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Abstract: The inertia tensor of a tetrahedron is composed of its moments of inertia. This study presents 
explicit exact formulas for the moments of inertia of a 3-D tetrahedron as simple polynomials of its 
vertex coordinates. 
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INTRODUCTION 

 
The knowledge of the inertia tensor of a solid is of 
fundamental importance in many branches of applied 
mathematics, computer science and mechanics. For 
example, in mechanics the motion of a rigid body is 
controlled by the inertia tensor of a body through 
Euler’s equations [1].  
Besides their speculative interest as the simplest 
Platonic solids [2], tetrahedra are important in 
engineering: (e. g.) in rock mechanics the vast majority 
of unstable blocks are found to be tetrahedra [3, 4]. 
Moreover, tetrahedra properties are of interest in 
geometric modeling because any solid can be 
approximated as a polyhedron and an n-vertex 
polyhedron can be triangulated with O(n2) tetrahedra (if 
the polyhedron is convex, it can be triangulated with at 
most 2n-7 tetrahedra) [5]. If the tetrahedron inertia 
tensor can be easily calculated with respect to the same 
reference system, then the inertia tensor for the entire 
solid can be obtained as the sum of those inertia tensors. 
The solid’s inertia tensor with respect to any other 
reference system can be calculated by rotating the 
tensor and using Steiner’s theorem. 
Although formulas have been given for the integration 
of polynomials over a tetrahedron [6-9] and references 
therein, in the literature no explicit expression has been 
given for the inertia tensor in terms of the vertex 
coordinates. This study provides these expressions with 
respect to a reference system of arbitrary origin and 
gives a numerical example for validation. 
 
Formulation: Let Ai=( ~xi , ~yi , ~zi ) i=1,...,4 be the 
tetrahedron vertex coordinates with respect to a generic 
coordinate system O, ~x , ~y , ~z  (Fig. 1) and let 

( )Q x y zQ Q Q= ~ ,~ ,~  be a point of the Euclidean 3-D space. 

Now, consider a new coordinate  system  whose axes x,  

y, z are parallel to ~x , ~y , ~z , respectively and whose 
origin is Q; in the new system, the coordinates of the 
vertices are Ai = (xi, yi, zi), i = 1,...,4, where: 
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The inertia tensor EQ of a body D with respect to the 
three axes x, y, z centered at Q is defined as [10]: 
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where, indicating with µ the density of the medium: 
 

( )a y z dD
D

= +� µ 2 2 ; ( )b x z dD
D

= +� µ 2 2 ;  

( )c x y dD
D

= +� µ 2 2    (3a) 

a yz dD
D

'= � µ ; b xz dD
D

'= � µ ; c xy dD
D

'= � µ  (3b)  

 
Quantities a, b, c are the moments of inertia with 
respect to axes x, y, z, respectively and a’, b’, c’ are the 
products of inertia. The principal directions are the 
eigenvectors of EQ and the principal moments of inertia 
are  the  eigenvalues  of EQ.  If x is a principal direction,  
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Fig. 1:  Transformation g and g-1 
 
then b’ and  c’ are zero and so on.  In order to calculate more easily the integrals in (3a) and (3b), let us change 
coordinate system by means of the following (affine) transformation g (Fig. 1): 
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The determinant of the Jacobian is :  
 

( )DET J

x x x

y y y

z z z

x x x x x x

y y y y y y

z z z z z z

Vol=

�

�

�
�
�
�
�
�
��

�

	

















=

− − −

− − −

− − −

= ⋅ =

∂
∂ξ

∂
∂η

∂
∂ζ

∂
∂ξ

∂
∂η

∂
∂ζ

∂
∂ξ

∂
∂η

∂
∂ζ

2 1 3 1 4 1

2 1 3 1 4 1

2 1 3 1 4 1

6 constant       (5) 

 
where, Vol is the volume of D. 
Transformation g-1 normalizes tetrahedron D into a tetrahedron D’, (Fig. 1). Let now f(x, y, z) be a generic function, 
continuous on D; since g is regular and D is bounded by regular surfaces (planes), one can write: 
 

( ) ( ) ( ) ( )[ ]f x y z dD f x y z DET J dD
D D

, , , , , , , , , , ( ) '
'

� �= ⋅ξ η ζ ξ η ζ ξ η ζ         (6) 

 
Since D’ is normal with respect to the (ξ, η)-plane and the projection of D’ on plane (ξ, η) is normal with respect to 
the ξ-axis, one has [11]: 

( ) ( ) ( ) ( )
1 11

0 0 0

, , ( ) , , , , , , , ,
D

f x y z dD DET J d d f x y z d
ξ ξ η
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− − −
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For example, if  D is homogeneous: 
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( ) ( ) ( )[ ]a y z dD DET J d d y z d
D

= ⋅ + = ⋅ ⋅ +� ���
− −−
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Integral (8) was solved and its solution checked using Mathematica:  

a = DET(J) (y  +  y y +  y   +  y  y  +  y  y  +  

+  y   +  y  y  +  y  y  +  y  y +   y   +  z  +  z  z  +  

+  z +  z  z + z  z  +  z  +  z  z +  z  z  +  z  z  +  z  ) / 60
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By proceeding in the same way for the other integrals one obtains: 

b = DET(J) (x  +  x x +  x   +  x  x  +  x  x  +  x   +  
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c = DET(J) (x  +  x x +  x   +  x  x  +  x  x  +  x   +  x  x  +

+  x  x  +  x  x  +  x   +  y  +  y  y  +   y +  y  y +

+  y  y  +  y   +  y  y +  y  y  +  y  y  +  y  ) / 60

1
2

1 2 2
2

1 3 2 3 3
2

1 4

2 4 3 4 4
2

1
2

1 2 2
2

1 3 

2 3 3
2

1 4 2 4 3 4 4
2

µ ⋅ ⋅

   (9c) 

a' = DET(J) (2 y z  +  y  z  +  y  z  +  y  z  +  y  z +  
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c' = DET(J) (2 x y  +  x  y  +  x  y  +  x  y  +  x  y +  

+  2 x  y  +  x  y  +  x  y  +  x  y +  x  y  + 2 x  y  +  
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Equations (9) give the components of the inertia tensor 
as quadratic polynomials of the vertex coordinates 
multiplied by six times the tetrahedron volume and by  

the density of the medium.  
Numerical Example: Consider a tetrahedron with 
vertex coordinates: 
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 A1≡ ( ) ( )93355.0,86875.11,33220.8~,~,~
111 −=zyx  m; 

A2≡ ( ) ( )37072.16,00000.5,75523.0~,~,~
222 =zyx  m; 

A3≡ ( ) ( )38580.5,00000.5,61236.52~,~,~
333 −=zyx  m; 

A4≡ ( ) ( )00000.3,00000.5,00000.2~,~,~
444 =zyx  m. The 

coordinates of the centroid can be calculated as [12]: 
G≡ ( ) ( )72962.3,78281.0,92492.15~,~,~ =GGG zyx  m. The 
values of the components of the inertia tensor calculated 
with respect to the centroid, EG, result as follows: a/µ = 
43520.33257 m5; b/µ = 194711.28938 m5; c/µ = 
191168.76173 m5; a’/µ = 4417.66150 m5; b’/µ = -
46343.16662 m5 ; c’/µ = 11996.20119 m5. 
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