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Abstract: The development and diversification of machines and 

mechanisms with applications in all fields require new scientific researches 

for the systematization and improvement of existing mechanical systems by 

creating new mechanisms adapted to modern requirements, which involve 

increasingly complex topological structures. The modern industry, the 

practice of designing and building machinery is increasingly based on the 

results of scientific and applied research. Each industrial achievement has 

backed theoretical and experimental computer-assisted research, which 

solves increasingly complex problems with advanced computing programs 

using an increasingly specialized software. The robotization of 

technological processes determines and influences the emergence of new 

industries, applications under special environmental conditions, the 

approach of new types of technological operations, manipulation of objects 

in the alien space, teleoperators in the top disciplines like medicine, robots 

covering a whole field greater service provision in our modern, 

computerized society. Movable, robotic, mechatronic mechanical systems 

have entered nearly all industrial spheres. Today, we can no longer 

conceive of industrial production without these extremely useful systems. 

They are still said to steal from people's jobs. Even so, it should be made 

clear that these systems create value, work in difficult, repetitive, non-

pausing, high-quality work, without getting tired, without getting sick, 

without salary, and producing value who are paid and people left without 

jobs, so that they can work elsewhere in more pleasant, more advantageous 

conditions, with the necessary breaks. Before studying the trajectory of a 

tracer point, through the command laws in the active kinematic clutch space 

of the robot, the MPz configuration must be set in which the characteristic 

point occupies the initial and final positions. In the general case, the 

trajectory of the characteristic point of MPz is materialized by a curve in 

3D geometric space, a curve that can be obtained by interpolation on 

specific portions, depending on the set points of precision. For the 

manipulation of an object between the initial and the final positions, the 

following work operations are required: grip (in the initial position), lifting-

detachment (by the laying surface), displacement (to the final position, 

descent) and release (in the final position).  

 
Keywords: Mechanism, Robots, Mechatronics, Mechanical Systems, 

Optimal Trajectories 
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Introduction 

The development and diversification of machines and 

mechanisms with applications in all fields require new 

scientific researches for the systematization and 

improvement of existing mechanical systems by creating 

new mechanisms adapted to modern requirements, which 

involve increasingly complex topological structures.  

The modern industry, the practice of designing and 

building machinery is increasingly based on the results 

of scientific and applied research.  

Each industrial achievement has backed theoretical and 

experimental computer-assisted research, which solves 
increasingly complex problems with advanced computing 

programs using an increasingly specialized software.  

The robotization of technological processes determines 

and influences the emergence of new industries, 

applications under special environmental conditions, the 

approach of new types of technological operations, 

manipulation of objects in the alien space, teleoperators in 

the top disciplines like medicine, robots covering a whole 

field greater service provision in our modern, 

computerized society.  

Movable, robotic, mechatronic mechanical systems 

have entered nearly all industrial spheres.  
Today, we can no longer conceive of industrial 

production without these extremely useful systems. They 

are still said to steal from people's jobs.  

Even so, it should be made clear that these systems 

create value, work in difficult, repetitive, non-pausing, high-

quality work, without getting tired, without getting sick, 

without salary, and producing value who are paid and 

people left without jobs, so that they can work elsewhere in 

more pleasant, more advantageous conditions, with the 

necessary breaks. In other words, robots do not destroy 

people but help them in the process of work.  

Let us not remember the fact that in some 

environments people could not even work. In fact, the 
robot's profitability for work without stopping, repetitive, 

and qualitative, is no longer in question. In addition, 
there are many heavy operations that are absolutely 

necessary for the presence of robots.  
You can’t create microchips with people directly 

without interposing the robot. Man can not directly 

work with objects of such small size. Neither difficult 

medical operations can be designed without robotic 

mechatronic systems.  

The most used robotic mechanical mechanical 

systems are the anthropomorphic ones in the class of 

serial systems. To this we have studied the direct 

kinematics in previous castings, and in this paper we are 

going to study the inverse kinematics. 

As examples of such combined mechanisms, 

several kinematic schemes of gears and gears can be 
observed, presented by Kojevnikov (1969), 

AUTORENKOLLEKTIV (1968); Şaskin (1963; 

1971); Maros (1958); Rehwald et al. (200; 2001); 

Antonescu (1993; 2003; Antonescu and Mitrache, 1989). 

The main problems with plane and spatial gears and 

gears refer to kinematic analysis and geometric-kinematic 

synthesis under certain conditions imposed by technological 

processes, Bruja and Dima (2011); Buda and Mateucă 
(1989); Luck and Modler (2013); Niemeyer (2000); 

Tutunaru (1969); Popescu (1977); Braune (2000); Dudita 

(1989); Lichtenheldt (1995); Lederer (1993); Lin (1999); 

Modler and Wadewitz (1998; 2001; Modler, 1979); 

Neumann (1979; 2001); Stoica (1977); (Petrescu and 

Petrescu, 2011c-d; Petrescu, 2012d-e); (Petrescu, 

2016, 2017a-q; Aversa et al., 2017a-e; 2016a-o; 

Mirsayar et al., 2017; Petrescu and Petrescu, 2016a-c; 

2013a-d; 2012a-d; 2011a-b; Petrescu, 2012a-c; 2009; 

Petrescu and Calautit, 2016a-b; Petrescu et al., 2016a-

b; Maros, 1958; Modler and Wadewitz, 2001; 
Manolescu et al., 1968; Margine, 1999). 

Materials and Methods 

Before studying the trajectory of a tracer point, 
through the command laws in the active kinematic clutch 
space of the robot, the MPz configuration must be set in 
which the characteristic point occupies the initial and 
final positions.  

In the general case, the trajectory of the characteristic 

point of MPz is materialized by a curve in 3D geometric 

space, a curve that can be obtained by interpolation on 

specific portions, depending on the set points of precision. 
For the manipulation of an object between the initial 

and the final positions, the following work operations are 
required: grip (in the initial position), lifting-detachment 
(by the laying surface), displacement (to the final 
position, descent) and release (in the final position). 

According to these operations, four distinct positions 

(Fig. 1) are identified at the level of each kinematic 

coupler (actuators): initial, lifting, displacement, 

approach and final. 

The extremes of the "motion trajectory" of the motion 
law at the level of a motor kinematic couple must be 
within the physical and geometric limits of MPz. 

The time intervals t1 - t0, t3 - t2 (Fig. 1), of the initial 

(0−1) and final (2−3) segments, correspond to the speed of 
advancement of the griper (gripping device) to and from 

the surface of the manipulated object. These times are a 

constant parameter and are a function of the electric drive 

motor characteristic of each active kinematic coupler. 

In intermediate time t2 − t1, corresponding to the 

middle segment 1−2, the maximum velocity and angular 
acceleration values occur in the relative movement of an 

arm j relative to the adjacent one j−1. 
To optimize motion (from motor kinematic couplers) 

the maximum of this time (t2−t1)max is used which 
corresponds to the maximum time of the active 

kinematic coupler at the lowest speed. 
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1  
 
 
Fig. 1: At the level of each kinematic coupler motors (actuators), four distinct positions are identified: Initial, lifting, displacement, 

approach and final 
 

At both intermediate points 1 and 2 the control 

function curve, the position (as instantaneous 

displacement), the speed and the acceleration must meet 

the continuity conditions with respect to the anterior 0-1 

respective posterior 2-3 segment. 
To satisfy these continuity requirements at all four 

known points (0,1,2,3), polynomial functions whose 

first two derivatives are continuous over time will be 

used (t0, t3). 

Given the initial conditions imposed on the trajectory of 

the tracer point, the following balance of unknown results 

for the control function (of a motor kinematic coupler): 

 

• An unknown position ϕ0 is represented at the 
starting point 0 

• In the points 1 and 2 there are 2×3 = 6 unknown 

(position, speed, acceleration): 
1 1 1 2 2 2
, , ; , ,φ φ φ φ φ φɺ ɺɺ ɺ ɺɺ  

• There is only one unknown
3
φ at the ending point 3: 

The angular position
3
φ  

• The 8 unknowns can be the coefficients of a 7th 

degree polynomial function interpolating the entire 
trajectory within the specified time interval t3 – t0  

 

Such a polynomial function is written for the leading 

kinematic couple j as: 

 
7

7 6 5 4 3 2

7 6 5 4 3 2 1 0

0

( ) k

j k

k

q t a t a t a t a t a t a t a t a t a
=

= = + + + + + + +∑  (1) 

 

The extremes of such a grade 7 polynomial function 

tend to be placed outside the range of movement of the 

kinematic coupler and the robot arms. 

A practical and efficient approach as a whole consists 

in dividing the entire trajectory of the tracer point and 

the command line curve into multiple segments, so that 

polynomials of less than 7 degree can be used to 

interpolate each trajectory segment. 

There are several possibilities of dividing the 

trajectory at the motor kinematic couple, these variants 

having 3, 4 or 5 distinct portions. 

The most convenient variants are those with 3 

portions, with 3 polynomials of 4-3-4 or 3-5-3. 

The 5-part variant uses 5 polynomials of the same 

grade 3, ie 3-3-3-3-3. 

For a trajectory where the control law is modeled 

with polynomial 4-3-4, a Mp with n kinematic motor 

couplings (c.c.m.) will obtain 3n segments of curve and 

8n coefficients. 

Results 

Synthesis of Interpolation Polymorphs Type 4-3-4 

For each trajectory segment, a variable (non-

dimensional) of standard time t ∈[0,1] is introduced for 

the c.c.m. level, which allows for the similar solving of 

each curve portion for the motion law of each c.c.m. (as 

the relative rotation angle of the arm). 

The normed time varies from t = 0 (the initial time of 

each trajectory segment to the c.c.m.) to t = 1 (the final 

time for each of the segments of the control law curve of 

c.c.m.). 

Real time τ is defined in seconds, whose variation is 

between the τi-1 (minimum) and τi (maximum) limits, ie τ 
∈[τi-1, τi]. 

j j
q ϕ=  

3j
ϕ  

2j
ϕ  

1j
ϕ  

0j
ϕ  0 ( )initial  

0  0 init
t t=  

1
t  2

t  
3 final

t t=  t  

2  

3( )final  

1 
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The normalized time is calculated using the formula: 

 

[ ]1

1

0,1i

i i

t
τ τ
τ τ

−

−

−
= ∈

−
  (2) 

 

The curve of the motion law of a cc.c. consists of 

polynomial segments pi(t) which together form the 

variation curve of the control law of c.c.m. j.  

The three polynomial functions for each c.c.m. are: 

 
4 3 2

1 14 13 12 11 10
( )p t a t a t a t a t a= + + + +  (3) 

 
3 2

2 23 22 21 20
( )p t a t a t a t a= + + +  (4) 

 
4 3 2

3 34 33 32 31 30
( )p t a t a t a t a t a= + + + +  (5) 

 

The boundary conditions to be satisfied by the 
functions (13.3, 4, 5) at a c.c.m. of rotation are: 

 

Point 0: ( )0 0 0 0
; 0; 0;tφ φ ω ε= = =  

Point 1: ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1
; ; ; ;t t t t t t tφ φ φ φ ω ω ε ε− + − + − += = = =  

Point 2: ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2 2 2
; ; ; ;t t t t t t tφ φ φ φ ω ω ε ε− + − + − += = = =  

Point 3: ( )3 3 3 3
; 0; 0.tφ φ ω ε= = =  

 

Polynomial equations (3, 4, 5) are derived from real 

time τ: 
 

( ) ( ) ( )

( ) ( )
1

1 1
; 1,2,3,4

i i

i

i

i

i i i

dp t dp tdt
t

d d dt

dp t
p t i

dt

ω
τ τ

τ τ τ−

= = ⋅ =

= ⋅ = ⋅ =
− ∆

ɺ

 (6) 

 

( ) ( ) ( )

( ) ( )

22 2

2 2

2

2 2 2

1

1 1
;

( ) ( )

1,2,3,4

i i

i

i

i

i i i

d p t d p tdt
t

d d dt

d p t
p t

dt

i

ε
τ τ

τ τ τ−

 = = ⋅ = 
 

= ⋅ = ⋅
− ∆

=

ɺɺ  (7) 

 

On the interval (0-1), from the polynomial (3), the 

velocity and the angular acceleration are deduced using 

formulas (6, 7): 

 

3 2

1 14 13 12 11

1

1
( ) (4 3 2 )t a t a t a t aω

τ
= + + +
∆

 (8) 

 

2

1 14 13 122

1

1
( ) (12 6 2 )t a t a t aε

τ
= + +
∆

 (9) 

For t = 0 Equations (3, 8, 9) become: 
 

1 10 10 0

1 11 11 0 1

1

2

1 12 12 0 12

1

(0) ; ;

1
(0) ; 0

2 1
(0) ; 0

2

a a

a a

a a

φ φ

ω ω τ
τ

ε ε τ
τ

= ⇒ =

= ⇒ = ∆ =
∆

= ⇒ = ∆ =
∆

 (10) 

 
Under these conditions Equation (3) is written: 

 
4 3

1 14 13 0
( )p t a t a t φ= + +  (11) 

 
For t = 1 Equations (3, 8, 9) become: 

 

1 14 13 0
(1) a aφ φ= + +  (12) 

 

1 14 13

1

1
(1) (4 3 )a aω

τ
= +
∆

 (13) 

 

1 14 132

1

6
(1) (2 )a aε

τ
= +
∆

 (14) 

 

On the interval (1-2), from the polynomial Equation 

(4), the following formulas are obtained by derivation: 
 

2

2 23 22 21

2

1
( ) (3 2 )t a t a t aω

τ
= + +
∆

 (15) 

 

2 23 222

1

1
( ) (6 2 )t a t aε

τ
= +
∆

 (16) 

 
For t = 0, the Equations (4, 15, 16) become: 

 

2 20 2 21 2 222

2 2

1 2
(0) ; (0) ; (0)a a aφ ω ε

τ τ
= = =

∆ ∆
 (17) 

 

From the continuity conditions in point 1 the 

equivalences result: 
 

2 1 2 1 2 1
(0) (1); (0) (1); (0) (1)φ φ ω ω ε ε= = =  (18) 

 
Or explicitly, observing the relationships (12, 13, 14, 

17): 
 

20 14 13 0

21 14 13

2 1

22 14 132 2

2 1

1 1
(4 3 )

2 6
(2 )

a a a

a a a

a a a

φ

τ τ

τ τ

= + +

= +
∆ ∆

= +
∆ ∆

 (19) 

 
For t = 1 Equations (4, 15, 16) become: 

 

2 23 22 21 20
(1) a a a aφ = + + +  (20) 
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2 23 22 21

2

1
(1) (3 2 )a a aω

τ
= + +
∆

 (21) 

 

2 23 222

1

2
(1) (3 )a aε

τ
= +
∆

 (22) 

 

On the interval (2-3), the polynomial Equation (5) is 

written (if replaced 1t t= − ): 

 
4 3 2

3 34 33 32 31 30
( )t a t a t a t a t aφ = + + + +  (23) 

 

In which for t ∈[0, 1] to deduce [ ]1,0t ∈ − . 

From (23) we obtain, by derivation, the formulas of 

velocity and angular acceleration in the form: 

 

3 2

3 34 33 32 31

3

1
( ) (4 3 2 )t a t a t a t aω

τ
= + + +
∆

 (24) 

 

2

3 34 33 322

3

1
( ) (12 6 2 )t a t a t aε

τ
= + +
∆

 (25) 

 

For t = 0 and 1t = −  the Equations (23, 24, 25) are 

written: 

 

3 34 33 32 31 30
( 1) a a a a aφ − = − + − +  (26) 

 

3 34 33 32 31

3

1
( 1) ( 4 3 2 )a a a aω

τ
− = − + − +

∆
 (27) 

 

3 34 33 322

3

1
( 1) (12 6 2 )a a aε

τ
− = − +

∆
 (28) 

 

The continuity conditions of point 2 are written: 

 

3 2 3 2 3 2
( 1) (1); ( 1) (1); ( 1) (1)φ φ ω ω ε ε− = − = − =  (29) 

 

Or explicitly, observing relations (20, 21, 22) and 

(26, 27, 28): 

 

34 33 32 31 30 23 22 21 20
a a a a a a a a a− + − + = + + +  (30) 

 

34 33 32 31 23 22 21

3 2

1 1
( 4 3 2 ) (3 2 )a a a a a a a

τ τ
− + − + = + +

∆ ∆
 (31) 

 

34 33 32 23 222 2

3 2

1 1
(12 6 2 ) (6 2 )a a a a a

τ τ
− + = +

∆ ∆
 (32) 

 

For 1 ( 0)t t= = , Equations (26, 27, 28) derive the 

free terms: 

3 30

3 31 31

3

3 32 322

3

(0)

1
(0) ; 0

2
(0) ; 0

a

a a

a a

φ

ω
τ

ε
τ

=

= ⇒ =
∆

= ⇒ =
∆

 (33) 

 

Finally, the following equations are retained: (10, 10', 

10''), (12, 19, 19', 19''), (20, 30, 31, 32), 33, 33', 33''), 

whose expressions are: 

 

( )
10 0 11 12 13 14 1  0 20 13 14 0

2

13 14 1 2 21 13 14 1 2 22

20 21 22 23 2 20 21 22 23 30 31 32 33 34

21 22 23 2 3 31 32 33

;  0; 0; ; ;

3 4 ( / ). ;  3 +2 ( / ) . ;

; ;

2 3 ( / ). 2 3 4

a a a a a a a a

a a a a a a

a a a a a a a a a a a a a

a a a a a a a

ϕ ϕ ϕ ϕ

τ τ τ τ

ϕ

τ τ

= = = + = − = + +

+ = ∆ ∆ = ∆ ∆

+ + + = + + + = − + − +

+ + = ∆ ∆ − + −( )34

2

22 23 2 3 32 33 34

30 3 31 32

;

2 3 ( / ) .( 3 6

; 0; 0.

a a a a a

a a a

τ τ

ϕ

+ = ∆ ∆ − +

= = =

 

 

Of the 14 Equations there are finally only 7 distinct 

equations: 

 

13 14 1  0
;a a ϕ ϕ+ = −  (1*) 

 

13 14 21 22 23 2 0
 ;a a a a a ϕ ϕ+ + + + = −  (2*) 

 

13 14 21 22 23 33 34 3  0
;a a a a a a a ϕ ϕ+ + + + + − = −  (3*) 

 

13 14 1 2 21
3  4 ( / ). ;a a aτ τ+ = ∆ ∆  (4*) 

 

( ) 2

13 14 1 2 22
3 2   ( / ) . ;a a aτ τ+ = ∆ ∆  (5*) 

 

( )21 22 23 2 3 33 34
2 3  ( / ). 3 4 ;a a a a aτ τ+ + = ∆ ∆ −  (6*) 

 
2

22 23 2 3 33 34
2 3 3( / ) . ( 2 .a a a aτ τ+ = ∆ ∆ +  (7*) 

 

Discussion 

In Equations (1*) - (7*) the real time ranges are 

known ∆τ1 = τ1 - τ0; ∆τ2 = τ2 - τ1; ∆τ3 = τ3 - τ2; and the 

relative (ϕ1 - ϕ0), (ϕ2 - ϕ0), (ϕ3 - ϕ0). 
 Of the 7 Equations we obtain the 7 unknown ones, 

respectively the coefficients: 

 

13 14 21 22 23 33 34
, , , , , ,a a a a a a a  

 
Practically, the relative angles are imposed: 

 

01 1 0 1 1 14 13
(1) (0) a aφ φ φ φ φ= − = − = +   (34) 

 

12 2 1 2 2 23 22 21
(1) (0) a a aφ φ φ φ φ= − = − = + +  (35) 

 

23 3 2 3 3 34 33
( 1) (0) a aφ φ φ φ φ= − = − − = −  (36) 
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The coefficients 
14 13 23 22 21 34 33

, , , , , ,a a a a a a a  are 

calculated as solutions of the linear system formed by 

Equations (34, 35, 36), plus two equations equivalent to 

the last two of (19) and two equations equivalent to 
relations (31, 32): 

 

21 14 13

2 1

1 1
(4 3 )a a a

τ τ
= +

∆ ∆
 (37) 

 

22 14 132 2

2 1

1 3
(2 )a a a

τ τ
= +

∆ ∆
 (38) 

 

34 33 23 22 21

3 2

1 1
( 4 3 ) (3 2 )a a a a a

τ τ
− + = + +

∆ ∆
 (39) 

 

34 33 23 222 2

3 2

3 1
(2 ) (3 )a a a a

τ τ
− = +

∆ ∆
 (40) 

 

In the last four equations, time intervals are required: 

 

1 1 0 2 2 1 3 3 2
; ;τ τ τ τ τ τ τ τ τ∆ = − ∆ = − ∆ = −  

 

Corresponding to the three angular displacement 

intervals of the first three equations. 

Conclusion 

The kinematics of robots is the one that corresponds 

to the daily reality in which the robots are programmed 

to work in order to perform certain operations, to 

observe some imposed trajectories so that they move 

precisely to achieve and achieve the desired trajectory 

and all necessary kinematic parameters.  

Before studying the trajectory of a tracer point, through 

the command laws in the active kinematic clutch space of 

the robot, the MPz configuration must be set in which the 

characteristic point occupies the initial and final positions. 

In the general case, the trajectory of the characteristic point 

of MPz is materialized by a curve in 3D geometric space, a 
curve that can be obtained by interpolation on specific 

portions, depending on the set points of precision. For the 

manipulation of an object between the initial and the final 

positions, the following work operations are required: Grip 

(in the initial position), lifting-detachment (by the laying 

surface), displacement (to the final position, descent) and 

release (in the final position). 
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