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Abstract: The main result of this paper provides a direct proof of a Hunt's Theorem of the classical
potential theory for the so called local semidynamical systems in non locally compact infinite

dimensional spaces.
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INTRODUCTION

The structure of this paper is adapted to the classical
results which present a difficulty for the measurability.
Starting by a fransient semidynamical system

( X B.d,w ), [1-4], we introduce the notion of
hitting time 7, of a measurable subset A of Xp. We
prove the measurability of T, with respect to the
O -algebra Bg( A) defined in [5] and we give further
properties by using the semidynamical specificity. We
give a relationship between the hitfing time 7, and the
reduite operator R* in classical petential theory and we
give a direct proof of a Hunt's Theorem [6]. Here we
don't use the Choquet capacity [7, 8]. Howover in the
work of Hunt [6] cited here by as principal reference,
the measurability is ensured with respect to the initial
O -algebra, but in this work, we express the

measurability in a weak sense i.e. the measurability
along the trajectories. Which is sufficient for integrate

with respect o the reference Lebesgue measure A .

Preliminary: Here, we will introduce some definitions
which  will be wuseful in the remainder of this
study [1, 4, 5, 9].

Definition 1: Let ( XB ) be a separable
measurable space with a distinguished peint ¢ and a
measurable map PR, XX — X having the
following properties:

{81} for any xe X there exists an element

plx)e [0,+00] such that P(t,x)# @ for all
t€ [0, p(x)[ and ®(z, x) = @forall £ 2 p(x),

(Sy) for any s,t€ R, and any x€ X we have

D(s5, D, ) =D(s+1, x),
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Sy P(0,x)=x,forall xe X,

S if  SEO=DBE y)hior al >0,
then x=1y.

The collection ( X B &.w ) is  called
semidynamical system with a coffin state @ .

Set X, :X\{a)}. For any x€ X, we denote by
I, the trajectory of x,i.e.:

I, = {Cb(t,x),te [O,p(x)[} and we define the
function @ _ on [0, p(x)[ by @ (1) = P(z,x). So
for any x,ye X, we put x<g, y if yel, . A
maximal trajectory is a totally ordered subset I" of X,

with respect to the above order, such that there is no
X, € X, \I' which is a minorant of I and such for

any x€ I', wehave I', C T".

In what follows, we shall suppose that
( X B, & w ) is a transient semidynamical system
[, 3]. In [1] we have associated a proper and
submarkovian resolvent V=(V,),., of kernels on

the measurable space (Xy,By), defined by :

(%)

V, f(x)= j e™® f(P(t, x)dt, Vxe X, Vae R,

0

where, Be={UC B; UC X,}.

The family V is the resolvent associated to the
deterministic semigroup H= (H r)zzo introduced in
[10, 11].

It is proved that the map @  is a measurable
isomorphism between [0, p(x)[ and I', endowed with

trace measurable structures.
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Let A be the Lebesgue measure associated with the
semidynamical system ( X B. &, @ ) [9] given by
A(A) = ﬂu(‘b;l (ADfor any xe€ X,,Ae By and
AcTl,,
R. We recall [5] that in the same way A can be defined
on the @ -algebra By (A) the set of all subsets A of X

such that A MM € By for any countable union M of
trajectories of X, Set Bg the collection of all

where A denotes the Lebesgue measure on

countable unien of trajectories of X . We denote by
F(X;,A), the set of al nonnegative Bo(A).

measurable functions on X One can show that the
resolvent family V may be considered on the
measurable space ( Xo Bo(A) ) by sefting also :

V. f(x)= jo"(” e F(d(r, x)dr, Ve X, Vae R,.

We consider alse the arrival time function

WYX XX, >R, gven[2]by:

Wix,y)=t if Ptx)=y.rel0,px) and
Y(x, y)=4o0 ifnot.

It is shown that the arrival time function ¥ is
X, X X, with the product

measurable structure of the O -algebra By ( A) [5, 9].

Using the Lebesgue measure A and the function V',
we associate to the semidynamical system a dual

measurable if we endow

resolvent V¥ = (V:) a0 ©Of kernels on the measurable
space ( Xg Bo(A) ) with respect to A, [5]. The above
resolvent is given on F (X ,, A) by:

Vo F(x) =je‘“*’(WG(y,x)f(y)dA(y),Vxe X, VaeR,, 1L

where, G{y,x) =1, if ¥ de X and G(y,x) = 0, if not,
define  the  Green
( XBdw)

For each x € X, let us denote by:

v, ={vc X, Jae |0, px)[/ @, x)e v,Vie [0,af}

function associated  to

and let T, be the topology for which V', generates all
the neighborhoods of x [1]. 7, is namely the fine
topology associated with ( X B o w )

Also denote by T, ,gj the inherent topology [1] asseciated
with ( X B. &, @ ) which is characterized as being

the set of all subset D of XO having the following
property:
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Vxe X, Vi, € [0, p(x) : @), x}e D=
O(r,xye DVie |r,—&,1,+£[ N[0, p(x)],
for some & > (.

Theorem 1: The set K(A) of the V-excessive
functions on ( X Bo(A)) is identical to the set of all
positive decreasing functions on X, with respect to the
order ‘<., confinuous with respect to the fine
topology 7, and finite at the peints x€ X, which

are not minimal with respect to the same order [12].
Thus, the following result holds:

Proposition 1: Any function fe€E(A) is lower

. . . 0
semicontinuous with respect to 7, .

Proof : Since V is a proper submarkovian resolvent on
(Xy Be {A) 3, then by Hunt's approximation theorem,
[13] page 23, there exists a sequence {f,), in
F(X,.A) such that supV, f,=f . Since V, f, is

continuous with respect fo ”L'g [1], then f is lower

. . . 0
semicontinuous with respect to 7, .

Next, we shall prove the following Theorem which will
be needed later.

Theorem 2: The following properties hold:

{iy Bvery T, -open setis By (A) -measurable,

{ii) Every monotonous function { with respect to ‘<’
is Bo (A) -measurable.

Proof
Let Q€ T,. Using a result in [1], I, € 7, we
get that OMI, €7, which means that

D (OMT.) is an open set with respect to the

fine trace topology on [0, p{x}]. Thus, it is
measurable with respect to the trace Borel O -
algebra. Using the fact that (I)x is a measurable
isomorphism, we get that OMI1 €By and
therefore O NI, € Bo(A).

The function g defined by
gt)y=fo®(t,x)=f od_(¢) is monotonous
on [0, p(x)] which is measurable with respect to
trace Borel O -algebra on [0, p(x)] . Using the fact

that © , 15 a measurable isomorphism, we get that
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f = go®_" is By-measurable and then f is

Bo(A) -measurable.
In the sequel,for any subset A of X ; we put A" .= X A A,

On the Measurability of the Hitting Time:
Blumenthal and Getoor [7] proved the measurability of
the hitting time for any Borel measurable subset A in
the case of locally compact separable metric space.

Proposition 2: Let T be a positive measurable function
on X with respect to the O -algebra B ( respectively
B(A)),  then the by

D, (x) =DP(T(x), x) and
b (0)=w
{ respectively B (A) .

map

if

D, given
T(x) < p(x)

if not, is measurable with respect tc B

Proof: The map U given on X by U(x) = (T(x),x) is
measurable on X with respect B { respectively B (A) )
and the Then
D, =P ol is also measurable on X with respect to

B (respectively B (A) ).

product  measurable  structure.

Notation: For any positive function f defined on X,
we put:

FAP)(x) = f(Pr(x))
F(D,)(x) =0 if not

if and

T(x) < p(x)

Definition 2: Let A € B (A) and for all x€ X we put
Du(x) :'mf{t 20:P(t,x)e A} if there exists and
Dy(x) = + coif not.

Also we put

Ta(x) :'mf{t >0:®(r,x)e A} if there exists and
Ta(x)= +ooifnot.

The function D4 { respectively T4 ) is called the first
entry time ( respectively the first hitting time ) of A.
Note that, for any 4 € Bo(A),if Da(x) 2 p(x)
{ respectively T4 (x) = p(x)), then

Da) Ty =+ o0

Example: The life ime p is the first enfry time or
also the first hitting time in {(l)}

Note that D4(x) = 0, forany x€ A.

Definition 3: Let A € B{A). A point x is called
regular for A if Ta(x) = © and it is irregular if
T,(x)>0. We denote by A" the set of all regular
points of A, i.e. A" = [TA = 0].
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Remark 1: Let A € By(A) and denote by A the fine

interior of A and by A the set of all adherent points
with respect to the fine topology T, . Then

ACArC A

A€ B ( respectively B(A) ).
The fellowing properties held:

() s+Da(P(s,x)=nfft =5 (2, x) e A},

iy s+ Ta(P(s, x))=Infir > s : B, x) e AJ,

(iti) £ + D (D(4, X)) = Da(x) on the set [D, >1],
vy 1+ Ty (®(t, x)) = Ta(x) on the set [T, > z],

vy D, €T, and D, =T, if x¢ A.

Proposition 3: Let

Corollary 1: Let

properties hold:

1) 1+Da(P(r, x)) 2Dalx),

i) 1+ Ta(P(t,x)) 2Tax),

(iii} D4 is continuous with respect to the fine topology
T, oneach point of the set [DA > 0] .

A € Bgp(A). The following

{iv) T4 is continuous with respect to the fine topology
T, on each point of the set [TA > 0].

Proof

(i) and (i} are obvious by using {i) and (ii} in the last
Proposition.

(ii}Let x€ X, be such that D4(x) > 0. Then, there
exists 0 < @& < Dy{x) and therefore D4(x) > ¢ for any
re [0, 6(]. Using the last Proposition, we conclude that
t + Day(P(t, x)) = Dy(x), for any t€ [0, CZ] and that

linol D (D(t, x))y= Da(x) i.e. Dy is continuous with
£
respect to T, on the set [DA > 0].

In the same way we prove {iv}.

Proposition 4: Let A be an open subset of Xp with
Then DA(JC) = TA(X) on Xp [7].

Moreover I35 is continuous with respect to the fine

respect to Ty .

topology 7T, . Particularly, D4 is measurable with
respect Bo(A) .

Proof: Since D4 < T4, then D4 = 0if T4 =0. Now, if
T, (x} > 0 for some x€ X then x¢ A and
Da(x)=T(x). In fact, if x€ A, there exists £ >0 such
that P(¢t,x)e A, for all te [0,8[ and therefore
Tax)=0.
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Now, let x€ Xpbe such that Da(x) =0 ie Ta(x) =0
and there exists a non increasing sequence

e (ROY that  P(r ,x)e A

lim ¢, =0. So, for any & >0, there exists n, such

H—rtea

that

such and

L, <€ and therefore
D, (D(t, x) <t, —t<¢g, Yte|o, t, [ So that
Dy is continuous at x with respect to the fine topology

T4 . The proof then holds by Corollary 1.

Proposition 5: Let A,B€ By (A) . Then, the following
assertions hold [7]:

iy AcB=D,<D, andT, =T,

iy D, p=inf{D,.D,}and T, ,=inf{l,.7,}.
(iii) Sup{DA, DB}S D, p and sup{T,, T, }<T, .,
(iv) for any increasing sequence (A, ), of measurable

subsets of Xp such that A=mA,, we have
DA:mnf D 4 and Ta= 12f TAH )

In the sequel set ¥ < y for any x,y€ X such that x SeY
with x # v and set:

L [xyl={z€ Xorx <4 25, v L

2. Ixyl={z€ X x=, z<vy},

3. Iyl={lze Xpox<z<y},

4. Iyl={z€ Xorx< 2S5 v )

Proposition 6 ; Let A be a closed subset of X with
respect to 7, . Then, T4 is continuous with respect to

Tg-

Proof: Let x,e X5 be such that
Tilxg) <+oo (obvicusly that Ta(xg)=+o0 =
Ta(x)=+00 ,Vxe T, )

First Case: If x;e X\ A4, then there exists &£ >0

such that [xo, P(&, x, ) [ < Xo\ A and so

Talxo) » Y(x,,x), Vxe [xnP(& x;)[ Then,
Talxo)=Talx) +VY(x,, x) and

0< Talxo) - Ta(x) <&, Vxe [x P&, x,) [

0
Second Case: If x,c A, then there exists £ > 0 such
that [x,, P(&, x,) [ S A and so Ta(x) =0,

Vxe [x®E x,) [
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0
Third Case: I xe dA = A\A, then for any
£ > Othere exists be [x, P&, x,) [N (XN A). If

there exists £ > 0 such that | x,, (€, x,) [ MA= 3,
so Talxg) > W(x,,x) and

Tu(r) = Ta0) + (i, 1), Vxe iy B(E, )
Then, for any xe |x, ®(&, x,,) [, we have

0= Talxg) - Talx) <€

Finally, suppose that for any & >0 there exists
ae [x, P& x,)[ MA
o =Y(x,,a), wehave T4(x) < ¥(x,,a)<&, V
xe [x, Pla, x,) [

In particular, Fa(xg) ¢ and for
xe |x, Pler, x,) |, 0< Talx) - Talxg) <€ .

In the different cases cited above, we conclude that T

and therefore for

any

is continuous at x, with respect to T, .

Remark 2: In the proof given above we can deduce
that 74 is continucus at x; in the first and the third case
by using Corollary 1.

Theorem 3: For any A€ Bo(A), we have the
following assertions:

iy Day=D_ and Ty=T_,
A

A

(i) D4 (T4 resp.) is lower semicontinuous
{continuous resp. ) with respect to the fine topology
T, .

{iii} D4 and T4 are measurable on X, with respect to

Bo(A).

Proof
{iy Obvicusly, D < Dy and T £ T4
A A
{Proposition 5). Next, let x  Xp be such

that D_(x) <+oo (T (X)< +oo resp.) and
A A

let £ 2 0 { t> 0resp.) be such that P(£, x) € A.
By using Propositien 3 in [1] we deduce that for any

1
ne N* there exists t,e [0, —[ such that
1
D(t+1t,,x)e A and therefore

1 1
Da(x) € 41, € 14— (Ta(x) < 141, < i+ — resp.).
n n

1
Hence, Ds(x) < D_(x) +—
4 n
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1
(Ty(x) < T (x) + — resp. ), for any ne N*.
A n
Consequently D4 (xX) € D_(x) (T4 (0) < T (x)
A A
resp.). Note that if D_(x) = +oo (T (x) = +o0
4 A

resp. ), then Dy (X) = + o0 (T4 (X) = + o0 resp.).

(i} Let & = O and let (x,), be a sequence in

[ Da (x) < e ] which is converges to x,e Xy

with respect to 7. If Dy (xg) =0,

then x,e [ Da(x) < @ . If Dy (xg) > 0, then

by Corcllaryl Dy is continuous at x, w.r. to T,

So that (D4 (x;,)), converges to D4 (Xg) and therefore
xse [ D4 (x) £ @& ]. By Proposition6 we get that

T4 iscontinuous with respectto 7 o

(iii) It is obvious by {ii}.

Proposition 7: Let A€ Bp(A). So,

Dy=inf{D, .M eBy(A) }and
Taeinf(r, ,, . Mc Bo(A) }.

we  have

Proof: Obvicusly, for any M € Bg(A), we have
Di<pD, , andTa <T

AnM
Next, we denocte by By 7 the set of all countable unions
of trajectories of X and let x,e Xy such that

Dy (xp) <@ (respectively T4 (x5) <& ) for some real
number & . Then, there exists

te [0, &#] {( respectively re 10, ¢ [ ) such that
P, x,)e A.But A=UANM, where M rains
M

the & —algebra Bo” , so there exists Moe Bo? such
that ®(r,x,)e ANM, so that Dy, @) < &

(respectively T, (Xo)< &)

M 0
Then, we have

Dy (x) = inf{D, ,, (x,), M € Bo(A) }and
Ta (o) = nf{T,, ., (x,). M € Bo(A) J.
Remark 3: Notice that for any A€ By (A) and any
xe Xo wehave x < q)DA (x) andx < ¢TA (x).

Notation: For any x,ye X; we wiite x <y if x<_ ¥
and x # y.

Proposition 8: Let A€ Bo(A). Then, the following
properties held:

62

iy The maps q)DA and q)TA are increasing,in
particular P p, and q)TA are measurable on X,
with respect to Bg {A) .

{iiy Vx,,x,e Xo x, <X, wehave

(I)DA (x) = (I)DA (x3) & [xsx MA= @ ( respectively

(I)TA (x7)= (I)TA (2= [xr 2N ;1 =0,
{iii} If A is dense in X3 with respectto T 5 then
Dy =T, =0 and for any x,x, € Xp we have
X< X = q)DA {x;) = q)DA {x,).
Proof
i) Let x,x,e Xg X, <X,.Then we obtain
Da(xr) < Dalo2) +%¥(x, x,) and
Talxy) € T4 (x2) +P(x;, x,) (Corollary 1}.
Also we deduce that (I)DA (x;) Zq (I)DA {x,) and
q)TA {x;) Sq; q)TA {x2).
(iiy Let x,,x, e Xg X, <X, besuch that

[x,%[MA #@ andlet ae [x,x.[r A, Then,
we have

DA (XJ)S l;p(xba) < lP(xDxQ,)'
Therefore we get (I)DA () <P(P(x,x,), %),
ie. q)DA () <x<, q)DA (x).

Conversely, if [x;,x.[ MA = @, we get
Dy (x;) = Dy (x3) = + 00 or there exists a,e A such
that x; < x; < a, and therefore

(I)DA () =P, (x2} =a{ae A:x, <af. the infinimum

with respect to the asscciated order.
2
Now let ae [x,x[ M A, so there exists & > 0 such

0
that  [a. (e < [xsxlM A. We consider
a;e la, (€ .a) [ and therefore
Ta(x)) < ¥ix,a) <¥ix,x,).
Then, q)TA x) <x<y q)TA {x,).
{iii} Suppose that A is a dense subset of Xy with
respect to 7, .
So for any xc X; and any n ¢ N*ﬂ} 1 +D{,
P

‘ 1

there exists x, € A M [x, ®(—, x) [ and therefore
n

DA (X) < TA (]C): 0.
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Proposition 9: Let A€ Bo(A). Then for any xe Xp
such that D4 (x) < +90 (respectively T4 (X) < +o0)

we have ¢DA (x)e f_l { respectively q)TA (x)e 1:1 ).

Proof: For any x & Xo such that

D4 (x) <+o0o (respectively T4 (x) <+o0) there
exists a decreasing sequence  (f,), of positive real
numbers such that

D4 (x)=lim¢ (respectively T4 (x)=1im¢ ) and for

any n, P(¢,,x)e A. Since ¢+ P(t,x) is a right

continuous map with respect to 74, then we have

(I)DA {(xye ;1 ( respectively (I)TA (e ;l 3

Corollary 2: Let A be a closed subset of X; with
respect o T4, . Then, for any x€ X such that

Dy (x) <+o0 (respectively T4 (x) <+o0) we have
q)DA (x)e A { respectively ¢TA {(xic A).

0
Remark 4: Let A € Bg(A) andxe A. Then
Ts(x)=0.

0
Proof : Let xc A, then there exists £ > 0 such that

[x,P(e,x)[ CA and therefore T4 (X)= 0.
A Hunt Theorem for Semidynamical Systems: [n this

section 8 {respectively &) will simply denote the set of
all supermedian {respectively excessive} functions with

respect to the extension resolvent V.

Definition 4: Let A€ By (A) and let s€ E. The map
SRSA (respectively RSA ) gven on Xg by, the
peintwise infinimum [13],
SpA L] .

R! =inf{reSu=son A } ¢
R =inffte BE:r>5 onA })is called the reduite

respectively

of s on A with respect to S {respectively E ).

Definition 5: For any A€ Bg(A) and any s € E
the map Bf given on Xg by [13]:

Bli=nA inflte E:t>s onA |},

where, the infinimum is considered in E , is called the
balayage of son A,

Theorem 4: Let A€ By (A) and let s&€ E . Then, we

have Bf: Rf I=SUPQVK(R;1),

>0
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the excessive regularization. In particular

BSA = RSA A —ae.

Proof: Let (#;),, be afamily of all the elements of
E suchthatz = s on A, Then, we have R;" :iireljf 3

( Note that R* is measurable with respect to Bo(A)
by Theorem 2 ) which is supermedian with respect to V

P P
and R;‘ isin E and so R;‘ :/\ti:Bf‘where, AL

iel iel
is the greatest lower bound in E. .

The following result is due to Mokobodzki. For the
proof one can see [13], pages 9 and 13.

Proposition 10 : For any A€ Bj(A) and any s€ S,

the function ¥ R;‘ is supermedian with respect to V.

For the fellowing result also see [13] .
Proposition 11: For any A€ By(A) and any s€ E,

4
we have Rf =R..

Proof: It is obviocus that Rf < Rf. Now, letr € K

such that 7 2 § on A. since s and # are confinucus with

respectto Ty, we getr 2§ on A and therefore

t = son A which implies that Rf > Rf.

Corollary 3: For any A€ By (A) and any s€ E | we
have s(‘l)TA )= Rf,

Proof: Let xe Xy be such that Ta(x) <+oce and let

ue K be such that ¥ =son A. Since by

Proposition9, q)TA {(x}c A, then

wx)y = uf ¢TA {(x) = s{ q)TA (x)) and hence

R;i xy =s ((I)TA (x}}, which vields by Propositienll
that R;* > (d)TA ),
Note that if T4(X) = + oo, then s (q)TA (xN=0.

Theorem 5: Let A be a closed subset of X with
respect to Ty, andlet s€ 8. Then, we have

SR:l:S(q)DA 3

Proof : Since s (q)DA) is a decreasing functicn

{Proposition 8 }, then s{ (I)DA Ve 8. Moreover for any
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xc A we have s(q)DA {x}) = s{x}. Now, let 7€ 8§ such
that r = 5 on A. Since A is closed with respect to T,
then ¢DA {x;c A for any xc Xp such that

Dy (x) < 490 and therefore

) 2 (P, )2 (P, ).

Now, if D4(X) = + oo, then (I)DA (x) =@ and

Hx) 2 s((I)DA (xn=0.

Theorem 6: Let A be a fine open subset of X and let
A_ pA_
s€ K . Then, we have B =R'= s(q)DA ).

Proof: For any xe Xy and fc [O,p(x)[, we have
q)DA (D (12)=P (DY P (1.0)), P (1.x))=

D (+D, (B 1, x)), x).

But Dy

(Propositien 4), so Iim ( # +Da( P (1.x)) ) = Da(x)
F>0"

is continuous with respect to 7T,
and therefore s{ P DA) is continuous with respect to
Ty - Since S(Q)DA) is a decreasing function and

confinuous with respect to the fine topology 74, then

s(q)DA e K . Now,let 1€ E suchthat: > 5 on A.

Since s and r are continuous with respect te the fine

topology Ty, s0t 2 son A. Butfor any xe Xg such

that Da(x) < +oo, we have that q)DA (x)e A and
= =

therefore #x) = { P p, ) = D p, (4.
Now, if D4 (x)=+090, then q)DA {x) =@ and

> -
Hx)y = s((I)DA (xn=0.
Remark 5: For the case of continuous semidynarnical
system on a locally compact space with countable base
in [11] is proved the above statement for any
complement of compact set.
Theorem 7 : Let A€ Bo(A)and s€ E . Then, [13,
14] we have REA =inf{Rf :Ge T, AC G}-

Proof: Obvicusly, R;‘ < mf{R:} GeT,,AC G}.

Now, let t € E be such that 7+ 2§ on A. Then, for
every &£ > 0 the subset G£=[I +& > 5] is a fine open

subset which contains A. Since 7 +&> s on G, it

follows that r+ £ = Rff = mf{RSG :Ge%,ACG}
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and therefore 2 inf{Rf Get,, AC G}.
Consequently R 2 inf{Rf GeT,,AC G}.

In the sequel we formulate and we give a direct proof of
Hunt's fundamental Theorem which is proved in [6-8].
In our case, we don't assume that the state space X is a
locally compact metric space with countable base.
Theorem 8: Let A€ Ba{A) and s&€ K . Then

s(q)TA) < R;‘ on Xg and s(q)TA) :R;1 excepl on
AN(AT)".

Proof: By Corollary3, we have that s{ (I)TA) < R:‘ for
any A€ Bg(A). Next, let x€A™ ( ie Ty4(x) =0 ).
Since R;‘ < s, then
( (I)TA (x) < R;i < 5 ) = s((I)TA (x)) . Hence
3( q)TA) < Rf on A,

Now, let x€ A° be such that T4(x) = + oo . It is obvious
that T4 =D, on A® (see Proposition3} and therefore

D4(x) = +oo. Hence, we deduce that A 17, . Since

by Theorem 1, 1r€ e E ,then slrc e E .

On the other hand, using the fact that s 1r€ =5 onA, we
CpA ==

obtain R* (x) =0 =s{ ¢TA ().

Next, let x€ A° M (A")" be such that T4(x) < +o0,

then the ordered interval U, = [x, P (x)[ is a fine

open and also a fine closed non empty subset of Xy

{Proposition 4} in [1] and U_ < A°. Let us set

P (I)TA yon U/, and s, - s on {[7,)".

Obviously, s, is continucus on U, with respect to 7.
Also, 5, - s on (U, )° on the fine open subset (U, }° with
respect to Ty . Since Xo=U, W (U,)" and

U, MU, ) =@, we get that 5, is T -continuous.
Using the fact that s, is decreasing on X;;, we obtain by
Theorem] that s,€ K. But the fact that A U gives

us that s, - s on A and therefore R*(x) < s, .
Particularly, R*(x} < s(P, (x)). Hence

R;‘ () = s(Py, (x)) and consequently Rj =s(P;)
on Xad (AN (AT ).

Remark 6: In [1] it is proved the above statement for
any A€ Bg in the case where s =1 on Xg.
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Corollary 4: Let A be asubset of Xz whichis closed

with respect to 7, and such that A (A\A") =0 and let
s€ K . Then, we have g4 =s(&_ ).

Proof: Since s(q)TA) is a decreasing function and

confinuous with respect to T, then, by Proposition 6
and Thecrem 1, s{ q)TA ye E [1, 12]. On the other
hand, by Theorem 4:

N
BY_- R* =R* A-ae and R*= s(@TA) except on
AV A", which is A - negligible. Then, BSA = s ‘I)TA)
A-a.e. Since BSA and 5@, Y€ E, we get [5]
Bl =s( <I>TA ).
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