzy transition map and ω : 
Q → Z is the output map.  
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 It should be noted that a finite fuzzy automaton is 
reduced to a conventional (crisp) one when all the 
transition degrees are equal to 1. 
 The following result is the basis for mapping FFAs 
into the corresponding deterministic recurrent neural 
networks[7]: 
 
Theorem: Given a FFA , there exists a deterministic 
finite state automaton (DFA) M with output alphabet Z 
⊆ { θ : θ  is a production weight} ∪ {0} which 
computes the membership function µ : Σ ∗ → [0,1] of 
the language L ( M ). An example of FFA-to-DFA 
transformation is shown in Fig. 1a and b[8]. 

 

 

Fig. 1: Example of a transformation of a specific 
FFA into its corresponding DFA. (a) A fuzzy 
finite-state automaton with weighted state 
transitions. State 1 is the automaton’s start 
state; accepting states are drawn with double 
circle. A transition from state q j to q i on 
input symbol a k with weightθ is represented 
as a direct arc from q j  to q i  labeled a k /θ . 
(b) corresponding deterministic finite-state 
automata which computes the membership 
function strings. The accepting states are 
labeled with the degree of membership. 
Notice that all transitions in the DFA have 
weight one  

  
Second-order recurrent neural network used to 
induce FFA: A second-order recurrent neural network 
linked to an output layer is shown to be a good 
technique to perform fuzzy automaton induction in[9], it 
consists  of  three  parts (Fig. 2): input layer, a 
single  

recurrent layer with N neurons and two output layers 
both with M neurons, where M is determined by the 
level of accuracy desired in the output. If r is the 
accuracy required(r=0.1 if the accuracy is decimal, 
r=0.01 if the accuracy is centesimal, etc.), 
M=(10 log( )r− +1).  
 The   hidden recurrent   layer  is activated by 
both   the   input   neurons   and   the recurrent 
layer   itself. The first output layer receives the values 
of the recurrent neurons at time m, where m is the 
length of the input string. The neurons in this layer then 
compete   to   have   a winner to determine the 
output of the network. The dynamic of the neural 
network is as follows:  
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Where g is a sigmoid discriminant function and b is 
the bias associated with hidden recurrent state neurons 
S . upi connected Si to the neuron Op of the first output 
layer, Wijk is the second-order connection weight of the 
recurrent layer and input layer. The membership degree 
associated to the input string is determined by the last 
output layer: µL(x)=i*r, where r is the desired accuracy, 
i is the index of the non-zero neuron of the last output 
layer. The weights are updated by the pseudo-gradient 
decent algorithm: 
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Where Ti is the expected value for the ith output neuron 

and Oi is the provisional value given by equation (2). 
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Fig. 2: Neural network used for fuzzy graininar 

inference 
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Dynamic adaptation of recurrent neural network 
architecture: Constructive algorithms dynamically 
grow the structure during the network’s training. 
Various types of network growing methods have been 
proposed[10-14]. However, a few of them are for 
recurrent networks. The approach we propose in this 
paper is a constructive algorithm for second-order 
single-layer recurrent neural networks. 
 In the course of the induction of an unknown fuzzy 
finite-finite state automata from training samples, our 
algorithm topologically changes the network in addition 
to adjusting the weights of the second-order recurrent 
neural network. We utilize the idea of maximizing 
correlation in cascade-correlation algorithm to get a 
prior knowledge at each stage of the dynamic training 
which is then used to initialize the new generated 
network for the following learning.  
 Before the description of the constructive learning, the 
following criteria need to be kept in mind: 
* When the network structure needs to change 

* How to connect the newly created neuron to the 
existing network 

* How to assign initial values to the newly added 
connection weights 

 We initialize the network with only one hidden unit. 
The size of the input and output layer are determined by 
the I\O representation the experimenter has chosen. 
 We present the whole training examples to the 
recurrent neural network. When no significant error 
reduction has occurred or the training epochs have 
achieved a preset number, we measure the error over 
the entire training set to get the residual error signal 
according to (4). Here an epoch is defined as a training 
cycle in which the network sees all training samples. If 
the residual error is small enough, we stop; if not, we 
attempt to add new hidden unit one by one to the single 
hidden layer using the unit-creation algorithm to 
maximize the magnitude of the correlation between the 
residual error and the candidate unit’s output.  
 For the second criterion, the newly added hidden 
neuron receives second-order connection from the 
inputs and pre-existing hidden units and then outputs to 
the output layer and recurrent layer as shown in Fig. 3.  
 Now, we turn to the unit-creation algorithm in our 
method, it is different from the case of 
cascade-correlation due to the different structure we use. 
We define S as in[10]:  

 S=� � −− ))(( ,  (5) 

where Vp is the candidate unit’s output value when the 
network processing the pth training example and Ep,o is 
the residual error observed at output neuron o when the 
network structure needs to change. and Ep are the 
values of V and Ep averaged over the whole training 
examples.  
 During the maximization of S, all the pre-exiting 
weights are frozen other than the input weights of the 
candidate unit and its connection with the hidden units. 
The following training algorithm updates the weights at 
the end of the presentation of the whole training 
examples. Suppose we are ready to add the hth neuron, 
p denote the length of the pth example, then V =S , 
i.e. the output of the hth hidden neuron at time p .  
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Fig. 3: The network starts with neuron 1 and grows 

incrementally to n neurons 
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where oσ is the sign of the correlation between the 
candidate’s value and output o due to the modulus in 
(5), β is the learning rate, w hjk are the trainable input 
weights to the newly-added neuron h; w ihk connect h to 
the pre-existing ith hidden unit and | Σ | is the number of 
the input units. According to (1), we further induce:  
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Where g’ is the derivation for the pth example of the 
pre-existing or candidate unit ’s activation function with 
respect to the sum of its inputs,α is the learning rate. 

 
 
 
 
 
Error 
 
 
 
 
 

Epochs 
Fig. 4: The evolution of the training process for 1 

hidden neuron network 
 
 
 
 
 
 
Error 
 
 
 
 
 

Epochs 
Fig. 5: The evolution of the training process for 

current network 
 
 We present the whole training examples to the 
current network and train W and W according to 
the update rules as described in (6)-(9) until we achieve 
a pre-set number of training epochs or S stop 
increasing.  
 At this time, we fix the trained Whjk and Wjhk as the 
initial weights of the newly-added neuron, its 
connections to the output layer are set to zero or very 
small random numbers so that they initially have little 
or no effect on training. The old weights start with their 
previously trained values. Compared with the 
cascade-correlation in which only the output weights of 
the new neuron is trainable, we allow all the weights 
are trainable. In order to preserve as much knowledge 
we’ve learned as possible, we set different learning rate 
to update the weights we obtained and the output 
weights of the new neuron connecting to the output 
layer where the latter is larger than the former. Up to 
now, the third criterion is resolved.  
 Instead of a single candidate unit, a pool of 
candidates is possibly used for the unit-creation 
algorithm which are trained in parallel from different 
random initial weights. They all receive the same input 
signals and see the same residual error for each training 
example. Whenever we decide that no further progress 
of S  is  being  made, we install the candidate whose 
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Fig. 6: The extracted automaton from learned network 
 
correlation score is the best with the trained input 
weights. 
 
Simulation experiment: In this part, we have tested 
the construction algorithm on fuzzy grammar inference 
where the training examples are generated from the 
fuzzy automaton shown in Fig. 1a. The experiment has 
been designed in the same way as in[9]. 
1. Generation of examples: We start from a fuzzy 

automaton M as shown in Fig. 1a, from which we 
generate a set of 200 examples recognized by M. 
Any example consist of a pair (Pi, µ i) where Pi is a 
random sequence formed by symbols of the 
alphabet σ ={a, b} and iµ is the membership degree 
to fuzzy language L(M)[9] for detail. The samples 
strings are ordered according to their length. 

2. Forgetting M and train a dynamic network to 
induce an unknown automaton which recognizes 
the training examples:  

 The initial recurrent neural network is composed of 
1 recurrent hidden neuron and 11 neurons in the output 
layer, i.e., a decimal accuracy is required. The 
parameters for the network learning are: learning 
rateα =0.3, error tolerance ε =2.5x10-5. Figure 4 shows 
the evolution of the training process for 1-hidden unite 
network. After 285 epochs, no significant error 
reduction has occurred and the residual error signal is 
77.3695. It’s much larger than ε . So we add a neuron to 
the hidden layer. 
 We use 8 candidate units, each with a different set 
of random initial weights. Learning rate β is set to 0.3. 
According to (5)-(9) to maximize S in parallel until a 

preset number of epochs are achieved or S stop 
increasing, we install the candidate whose correlation 
score is the best. After 225 epochs, no significant 
increasing of S has appeared. Initial the new network as 
described earlier and train it with learning rate 0.15 for 
the weights connecting the newly-added neuron to the 
output layer and 0.08 for the rest respectively. The 
neural network learned all the examples in epochs 348. 
Figure 5 shows the evolution of the error on the training 
process. We adopt extraction algorithm 1 
in[8]-partitioning of the output space—to extract fuzzy 
finite automaton from learned network: 
 

CONCLUSION 
 
 An appropriate topology made up of a 
second-order recurrent neural network linked to an 
output layer is proposed in[8] to perform fuzzy 
grammatical inference. However, an appropriate 
number of the hidden unites is difficult to be predicted. 
Instead of just adjusting the weights in a network of 
fixed topology, we adopt the construction method for 
this application. We apply the idea of maximizing 
correlation of the cascade-correlation algorithm to the 
second-order recurrent neural network to generate a 
new construction method and use it to infer fuzzy 
grammar from examples. At every stage of dynamical 
training, we obtain a prior knowledge to initialize a 
newly generated network and train it until no further 
decrease of the error being made. It recovers the 
absence of the empiric in the case of the fixed-topology 
network and generates an optimal topology 
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automatically. An experiment shows that this algorithm 
is practical. 
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