A Theorem of Hunt for Semidynamical Systems

¹Mounir Bezzarga and ²Gheorghe Bucur ¹Institut Préparatoire aux Etudes d'Ingénieur de Tunis ² rue Jawaher Lel Nehru, 1008 Montfleury-Tunis, Tunisia ²Faculty of Mathematics, University of Bucharest Str. Academiei 14, RO-70109 Bucharest, Romania

Abstract: The main result of this paper provides a direct proof of a Hunt's Theorem of the classical potential theory for the so called local semidynamical systems in non locally compact infinite dimensional spaces.

Key words: Excessive Functions, Hitting Time, Reduite Operator, Semidynamical System

INTRODUCTION

The structure of this paper is adapted to the classical results which present a difficulty for the measurability. Starting by a transient semidynamical system (X,B,Φ,ω) , [1-4], we introduce the notion of hitting time T_A of a measurable subset A of X_0 . We prove the measurability of T_A with respect to the σ -algebra $B_0(\Lambda)$ defined in [5] and we give further properties by using the semidynamical specificity. We give a relationship between the hitting time T_A and the reduite operator R^A in classical potential theory and we give a direct proof of a Hunt's Theorem [6]. Here we don't use the Choquet capacity [7, 8]. Howover in the work of Hunt [6] cited here by as principal reference, the measurability is ensured with respect to the initial σ -algebra, but in this work, we express the measurability in a weak sense i.e. the measurability along the trajectories. Which is sufficient for integrate with respect to the reference Lebesgue measure Λ .

Preliminary: Here, we will introduce some definitions which will be useful in the remainder of this study [1, 4, 5, 9].

Definition 1: Let (X,B) be a separable measurable space with a distinguished point ω and a measurable map $\Phi: R_+ \times X \to X$ having the following properties:

(S₁) for any $x \in X$ there exists an element $\rho(x) \in [0,+\infty]$ such that $\Phi(t,x) \neq \omega$ for all $t \in [0,\rho(x)[$ and $\Phi(t,x) = \omega$ for all $t \geq \rho(x)$,

(S₂) for any $s, t \in R_+$ and any $x \in X$ we have $\Phi(s, \Phi(t, x)) = \Phi(s + t, x)$.

(S₃)
$$\Phi(0, x) = x$$
, for all $x \in X$,

(S₄) if
$$\Phi(t, x) = \Phi(t, y)$$
, for all $t > 0$, then $x = y$.

The collection (X, B, Φ, ω) is called semidynamical system with a coffin state ω .

Set $X_0 = X \setminus \{\omega\}$. For any $x \in X_0$ we denote by Γ_x the trajectory of x, i.e.:

In what follows, we shall suppose that (X, B, Φ, ω) is a transient semidynamical system [1, 3]. In [1] we have associated a proper and submarkovian resolvent $\mathbf{V} = (V_{\alpha})_{\alpha \geq 0}$ of kernels on the measurable space (X_0, B_0) , defined by:

$$V_{\alpha}f(x) = \int_{0}^{\rho(x)} e^{-\alpha t} f(\Phi(t, x)) dt, \forall x \in X_{0}, \forall \alpha \in R_{+},$$

where, $B_0 = \{ U \subset B; U \subset X_0 \}$.

The family V is the resolvent associated to the deterministic semigroup $H=(H_t)_{t\geq 0}$ introduced in [10, 11].

It is proved that the map Φ_x is a measurable isomorphism between $[0, \rho(x)[$ and Γ_x endowed with trace measurable structures.

Let Λ be the Lebesgue measure associated with the semidynamical system (X, B, Φ, ω) [9] given by $\Lambda(A) = \lambda(\Phi_x^{-1}(A))$ for any $x \in X_0$, $A \in B_0$ and $A \subset \Gamma_x$, where λ denotes the Lebesgue measure on R. We recall [5] that in the same way Λ can be defined on the σ -algebra $B_0(\Lambda)$ the set of all subsets A of X_0 such that $A \cap M \in B_0$ for any countable union M of trajectories of X_0 . Set B_0^{σ} the collection of all countable union of trajectories of X_0 . We denote by $F(X_0,\Lambda)$, the set of all nonnegative $B_0(\Lambda)$ measurable functions on X_0 . One can show that the resolvent family V may be considered on the measurable space $(X_0, B_0(\Lambda))$ by setting also:

$$V_{\alpha}f(x) = \int_0^{\rho(x)} e^{-\alpha t} f(\Phi(t,x)) dt, \forall x \in X_0, \forall \alpha \in R_+.$$

We consider also the arrival time function $\Psi: X_0 \times X_0 \to R_+$, given [2] by :

$$\Psi(x, y) = t$$
 if $\Phi(t, x) = y, t \in [0, \rho(x)]$ and $\Psi(x, y) = +\infty$ if not.

It is shown that the arrival time function Ψ is measurable if we endow $X_0 \times X_0$ with the product measurable structure of the σ -algebra $B_0(\Lambda)$ [5, 9]. Using the Lebesgue measure Λ and the function Ψ , we associate to the semidynamical system a dual resolvent $\mathbf{V}^* = (V_{_{\alpha}}^*)_{\alpha \geq 0}$ of kernels on the measurable space (X_0 , $B_0(\Lambda)$) with respect to Λ , [5]. The above resolvent is given on $\mathbf{F}(X_0,\Lambda)$ by:

$$\begin{split} &V_{\alpha}^{*}f(x)=\int e^{-\alpha \Psi(y,x)}G(y,x)f(y)d\Lambda(y), \forall x\in X_{0}, \forall \alpha\in R_{+},\\ &\text{where, }G(y,x)=I, \text{ if }y\leq_{\Phi}x \text{ and }G(y,x)=0, \text{ if not,}\\ &\text{define the Green function associated to}\\ &\left(\begin{array}{cc}X,\mathrm{B},\Phi,\omega\end{array}\right). \end{split}$$

For each $x \in X_0$, let us denote by:

$$\begin{aligned} & \nu_x = \left\{ v \subset X_0 : \exists \alpha \in \left] 0, \rho(x) \right[/ \Phi(t,x) \in \nu, \forall t \in \left[0,\alpha \right[\right] \right. \\ & \text{and let } \ \tau_\Phi \quad \text{be the topology for which } \ \nu_x \text{ generates all} \\ & \text{the neighborhoods of } x \ [1]. \ \tau_\Phi \quad \text{is namely the fine} \\ & \text{topology associated with } \left(\quad X, B, \Phi, \omega \right). \end{aligned}$$

Also denote by τ_{Φ}^0 the inherent topology [1] associated with (X,B,Φ,ω) which is characterized as being the set of all subset D of X_0 having the following property:

$$\forall x \in X_0, \forall t_0 \in [0, \rho(x)[: \Phi(t_0, x) \in D \Rightarrow \\ \Phi(t, x) \in D, \forall t \in]t_0 - \varepsilon, t_0 + \varepsilon[\cap [0, \rho(x)[, t_0] \in S)]$$
 for some $\varepsilon > 0$.

Theorem 1: The set $\mathbf{E}(\Lambda)$ of the V-excessive functions on $(X_0, \mathbf{B}_0(\Lambda))$ is identical to the set of all positive decreasing functions on X_0 with respect to the order ' \leq_{Φ} ', continuous with respect to the fine topology τ_{Φ} and finite at the points $x \in X_0$ which are not minimal with respect to the same order [12]. Thus, the following result holds:

Proposition 1: Any function $f \in \mathbf{E}(\Lambda)$ is lower semicontinuous with respect to τ_{Φ}^0 .

Proof: Since V is a proper submarkovian resolvent on $(X_0, B_0(\Lambda))$, then by Hunt's approximation theorem, [13] page 23, there exists a sequence $(f_n)_n$ in $F(X_0, \Lambda)$ such that $\sup_n V_0 f_n = f$. Since $V_0 f_n$ is continuous with respect to \mathcal{T}_{Φ}^0 [1], then f is lower semicontinuous with respect to \mathcal{T}_{Φ}^0 .

Next, we shall prove the following Theorem which will be needed later.

Theorem 2: The following properties hold:

- (i) Every τ_{Φ} -open set is $B_0(\Lambda)$ -measurable,
- (ii) Every monotonous function f with respect to ' \leq_{Φ} ' is $B_0(\Lambda)$ -measurable.

Proof

- 1. Let $O \in \mathcal{T}_{\Phi}$. Using a result in [1], $\Gamma_x \in \mathcal{T}_{\Phi}$, we get that $O \cap \Gamma_x \in \mathcal{T}_{\Phi}$ which means that $\Phi_x^{-1}(O \cap \Gamma_x)$ is an open set with respect to the fine trace topology on $[0, \rho(x)]$. Thus, it is measurable with respect to the trace Borel σ -algebra. Using the fact that Φ_x is a measurable isomorphism, we get that $O \cap \Gamma_x \in B_0$ and therefore $O \cap \Gamma_x \in B_0(\Lambda)$.
- 2. The function g defined by $g(t) = f \circ \Phi(t, x) = f \circ \Phi_x(t)$ is monotonous on $[0, \rho(x)]$ which is measurable with respect to trace Borel σ -algebra on $[0, \rho(x)]$. Using the fact that Φ_x is a measurable isomorphism, we get that

 $f = g \circ \Phi_x^{-1}$ is B_0 -measurable and then f is

 $B_0(\Lambda)$ -measurable.

In the sequel, for any subset A of X_0 we put $A^c := X_0 \setminus A$.

On the Measurability of the Hitting Time: Blumenthal and Getoor [7] proved the measurability of the hitting time for any Borel measurable subset A in the case of locally compact separable metric space.

Proposition 2: Let T be a positive measurable function on X with respect to the σ -algebra B (respectively $B(\Lambda)$), then the map Φ_T , given by $\Phi_T(x) = \Phi(T(x), x)$ if $T(x) < \rho(x)$ and $\Phi_T(x) = \omega$ if not, is measurable with respect to B (respectively $B(\Lambda)$).

Proof: The map U given on X by U(x) = (T(x),x) is measurable on X with respect B (respectively $B(\Lambda)$) and the product measurable structure. Then $\Phi_T = \Phi \circ U$ is also measurable on X with respect to B (respectively $B(\Lambda)$).

Notation: For any positive function f defined on X_0 , we put:

$$f(\Phi_T)(x) = f(\Phi_T(x))$$
 if $T(x) < \rho(x)$ and $f(\Phi_T)(x) = 0$ if not.

Definition 2: Let $A \in B(\Lambda)$ and for all $x \in X$ we put $D_A(x) = \inf\{t \ge 0 : \Phi(t, x) \in A\}$ if there exists and $D_A(x) = +\infty$ if not.

Also we put

 $T_A(x) = \inf\{t > 0 : \Phi(t, x) \in A\}$ if there exists and $T_A(x) = +\infty$ if not.

The function D_A (respectively T_A) is called the first entry time (respectively the first hitting time) of A.

Note that, for any $A \in B_0(\Lambda)$, if $D_A(x) \ge \rho(x)$ (respectively $T_A(x) \ge \rho(x)$), then

$$D_A(x) = T_A(x) = + \infty$$
.

Example: The life time ρ is the first entry time or also the first hitting time in $\{\omega\}$.

Note that $D_A(x) = 0$, for any $x \in A$.

Definition 3: Let $A \in \mathbf{B}(\Lambda)$. A point x is called regular for A if $T_A(x) = 0$ and it is irregular if $T_A(x) > 0$. We denote by A^r the set of all regular points of A, i.e. $A^r = [T_A = 0]$.

Remark 1: Let $A \in B_0(\Lambda)$ and denote by A the fine

interior of A and by A the set of all adherent points with respect to the fine topology $au_{\scriptscriptstyle \Phi}$. Then

$$\stackrel{\circ}{A} \subset A^r \subset \stackrel{-}{A}$$
.

Proposition 3: Let $A \in B$ (respectively $B(\Lambda)$). The following properties hold:

- (i) $s + D_A(\Phi(s, x)) = \inf\{t \ge s : \Phi(t, x) \in A\},$
- (ii) $s + T_A(\Phi(s, x)) = \inf\{t > s : \Phi(t, x) \in A\},\$
- (iii) $t + D_A(\Phi(t, x)) = D_A(x)$ on the set $[D_A \ge t]$,
- (iv) $t + T_A(\Phi(t, x)) = T_A(x)$ on the set $[T_A > t]$,
- $(\mathbf{v}) \quad D_{\mathbf{A}} \leq T_{\mathbf{A}} \text{ and } D_{\mathbf{A}} = T_{\mathbf{A}} \text{ if } \mathbf{x} \not \in A.$

Corollary 1: Let $A \in B_0(\Lambda)$. The following properties hold:

- (i) $t + D_A(\Phi(t, x)) \ge D_A(x)$,
- (ii) $t + T_A(\Phi(t, x)) \ge T_A(x)$,
- (iii) D_A is continuous with respect to the fine topology τ_Φ on each point of the set $\left[D_A>0\right]$.
- (iv) T_A is continuous with respect to the fine topology τ_Φ on each point of the set $\left[T_A>0\right]$.

Proof

(i) and (ii) are obvious by using (i) and (ii) in the last Proposition.

(iii) Let $x \in X_0$ be such that $D_A(x) > 0$. Then, there exists $0 < \alpha < D_A(x)$ and therefore $D_A(x) > t$ for any $t \in [0,\alpha]$. Using the last Proposition, we conclude that $t + D_A(\Phi(t,x)) = D_A(x)$, for any $t \in [0,\alpha]$ and that $\lim_{t \to 0} D_A(\Phi(t,x)) = D_A(x)$ i.e. D_A is continuous with respect to \mathcal{T}_{Φ} on the set $[D_A > 0]$. In the same way we prove (iv).

Proposition 4: Let A be an open subset of X_0 with respect to τ_{Φ} . Then $D_A(x) = T_A(x)$ on X_0 [7]. Moreover D_A is continuous with respect to the fine topology τ_{Φ} . Particularly, D_A is measurable with respect $B_0(\Lambda)$.

Proof: Since $D_A \leq T_A$, then $D_A = 0$ if $T_A = 0$. Now, if T_A (x) > 0 for some $x \in X_0$, then $x \notin A$ and $D_A(x) = T_A(x)$. In fact, if $x \in A$, there exists $\mathcal{E} > 0$ such that $\Phi(t,x) \in A$, for all $t \in [0,\mathcal{E}[$ and therefore $T_A(x) = 0$.

Now, let $x\in X_0$ be such that $D_A(x)=0$ i.e. $T_A(x)=0$ and there exists a non increasing sequence $(t_n)_n\in (R_+^*)^N$ such that $\Phi(t_n,x)\in A$ and $\lim_{n\to+\infty}t_n=0$. So, for any $\varepsilon>0$, there exists n_0 such that $t_{n_0}<\varepsilon$ and therefore $D_A(\Phi(t,x))\leq t_{n_0}-t<\varepsilon$, $\forall t\in [0,\ t_{n_0}[$. So that D_A is continuous at x with respect to the fine topology τ_{Φ} . The proof then holds by Corollary 1.

Proposition 5: Let $A,B \in B_0(\Lambda)$. Then, the following assertions hold [7]:

- $(\mathrm{i}) \quad A \subset B \Longrightarrow D_{\scriptscriptstyle B} \le D_{\scriptscriptstyle A} \ \ \mathrm{and} \ T_{\scriptscriptstyle B} \le T_{\scriptscriptstyle A},$
- (ii) $D_{A\cup B}=\inf\{D_A,D_B\}$ and $T_{A\cup B}=\inf\{T_A,T_B\}$,
- (iii) $\sup\{D_A, D_B\} \le D_{A \cap B}$ and $\sup\{T_A, T_B\} \le T_{A \cap B}$,
- (iv) for any increasing sequence $(A_n)_n$ of measurable subsets of X_0 such that $A = \bigcap_n A_n$, we have

$$D_A = \inf_n D_{A_n}$$
 and $T_A = \inf_n T_{A_n}$.

In the sequel set x < y for any $x,y \in X_0$ such that $x \le_{\Phi} y$ with $x \ne y$ and set:

- 1. $[x,y] = \{ z \in X_0 : x \leq_{\Phi} z \leq_{\Phi} y \},$
- 2. $[x,y] = \{ z \in X_0 : x \leq_{\Phi} z < y \},$
- 3. $]x,y[= \{ z \in X_0: x < z < y \},$
- 4. $]x,y]=\{z \in X_0: x < z \leq_{\Phi} y \}.$

Proposition 6: Let A be a closed subset of X_{θ} with respect to τ_{Φ} . Then, T_A is continuous with respect to τ_{Φ} .

Proof: Let $x_0 \in X_0$ be such that $T_A(x_0) < +\infty$ (obviously that $T_A(x_0) = +\infty \Rightarrow T_A(x) = +\infty$, $\forall x \in \Gamma_{x_0}$).

First Case: If $x_0 \in X_0 \setminus A$, then there exists $\varepsilon > 0$ such that $[x_0, \Phi(\varepsilon, x_0)] \subset X_0 \setminus A$ and so

 $T_A(x_0) > \Psi(x_0, x), \quad \forall x \in [x_0, \Phi(\mathcal{E}, x_0)]$. Then, $T_A(x_0) = T_A(x) + \Psi(x_0, x)$ and $0 \le T_A(x_0) - T_A(x) < \mathcal{E}, \quad \forall x \in [x_0, \Phi(\mathcal{E}, x_0)]$.

Second Case: If $x_0 \in A$, then there exists $\varepsilon > 0$ such that $[x_0, \Phi(\varepsilon, x_0)] \subset A$ and so $T_A(x) = 0$, $\forall x \in [x_0, \Phi(\varepsilon, x_0)]$.

Third Case: If $x_0 \in \partial A = A \setminus A$, then for any $\varepsilon > 0$ there exists $b \in [x_0, \Phi(\varepsilon, x_0)] \cap (X_0 \setminus A)$. If there exists $\varepsilon > 0$ such that $]x_0, \Phi(\varepsilon, x_0)[\cap A = \emptyset,$ so $T_A(x_0) > \Psi(x_0, x)$ and

 $T_A(x_0) = T_A(x) + \Psi(x_0, x), \ \forall x \in]x_0, \Phi(\mathcal{E}, x_0)[.$

Then, for any $x \in]x_0, \Phi(\mathcal{E}, x_0)[$, we have

 $0 \le T_A(x_0) - T_A(x) < \mathcal{E}.$

Finally, suppose that for any $\mathcal{E} > 0$ there exists $a \in [x_0, \Phi(\mathcal{E}, x_0)] \cap A$ and therefore for $\alpha = \Psi(x_0, a)$, we have $T_A(x) \leq \Psi(x_0, a) < \mathcal{E}$, $\forall x \in [x_0, \Phi(\alpha, x_0)]$.

In particular, $T_A(x_0) = 0$ and for any $x \in [x_0, \Phi(\alpha, x_0)]$, $0 \le T_A(x) - T_A(x_0) < \varepsilon$.

In the different cases cited above, we conclude that T is continuous at x_0 with respect to τ_{d} .

Remark 2: In the proof given above we can deduce that T_A is continuous at x_0 in the first and the third case by using Corollary 1.

Theorem 3: For any $A \in B_0(\Lambda)$, we have the following assertions:

- (i) $D_A = D_{\overline{A}}$ and $T_A = T_{\overline{A}}$,
- (ii) D_A (T_A resp.) is lower semicontinuous (continuous resp.) with respect to the fine topology \mathcal{T}_+ .
- (iii) D_A and T_A are measurable on X_O with respect to $\mathrm{B}_0\left(\Lambda\right)$.

Proof

(i) Obviously, $D_{\overline{A}} \leq D_A$ and $T_{\overline{A}} \leq T_A$ (Proposition 5). Next, let $x \in X_0$ be such that $D_{\overline{A}}(x) < +\infty$ $(T_{\overline{A}}(x) < +\infty$ resp.) and

let $t \ge 0$ (t > 0 resp.) be such that $\Phi(t, x) \in A$. By using Proposition 3 in [1] we deduce that for any $n \in N^*$ there exists $t_n \in [0, \frac{1}{n}[$ such that $\Phi(t+t_n, x) \in A$ and therefore

 $D_A(x) \le t + t_n \le t + \frac{1}{n} \quad (T_A(x) \le t + t_n \le t + \frac{1}{n} \text{ resp.}).$

Hence,
$$D_A(x) \le D_{\bar{A}}(x) + \frac{1}{n}$$

Proposition 7: Let $A \in B_0(\Lambda)$. So, we have $D_A = \inf \{ D_{A \cap M}, M \in B_0(\Lambda) \}$ and $T_{A = \inf \{ T_{A \cap M}, M \in B_0(\Lambda) \}}$.

Proof: Obviously, for any $M\in B_0(\Lambda)$, we have $D_A\leq D_{A\cap M}$ and $T_A\leq T_{A\cap M}$.

Next, we denote by B_0^{σ} the set of all countable unions of trajectories of X_0 and let $x_0 \in X_0$ such that

 $D_A(x_0) < \alpha$ (respectively $T_A(x_0) < \alpha$) for some real number α . Then, there exists

 $t\in [0,\ \alpha]$ (respectively $t\in]0,\ \alpha[$) such that $\Phi(t,x_0)\in A$. But $A=\bigcup_M A\cap M$, where M rains

the $\sigma-$ algebra $\mathbf{B}_0{}^\sigma$, so there exists $M_0\in \ \mathbf{B}_0{}^\sigma$ such that $\Phi(t,x_0)\in A\cap M_0$ so that $D_{A\cap M_0}(x_0)<\alpha$ (respectively $T_{A\cap M_0}(x_0)<\alpha$).

Then, we have

$$D_{A}(x_{0}) = \inf \{ D_{A \cap M}(x_{0}), M \in B_{0}(\Lambda) \} \text{ and }$$

$$T_{A}(x_{0}) = \inf \{ T_{A \cap M}(x_{0}), M \in B_{0}(\Lambda) \}.$$

Remark 3: Notice that for any $A \in B_0(\Lambda)$ and any $x_0 \in X_0$ we have $x \leq_{\Phi} \Phi_{D_A}(x)$ and $x \leq_{\Phi} \Phi_{T_A}(x)$.

Notation: For any $x,y \in X_0$ we write x < y if $x \le_{\Phi} y$ and $x \ne y$.

Proposition 8: Let $A \in B_0(\Lambda)$. Then, the following properties hold:

- (i) The maps Φ_{D_A} and Φ_{T_A} are increasing,in particular Φ_{D_A} and Φ_{T_A} are measurable on X_0 with respect to $B_0\left(\Lambda\right)$.
- (ii) $\forall x_1, x_2 \in X_0, x_1 < x_2 \text{ we have}$ $\Phi_{D_A}(x_I) = \Phi_{D_A}(x_2) \iff [x_I, x_2[\cap A = \emptyset \text{ (respectively}]$ $\Phi_{T_A}(x_I) = \Phi_{T_A}(x_2) \Longrightarrow [x_I, x_2[\cap A = \emptyset \text{)},$
- (iii) If A is dense in X_0 with respect to τ_{Φ} , then $D_A = T_A = 0 \quad \text{and for any } x_I, x_2 \in X_0 \quad \text{we have}$ $x_I < x_2 \Longrightarrow \Phi_{D_A}(x_I) = \Phi_{D_A}(x_2).$

Proof

(i) Let $x_1, x_2 \in X_0$, $x_1 < x_2$. Then we obtain $D_A(x_I) \le D_A(x_2) + \Psi(x_1, x_2)$ and $T_A(x_I) \le T_A(x_2) + \Psi(x_1, x_2)$ (Corollary 1). Also we deduce that $\Phi_{D_A}(x_I) \le_{\Phi} \Phi_{D_A}(x_2)$ and $\Phi_{T_A}(x_I) \le_{\Phi} \Phi_{T_A}(x_2)$.

(ii) Let $x_1, x_2 \in X_0$, $x_1 < x_2$ be such that $[x_1, x_2] \cap A \neq \emptyset$ and let $a \in [x_1, x_2] \cap A$. Then, we have

$$D_A(x_I) \leq \Psi(x_1, a) < \Psi(x_1, x_2).$$

Therefore we get $\Phi_{D_1}(x_1) < \Phi(\Psi(x_1, x_2), x_1)$,

i.e.
$$\Phi_{D_A}(x_I) < x_2 \le_{\Phi} \Phi_{D_A}(x_2)$$
.

Conversely, if $[x_1, x_2[\cap A = \emptyset]$, we get

 $D_A(x_I) = D_A(x_2) = +\infty$ or there exists $a_0 \in A$ such that $x_1 < x_2 < a_0$ and therefore

 $\Phi_{D_A}(x_1) = \Phi_{D_A}(x_2) = \bigwedge \{a \in A : x_2 < a\}$, the infinimum with respect to the associated order.

Now let $a \in [x_I, x_2[\cap A]]$, so there exists $\mathcal{E} > 0$ such that $[a, \Phi(\mathcal{E}, a)] \subset [x_I, x_2[\cap A]]$. We consider $a_I \in [a, \Phi(\mathcal{E}, a)]$ and therefore

$$T_A(x_1) \le \Psi(x_1, a_1) < \Psi(x_1, x_2).$$

Then,
$$\Phi_{T_A}(x_I) < x_2 \le_{\Phi} \Phi_{T_A}(x_2)$$
.

So for any $x \in X_0$ and any $n \in N^* \cap \left| \frac{1}{\rho(x)}, +\infty \right|$,

there exists $x_n \in A \cap [x, \Phi(\frac{1}{n}, x)]$ and therefore $D_A(x) \leq T_A(x) = 0$.

Proposition 9: Let $A \in B_0(\Lambda)$. Then for any $x \in X_0$ such that $D_A(x) < +\infty$ (respectively $T_A(x) < +\infty$) we have $\Phi_{D_A}(x) \in A$ (respectively $\Phi_{T_A}(x) \in A$).

Proof: For any $x \in X_0$ such that $D_A(x) < +\infty$ (respectively $T_A(x) < +\infty$) there exists a decreasing sequence $(t_n)_n$ of positive real numbers such that $D_A(x) = \lim_n t_n$ (respectively $T_A(x) = \lim_n t_n$) and for

 $D_A(x) = \lim_n t_n$ (respectively $I_A(x) = \lim_n t_n$) and for any n, $\Phi(t_n, x) \in A$. Since $t \mapsto \Phi(t, x)$ is a right continuous map with respect to τ_{Φ} , then we have $\Phi_{D_A}(x) \in A$ (respectively $\Phi_{T_A}(x) \in A$).

Corollary 2: Let A be a closed subset of $X_{\mathcal{O}}$ with respect to \mathcal{T}_{Φ} . Then, for any $x \in X_{\mathcal{O}}$ such that $D_A(x) <+\infty$ (respectively $T_A(x) <+\infty$) we have $\Phi_{D_A}(x) \in A$ (respectively $\Phi_{T_A}(x) \in A$).

Remark 4: Let $A \in B_0(\Lambda)$ and $x \in A$. Then $T_A(x) = 0$.

Proof: Let $x \in A$, then there exists $\mathcal{E} > 0$ such that $[x, \Phi(\mathcal{E}, x)[\subset A \text{ and therefore } T_A(x) = 0.$

A Hunt Theorem for Semidynamical Systems: In this section S (respectively E) will simply denote the set of all supermedian (respectively excessive) functions with respect to the extension resolvent V.

Definition 4: Let $A \in B_0(\Lambda)$ and let $s \in E$. The map ${}^sR_s^A$ (respectively R_s^A) given on X_0 by, the pointwise infinimum [13],

 ${}^{s}R_{s}^{A} := \inf\{t \in \mathbf{S}: t \geq s \text{ on } A \}$ (respectively $R_{s}^{A} := \inf\{t \in \mathbf{E}: t \geq s \text{ on } A \}$) is called the reduite of s on A with respect to \mathbf{S} (respectively \mathbf{E}).

Definition 5: For any $A \in B_0(\Lambda)$ and any $s \in E$ the map B_s^A given on X_0 by [13]:

$$B_s^A := \wedge \inf \{ t \in \mathbf{E} : t \geq s \text{ on A } \},$$

where, the infinimum is considered in ${\bf E}$, is called the balayage of s on A.

Theorem 4: Let $A \in B_0(\Lambda)$ and let $s \in E$. Then, we have $B_s^A = R_s^A := \sup_{\alpha > 0} \alpha V_\alpha(R_s^A)$,

the excessive regularization. In particular \mathbf{p}_{A}^{A} , \mathbf{p}_{A}^{A}

$$B_s^A = R_s^A \Lambda - \text{a.e.}$$

Proof: Let $(t_i)_{i \in I}$ be a family of all the elements of E such that $t_i \ge s$ on A. Then, we have $R_s^A = \inf_i t_i$

(Note that R_s^A is measurable with respect to $B_0(\Lambda)$ by Theorem 2) which is supermedian with respect to V

and
$$R_s^A$$
 is in \mathbf{E} and so $R_s^A = \bigwedge_{i \in I} t_i = R_s^A$, where, $\bigwedge_{i \in I} t_i$

is the greatest lower bound in E.

The following result is due to Mokobo

The following result is due to Mokobodzki. For the proof one can see [13], pages 9 and 13.

Proposition 10: For any $A \in B_0(\Lambda)$ and any $s \in S$, the function ${}^{S}R_{s}^{A}$ is supermedian with respect to V. For the following result also see [13].

Proposition 11: For any $A \in B_0(\Lambda)$ and any $s \in E$, we have $R_s^A = R_s^{\overline{A}}$.

Proof: It is obvious that $R_s^A \leq R_s^A$. Now, let $t \in \mathbf{E}$ such that $t \geq s$ on A, since s and t are continuous with respect to τ_{Φ} , we get $t \geq s$ on A and therefore $t \geq s$ on A which implies that $R_s^A \geq R_s^A$.

Corollary 3: For any $A \in B_0(\Lambda)$ and any $s \in E$, we have $s(\Phi_{T_A}) = R_s^A$.

Proof: Let $x \in X_0$ be such that $T_A(x) < +\infty$ and let $u \in \mathbf{E}$ be such that $u \geq s$ on A. Since by Proposition $\Phi_{T_A}(x) \in A$, then

$$u(x) \ge \mathrm{u}(\Phi_{T_A}(x)) \ge s \ (\Phi_{T_A}(x))$$
 and hence

 $R_s^{\stackrel{-}{A}}(x) \geq s$ ($\Phi_{T_A}(x)$), which yields by Proposition11 that $R_s^A \geq s$ (Φ_{T_A}).

Note that if $T_A(x) = +\infty$, then $s(\Phi_{T_A}(x))=0$.

Theorem 5: Let A be a closed subset of X_0 with respect to \mathcal{T}_{Φ} and let $s \in \mathbf{S}$. Then, we have ${}^{S}R_{s}^{A} = s(\Phi_{D_A}).$

Proof: Since s (Φ_{D_A}) is a decreasing function (Proposition 8), then $s(\Phi_{D_A}) \in \mathbf{S}$. Moreover for any

 $x\in A$ we have $s(\Phi_{D_A}(x))=s(x)$. Now, let $t\in \mathbf{S}$ such that $t\geq s$ on A. Since A is closed with respect to τ_{Φ} , then $\Phi_{D_A}(x)\in A$ for any $x\in X_0$ such that $D_A(x)<+\infty$ and therefore $t(x)\geq t(\Phi_{D_A}(x))\geq s(\Phi_{D_A}(x))$. Now, if $D_A(x)=+\infty$, then $\Phi_{D_A}(x)=\omega$ and $t(x)\geq s(\Phi_{D_A}(x))=0$.

Theorem 6: Let A be a fine open subset of X_0 and let $s \in E$. Then, we have $B_x^A = R_x^A = s(\Phi_{D_A})$.

Proof: For any $x \in X_0$ and $t \in [0, \rho(x)[$, we have $\Phi_{D_A}(\Phi(t,x)) = \Phi(D_A(\Phi(t,x)), \Phi(t,x)) = \Phi(t+D_A(\Phi(t,x)), x)$. But D_A is continuous with respect to \mathcal{T}_{Φ} (Proposition 4), so $\lim_{t \to 0^+} (t + D_A(\Phi(t,x))) = D_A(x)$ and therefore $s(\Phi_{D_A})$ is continuous with respect to \mathcal{T}_{Φ} . Since $s(\Phi_{D_A})$ is a decreasing function and continuous with respect to the fine topology \mathcal{T}_{Φ} , then $s(\Phi_{D_A}) \in \mathbf{E}$. Now, let $t \in \mathbf{E}$ such that $t \geq s$ on A. Since s and t are continuous with respect to the fine topology \mathcal{T}_{Φ} , so $t \geq s$ on A. But for any $x \in X_0$ such that $D_A(x) < +\infty$, we have that $\Phi_{D_A}(x) \in A$ and therefore $t(x) \geq t(\Phi_{D_A}(x)) \geq s(\Phi_{D_A}(x))$. Now, if $D_A(x) = \infty$, then $\Phi_{D_A}(x) = \omega$ and $t(x) \geq s(\Phi_{D_A}(x)) = 0$.

Remark 5: For the case of continuous semidynamical system on a locally compact space with countable base in [11] is proved the above statement for any complement of compact set.

Theorem 7: Let $A \in B_0(\Lambda)$ and $s \in E$. Then, [13, 14] we have $R_s^A = \inf\{R_s^G : G \in \tau_{\Phi}, A \subset G\}$.

Proof: Obviously, $R_s^A \leq \inf \left\{ R_s^G : G \in \tau_{\Phi}, A \subset G \right\}$. Now, let $t \in \mathbf{E}$ be such that $t \geq s$ on A. Then, for every $\mathcal{E} > 0$ the subset $G_s = [t + \mathcal{E} > s]$ is a fine open subset which contains A. Since $t + \mathcal{E} > s$ on $G_{\mathcal{E}}$, it follows that $t + \mathcal{E} \geq R_s^{G_{\mathcal{E}}} \geq \inf \left\{ R_s^G : G \in \tau_{\Phi}, A \subset G \right\}$

and therefore $t \ge \inf \{ R_s^G : G \in \tau_{\Phi}, A \subset G \}$. Consequently $R_s^A \ge \inf \{ R_s^G : G \in \tau_{\Phi}, A \subset G \}$.

In the sequel we formulate and we give a direct proof of Hunt's fundamental Theorem which is proved in [6-8]. In our case, we don't assume that the state space X is a locally compact metric space with countable base.

Theorem 8: Let $A \in B_0(\Lambda)$ and $s \in E$. Then $s(\Phi_{T_A}) \leq R_s^A$ on X_0 and $s(\Phi_{T_A}) = R_s^A$ except on $A \cap (A^r)^c$.

Proof: By Corollary3, we have that $s(\Phi_{T_A}) \leq R_s^A$ for any $A \in B_0(\Lambda)$. Next, let $x \in A^r$ (i.e. $T_A(x) = 0$). Since $R_s^A \leq s$, then

 $s(\Phi_{T_A}(x)) \le R_s^A(x) \le s(x) = s(\Phi_{T_A}(x))$. Hence $s(\Phi_{T_A}) \le R_s^A \text{ on } A^r.$

Now, let $x \in A^c$ be such that $T_A(x) = +\infty$. It is obvious that $T_A = D_A$ on A^c (see Proposition3) and therefore $D_A(x) = +\infty$. Hence, we deduce that $A \subset \Gamma_x^c$. Since by Theorem 1, $1_{\Gamma_x^c} \in \mathbf{E}$, then $s1_{\Gamma_x^c} \in \mathbf{E}$.

On the other hand, using the fact that $s \, 1_{\Gamma_x^c} = s \,$ on A, we obtain $R^A_{\cdot}(x) = 0 = s(\Phi_{T_A}(x))$.

Next, let $x \in A^c \cap (A^r)^c$ be such that $T_A(x) < +\infty$, then the ordered interval $U_x = [x, \Phi_{T_A}(x)]$ is a fine open and also a fine closed non empty subset of X_0 (Proposition 4) in [1] and $U_x \subset A^c$. Let us set $s_{x=} s(\Phi_{T_A})$ on U_x and $s_{x=} s$ on $(U_x)^c$.

Obviously, s_x is continuous on U_x with respect to τ_{Φ} . Also, $s_{x=} s$ on $(U_x)^c$ on the fine open subset $(U_x)^c$ with respect to τ_{Φ} . Since $X_0 = U_x \cup (U_x)^c$ and $U_x \cap (U_x)^c = \emptyset$, we get that s_x is τ_{Φ} -continuous. Using the fact that s_x is decreasing on X_0 , we obtain by

Theorem1 that $s_x \in \mathbf{E}$. But the fact that $A \subset U_x^c$ gives us that $s_x = s$ on A and therefore $R_s^A(x) \leq s_x$. Particularly, $R_s^A(x) \leq s(\Phi_{T_A}(x))$. Hence

 $R_s^A(x) = s(\Phi_{T_A}(x))$ and consequently $R_s^A = s(\Phi_{T_A})$ on $X_0 \setminus (A \cap (A^r)^c)$.

Remark 6: In [1] it is proved the above statement for any $A \in B_0$ in the case where s = 1 on X_0 .

Corollary 4: Let A be a subset of X_0 which is closed with respect to τ_{Φ} and such that $\Lambda(A \setminus A^r) = 0$ and let $s \in E$. Then, we have $B_s^A = s(\Phi_{T_s})$.

Proof: Since $s(\Phi_{T_A})$ is a decreasing function—and continuous with respect to τ_{Φ} , then, by Proposition 6 and Theorem 1, $s(\Phi_{T_A}) \in \mathbf{E}$ [1, 12]. On the other hand, by Theorem 4:

 $B_s^A = \hat{R}_s^A = R_s^A$, Λ -a.e. and $R_s^A = s(\Phi_{T_A})$ except on $A \setminus A^r$, which is Λ -negligible. Then, $B_s^A = s(\Phi_{T_A})$ Λ -a.e. Since B_s^A and $s(\Phi_{T_A}) \in \mathbf{E}$, we get [5] $B_s^A = s(\Phi_{T_A})$.

REFERENCES

- Bezzarga, M. and Gh. Bucur, 1994. Théorie du potentiel pour les systèmes semi-dynamiques. Rev. Roumaine Math. Pures. Appl., 39, pp: 439 - 456.
- Bhatia, N.P. and O. Hajek, 1969. Local semidynamical systems. Lecture Notes in Math. 90. Springer Verlag, pp: 12 - 26.
- Getoor, R.K., 1980. Transience and recurrence of Markov Process. Séminaire de Probabilité XIV 1978-1979. Lecture Notes in Math.784, Springer Verlag, Berlin, pp. 397 - 409.
- Saperstone, S.H., 1981. Semidynamical systems in infinite dimensional space. App. Math. Sci., Vol. 37. Springer verlag, pp: 1 – 33.

- 5. Bezzarga, M., 1997. Coexcessive functions and duality for semi-dynamical systems. Romanian J. Pure and Applied Math., XLII: 15-30.
- 6. Hunt, G.A., 1957. Markoff process and potentials. I,IJM1, pp: 44-93.
- 7. Blumenthal, R.M. and R.K. Getoor, 1968. Markov Processes and Potential Theory. Academic Press. New York and London, pp: 97 146.
- 8. Dellacherie, C. and P.A. Meyer, 1987. Probabilités et Potentiel. Vol. XII-XVI, Hermann Paris, pp. 206 222.
- Bezzarga, M. and Gh. Bucur, 1996. Duality for semi-dynamical systems. Potential Theory-ICPT94 by Walter de Gruyter and Co. Berlin, New York, pp: 275-286.
- Koopmann, B.O., 1931. Hamiltoniens systems and transformation in Hilbert spaces. Proc. Nat. Acad. Sci. USA., 17-5, pp: 315 - 318.
- 11. Hmissi, M., 1989. Semi-groupe déterministe. Lecture Notes in Math. 1393, pp. 135 144.
- Bezzarga, M., E. Moldoveanu and N. Secelean. Dual resolvent for semidynamical systems. Preprint http://adela.karlin.mff.cuni.cz/katedry/kma/pt
- Boboc, N., Gh. Bucur and A. Cornea, 1981. Order and convexity in potential theory. Lecture Notes in Math. 853, Springer Verlag, Berlin, New York, pp: 68 - 83.
- 14. Bliedtner, J. and W. Hansen, 1986. Potential Theory. An Analytic and Probabilistic Approach to Balayage. Universitext. Springer, Berlin, Heidelberg, New York, Tokyo, pp: 242 - 255.