
 

 

 © 2024 Rajalakshmi Sakthivel and Kanmani Selvadurai. This open-access article is distributed under a Creative Commons 

Attribution (CC-BY) 4.0 license. 

Journal of Computer Science 

 

 

 

Original Research Paper 

Slime Mould Reproduction: A New Optimization Algorithm 

for Constrained Engineering Problems 
 

1Rajalakshmi Sakthivel and 2Kanmani Selvadurai 

 
1Department of Computer Science and Engineering, Puducherry Technological University, Puducherry, India 
2Department of Information Technology, Puducherry Technological University, Puducherry, India 

 

Article history 

Received: 28-07-2023 

Revised: 11-10-2023 

Accepted: 03-11-2023 

 
Corresponding Author:  

Rajalakshmi Sakthivel 

Department of Computer Science 

and Engineering, Puducherry 

Technological University, 

Puducherry, India  

Email: rajasakthi1996@pec.edu 

Abstract: In recent explorations of biologically inspired optimization strategies, 

the Slime Mould Reproduction (SMR) algorithm emerges as an innovative meta-

heuristic optimization technique. This algorithm is deeply rooted in the 

reproductive dynamics observed in slime molds, particularly the intricate 

balance these organisms strike between local and global spore dispersal. By 

replicating this balance, the SMR algorithm deftly navigates between exploration 

and exploitation phases, aiming to pinpoint optimal solutions across diverse 

problem domains. For the purpose of evaluation, the SMR algorithm was 

diligently tested on three engineering problems with inherent constraints: Gear 

train design, three-bar truss design, and welded beam design. A comprehensive 

comparative study indicated that the SMR algorithm outperformed esteemed 

optimization techniques such as Particle Swarm Optimization (PSO), Artificial 

Bee Colony (ABC), Differential Evolution (DE), Grasshopper Optimization 

Algorithm (GOA), and Whale Optimization Algorithm (WOA) in these 

domains. While the exemplary performance of the SMR algorithm is worth 

noting, it is essential, in line with the No Free Lunch (NFL) theorem, to 

underscore that the performance of any optimization algorithm invariably 

depends on the particular problem it addresses. Nevertheless, the SMR 

algorithm's consistent triumph in benchmark tests underscores its potential as a 

formidable contender in the vast realm of optimization algorithms. The current 

exploration not only emphasizes the ever-expanding horizon of bio-inspired 

algorithms but also positions the SMR algorithm as a pivotal addition to the 

arsenal of optimization tools. Future implications and the potential scope of the 

SMR algorithm extend to various domains, from computational biology to 

intricate industrial designs. Envisioning its broader applicability, upcoming 

research avenues may delve into refining SMR's core procedures, borrowing 

insights from a broader range of biological behaviors for algorithmic ideation, 

and contemplating a binary version of the SMR algorithm, thereby amplifying 

its versatility in diverse optimization landscapes. 

 

Keywords: Slime Mould Reproduction Algorithm, Bio-Inspired Meta-

Heuristics, Optimization Techniques, Constrained Engineering Problems 

 

Introduction 

The search for effective solutions to intricate 

optimization problems has been a persistent endeavor, 

leading to the development and refinement of meta-

heuristic algorithms. Bozorg-Haddad et al. (2017) 

emphasized the role and relevance of these algorithms in 

offering a comprehensive approach to various 

optimization challenges. Their adaptability and versatility 

in addressing both continuous and discrete optimizations 

make them pivotal in scientific and engineering contexts 

(Bryden, 2005; Beekman and Latty, 2015). One significant 

reason for this growing interest stems from the shortcomings 

of traditional mathematical methodologies, which often 

struggle with complex, multidimensional tasks.  

Meta-heuristic algorithms stand out due to their 

incorporation of principles from natural phenomena and 

evolutionary behaviors Beyer and Schwefel (2002). 

Beheshti and Shamsuddin (2013); Abdel-Basset et al. 

(2018) elucidate, that these nature-inspired algorithms rely 

on a combination of exploitation and exploration in 

solution generation. This duality in approach prevents them 
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from getting stuck in local optima, hence, ensuring a more 

robust convergence to optimal solutions. 

Among the myriad of meta-heuristic algorithms, 

population-based stochastic optimization techniques hold 

special significance. Their inspiration from nature is 

evident in the way Genetic Algorithms (GAs) (Chawla 

and Duhan, 2015; Clerc, 2010; Coello, 2002) utilize the 

principle of "survival of the fittest" to refine solutions. 

Similarly, the Particle Swarm Optimization (PSO) 

technique is modeled after the collective search behavior 

seen in bird flocks (Coello, 2000) while the Gravitational 

Search Algorithm (GSA) (Deb, 1991) employs 

Newtonian physics, specifically the laws of gravity and 

motion, to guide its search agents. The dynamism of the 

meta-heuristic research domain can also be attributed to 

the No Free Lunch (NFL) theorem (Koza, 1994) which 

underscores the importance of having a diverse toolkit of 

optimization techniques to cater to various problem types. 

In this continually evolving landscape, we introduce a 

novel algorithm, inspired by the reproductive behavior of 

slime molds. As a testament to the breadth of nature-inspired 

algorithms, our proposed Slime Mould Reproduction (SMR) 

algorithm represents an exciting addition to this category, 

echoing the findings of Bryden (Mirjalili et al., 2018) and 

Reid and Latty (Mirjalili, 2019) who have extensively 

studied the behaviors of slime molds. 

This study provides an in-depth exploration of the novel 

SMR algorithm, seamlessly connecting its theoretical 

underpinnings with real-world applications. Beginning 

with a review of prevalent stochastic optimization 

techniques, we delve into the unique reproductive 

behaviors of slime molds, which underlie our algorithmic 

framework. Subsequent sections illuminate the intricacies 

of the SMR algorithm, backed by empirical findings. 

Furthermore, we emphasize the expansive potential scope 

of the SMR algorithm, underscoring its relevance in 

addressing complex engineering challenges. We round off 

our discussion by spotlighting the broader promise and 

potential of bio-inspired meta-heuristic algorithms in the 

optimization landscape. 

Related Study 

Meta-heuristic algorithms (Beekman and Latty, 2015) 

have proven to be efficacious strategies in the quest for 

solutions to complex optimization problems. These high-

level processes generate heuristic solutions capable of 

traversing a wide range of intricate problem domains. A 

considerable proportion of these algorithms are inspired by 

nature and evolutionary processes (Bozorg-Haddad et al., 

2017; Clerc, 2010) transforming observed phenomena into 

pioneering problem-solving techniques. One such 

foundational contribution was the Genetic Algorithm (GA), 

which utilized principles of genetics and natural selection 

in the optimization process (Chawla and Duhan, 2015). 

Over the years, the GA has spawned numerous variants 

that have demonstrated their effectiveness across diverse 

problem domains (Clerc, 2010; Coello, 2002). Another 

significant development in the field of optimization has 

been the notion of swarm intelligence, which has given 

rise to algorithms that mirror the behaviors of natural 

swarms. A case in point is the Artificial Bee Colony 

(ABC) optimization algorithm, which simulates the 

behaviors of different classes of bees to optimize solutions 

(Karaboga and Basturk, 2008). Likewise, the Firefly 

Algorithm (FA) is inspired by the luminescent behavior 

of fireflies (Łukasik and Żak, 2009) and the Bat 

Algorithm (BA) adopts the echolocation behavior of bats 

(Li et al., 2020) to guide their optimization strategies. 

The incorporation of principles from the field of 

physics has added an additional layer to algorithmic 

development. The Gravitational Search Algorithm 

(GSA), for instance, applies laws of gravity and mass 

interactions to guide the search process (Deb, 1991) while 

the Galactic Swarm Optimization (GSO) utilizes 

principles of galactic motion (Muthiah-Nakarajan and 

Noel, 2016) and the Inclined Planes System Optimization 

(IPO) leverages Newton's laws (Mohammadi et al., 2022). 

Meta-heuristic algorithms are typically categorized into two 

main types: Single-solution-based and population-based. 

The former initiates with a single random solution and 

proceeds through iterative improvements (Maniezzo et al., 

2021) whereas the latter commences with an array of 

random solutions that undergo refinement across 

iterations (Chawla and Duhan, 2015; Coello, 2000; Deb, 

1991; Karaboga and Basturk, 2008). Each type presents 

unique advantages; with the key distinction being the 

strategy they adopt to handle challenges such as local 

optima, premature convergence, and deception. 

Materials and Methods 

The Slime Mould Reproduction (SMR) algorithm 

emerges as a novel contribution in the field of 

optimization, distinctively addressing the frequent issues 

of premature convergence and entrapment in local optima 

commonly faced by traditional algorithms. The unique 

biological inspiration behind SMR, derived from the 

reproductive behavior of slime moulds, offers a new 

perspective on navigating the complex landscapes of 

optimization problems. This innovative approach 

suggests a potential for greater adaptability and 

robustness in finding global optima, setting SMR apart 

from its predecessors and marking a significant step 

forward in the development of meta-heuristic 

optimization methods. 
In the subsequent sections, this study provides a 

detailed description and implementation of the Slime 
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Mould Reproduction (SMR) algorithm, particularly 

focusing on constrained engineering problems. It explores 

the unique operational mechanics of the SMR algorithm, 

demonstrating how its bio-inspired approach is translated 

into an effective optimization algorithm. The application 

of SMR in solving complex engineering problems 

highlighting its effectiveness compared to traditional 

algorithms. Additionally, the broader scope and potential 

applications of the SMR algorithm in various 

optimization domains are discussed, underscoring its 

significance as a versatile and innovative contribution to 

the field of meta-heuristic optimization.  

Slime Mould Reproduction 

The peculiar behavioral dynamics of slime mold 

Meena et al. (2019) specifically during their 

reproductive cycle have been identified as a source of 

potential applications in the realm of meta-heuristics 

(Mirjalili et al., 2018; Mirjalili, 2019; Price, 2013). This 

investigation is centered on the reproductive phase, 

wherein the slime mold forms a mature fruiting body 

responsible for the production of spores (Price, 2013; 

Rashedi et al., 2009; Reid and Latty, 2016). These spores, 

encapsulating the genetic material of the organism, 

disperse into the surrounding environment, laying the 

foundation for possible proliferation. 

Biological Underpinnings and Algorithm Development 

The underlying strategies of this intriguing biological 

process supply a conceptual framework for algorithm 

development, thereby stimulating innovative problem-

solving paradigms. The slime mold's reproductive process 

is characterized by the local and global dissemination of 

spores, an essential tactic ensuring species survival and 

expansion. External influences including, but not limited to, 

wind, water currents, and biotic agents contribute to the 

transportation of spores across disparate ecological niches, 

facilitating the colonization of new territories. The process 

of spore dispersal follows a stochastic mechanism, which 

acts to reduce risks related to local environmental changes 

and simultaneously bolsters the chance of discovering 

optimal habitats for growth and reproduction. 

Meta-Heuristic Principles and Slime Mould 

Reproduction 

The aforementioned process bears an uncanny 

resemblance to the principles that govern meta-heuristic 

optimization, wherein solutions are sought at both local and 

global levels within the search space. A meta-heuristic model 

inspired by the reproductive behavior of slime molds 

inherently balances exploration (global search) and 

exploitation (local search), mirroring the spore distribution 

strategy of the organism. The impact of external factors on 

the spore dispersal process resonates with the utilization of 

randomization techniques in meta-heuristics, infusing an 

element of unpredictability while retaining a guided 

approach toward solution discovery. Upon maturity, the 

fruiting body of the slime mold releases spores, which, with 

the assistance of external agents, are dispersed over 

substantial distances before germinating into new organisms 

(Price, 2013; Rashedi et al., 2009; Reid and Latty, 2016). 

Mathematical Modeling and Meta-Heuristic 

Development 

The phenomena of asexual reproduction ensure the 

availability of robust nutritional resources locally while 

enabling the colonization of new habitats globally. It is this 

behavior of the slime mold that we emulate in the proposed 

meta-heuristic. Specifically, the updating of the slime 

position in the search space is reflective of the spore 

dissemination strategy. Equation 1 illustrates this principle: 
 

𝑋(𝑡 + 1) = {
𝑋(𝑡) + 𝑝 × 𝑟1 × (𝑋𝑏𝑒𝑠𝑡(𝑡) − 𝑋𝐴(𝑡)) + 𝑟2,

 if 𝑟1 ≥ 𝑁𝑅

𝑟𝑎𝑛𝑑(𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   (1) 

 
Here, 't' denotes the current iteration, X(t) the current 

position of a slime at iteration 't', 'p' is a parameter that 

influences the step size in the position update, ranging 

from -2-2, '𝑟1' is a random number adhering to a uniform 

distribution in the range [0, 1], '𝑋𝑏𝑒𝑠𝑡 ' signifies the best 

slime position, '𝑋𝐴(𝑡)' denotes a random slime position, '𝑟2' 

is a random number in the range [-1, 1] and 'NR' is the 

nutritious rich probability, which linearly decreases from 

0-5 over the course of the algorithm's execution. 

Slime Mould Reproduction Algorithm Pseudo-Code 

  1: Initialize the population of slimes: 𝑋𝑖 for i = 1 to n 

  2: Initialize the algorithm parameters and maximum 

iteration: Max_iter 

  3: for t = 1 to Max_iter do 

  4:  for each slime in the population do 

  5:  Calculate the fitness of the slime 

  6:  end for 

  7:  Define Nutritious Rich Probability (NR) 

  8:  for each slime in the population do 

  9:  if r > = NR then 

10:  Update the position of the slime:  

11:  X(t+1) = X(t) + p * 𝑟1* (𝑋𝑏𝑒𝑠𝑡 (t) - 𝑋𝐴 (t)) + '𝑟2 

12:  else 

13:  Update the position of the slime: 

14:  X(t+1) = (UB - LB) * rand + LB 

15:  end if 

16:  end for 

17:  t = t + 1 

18:  end for 

19: Return the best fitness 

20: end 
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Fig. 1: Flowchart representation of the slime mold 

reproduction algorithm 
 

In the SMR algorithm, we begin by initializing a 

population of slimes (Step 1). Each slime represents a 

potential solution in the search space. We then proceed with 

an iterative process that cycle through the population of 

slimes. Each slime's fitness is calculated (Steps 4-6), 

representing how well the slime (solution) fits the 

optimization criteria. A Nutritious Rich Probability (NR) is 

defined (Step 7) and for each slime in the population, it is 

checked whether a randomly generated number 'r' is greater 

than or equal to NR (Step 9). If true, the position of the slime 

is updated using the best and a random slime's positions (Step 

11), mimicking the local distribution of spores. If not, the 

slime's position is updated randomly within the bounds of the 

search space (Step 14), simulating the global dispersal of 

spores. The iteration 't' increments (Step 17) until it reaches 

the maximum iteration number (Max_iter). Finally, the 

algorithm returns the best fitness score obtained (Step 19), 

indicating the optimal or near-optimal solution found by the 

SMR. Following the comprehensive exposition in the 

pseudo-code, we provide a flowchart, as depicted in Fig. 1, 

for a streamlined visual comprehension of the slime mold 

reproduction algorithm. 

The computational exploration of this natural 

phenomenon could give rise to strategies that replicate 

nature's inherent optimization capabilities, unveiling new 

opportunities in the arena of meta-heuristic research. 

Therefore, the reproductive strategies of slime molds, 

specifically those related to spore production and 

distribution, yield insightful pathways for the design of 

innovative meta-heuristics. Their robustness, efficiency, 

and adaptability suggest promising trajectories for the 

enhancement of optimization algorithms. 

Constrained Engineering Optimization Using SMR 

Effectively managing constraints is paramount in the 

optimization process. Constraints act as a crucial sieve, 

differentiating feasible solutions from infeasible outcomes 

birthed by heuristic algorithms. This research delves into the 

adeptness of the Slime Mould Reproduction (SMR) 

algorithm in circumnavigating such challenges. Three 

seminal constrained engineering optimization problems were 

employed to test the SMR algorithm: 

 

 Gear train design 

 Three-bar truss design 

 Welded beam design problem (Reid and Latty, 2016; 

Sandgren, 1990; Soler-Dominguez et al., 2017; 

Vogel et al., 2018; Vallverdú et al., 2018) 

 

Each problem has been meticulously chosen to shed 

light on the pragmatic efficacy of the SMR algorithm. 

Their selection grants a holistic analysis, elucidating the 

adaptability and utility of the SMR in diverse 

optimization scenarios: 

 

 Gear train design: This problem, laden with non-

linear equations and discrete variables, provides a 

foundational test for the SMR's prowess in discrete 

optimization terrains 

 Three-bar truss design: Featuring continuous variables 

and inequality constraints, it gauges the algorithm's 

proficiency in structural mechanic challenges 

 Welded beam design: A rigorous examination of the 

algorithm, this problem is rife with non-linear objective 

functions and constraints, testing the SMR's capability 

in intricate non-linear optimization contexts 

 

To validate the robustness and reliability of the Slime 

Mould Reproduction (SMR) algorithm, we employed a 

systematic approach to problem-solving. Each problem 

was tackled with a consistent set of parameters: 

 

 Population size: A standard population size of 30 

entities was maintained for each experiment. This 

ensures that the search space was explored adequately, 

offering a balance between exploration and exploitation 

 Iterations: A maximum of 1000 iterations was set for 

every problem. This allowed the algorithm ample 

opportunity to converge to a solution while keeping 

computational efforts in check 

 Repetitions: To further reinforce the credibility of our 

findings and rule out the influence of randomness or 

any anomalies, each experimental run was reiterated 

10 times. This repetitive testing guarantees the 

consistency and reliability of the results achieved by 

the SMR algorithm 
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Fig. 2: Gear train design problem 

 

Beyond theoretical assessment, the application of the 

SMR algorithm holds promising implications in real-

world scenarios. The exploration emphasizes the capacity 

of the SMR algorithm to efficiently solve intricate 

engineering optimization problems. Our experimental 

approach across these disparate contexts serves to endorse 

the potential of the SMR algorithm as a robust tool for 

handling complex and constrained engineering 

optimization tasks. 

Gear Train Design Problem 

In mechanical engineering, the optimization of gear 

ratios within a four-gear train set is a common challenge. 

The principal objective within this context is the 

minimization of the gear ratio for the set under consideration, 

wherein the number of teeth on each gear forms the decision 

variables (Sandgren, 1990; Soler-Dominguez et al., 2017; 

Vogel et al., 2018; Vallverdú et al., 2018). Notably, while 

there are no explicit constraints within this problem, the 

range of variables essence, the permissible number of teeth 

that each gear can host is implicitly operationalized as 

constraints. These constraints hold a direct influence on 

the gear ratio and by extension, the overall efficiency of 

the gear system. The schematic design of the gear system 

is captured in Fig. 2. 

Mathematical Formulation 

The mathematical formulation of the optimization 

problem associated with gear train design, thereby 

demonstrating the applicability and effectiveness of the 

Slime Mould Reproduction (SMR) algorithm in managing 

engineering constraints within practical scenarios: 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑇) = (
1

6.931
−

𝑇2 𝑇3

𝑇1 𝑇4
)

2

, 

𝑤ℎ𝑒𝑟𝑒 𝑇 = (𝑇1, 𝑇2, 𝑇3, 𝑇4)  (2) 

 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 12 ≤ 𝑇𝑖 ≤ 60, 𝑓𝑜𝑟 𝑖 = 1, 2, 3, 4  

Results 

Table 1 presents the optimal results achieved by the 

SMR algorithm in comparison to renowned algorithms 

like Particle Swarm Optimization (PSO) (Coello, 2000) 

Slime Mould Algorithm (SMA) (Wolpert and Macready, 

1997) Artificial Bee Colony (ABC) (Karaboga and 

Basturk, 2008) Differential Evolution (DE) (Yang, 2010a) 

Whale Optimization Algorithm (WOA) (Yang, 

2010b) and Grasshopper Optimization Algorithm (GOA) 

(Zäpfel et al., 2010). 

On examining the pinnacle of objective function 

values secured by these algorithms, the superior 

performance of the SMR algorithm emerges distinctly. 

This not only endorses the algorithm's proficiency in 

exploring the search space but also its adeptness in 

managing constraints, resulting in superior optimization 

outcomes. Such findings punctuate the potential of the 

SMR algorithm for real-world mechanical engineering 

challenges, encouraging its broader adoption in the 

domain of constrained optimization. Additionally, this 

research lays the groundwork for further exploration into 

the SMR algorithm's applicability in other complex 

optimization scenarios. 

Furthermore, the success of the SMR algorithm in this 

problem highlights its versatility and robustness. Such 

attributes make it a potential candidate for a plethora of 

real-world engineering challenges that are characterized 

by multi-dimensional search spaces and stringent 

constraints. The success of SMR in this problem is an 

indicative testament to its promise in broader applications, 

beyond just academic exercises. Additionally, the 

referenced algorithms like PSO, SMA, and ABC, while 

competent in their right, seem to find a formidable 

contender in SMR, which appears to be more adept at 

navigating and optimizing within the search space of the 

welded beam design problem. 

In the grander scheme of things, while algorithms like 

SMR serve as pivotal tools for engineers and designers, their 

real-world implications stretch far beyond. The ability to 

derive optimal designs can translate to substantial cost 

savings, enhanced safety standards, and efficient resource 

utilization in various engineering projects. 
 
Table 1: Performance analysis of gear train design problem 

 Optimum values for variables  

 ------------------------------------ 

Algorithm T1 T2 T3 T4 Optimum cost 

SMR 40 12 12 16 3.0726E-17 

SMA 43 12 19 36 3.0372E-12 

PSO 46 20 17 44 2.6008E-011 

ABC 43 19 16 43 1.251E-10 

DE 44 14 18 48 2.4008E-10 

GOA 20 16 43 49 2.75E-10 

WOA 34 14 18 48 1.263E-08 
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Fig. 3: Three-bar truss design problem 

 

Three Bar Truss Design Problem 

The three-bar truss design problem stands as a 

canonical structural optimization task, ubiquitously 

encountered within the realm of civil engineering. This 

problem involves the fine-tuning of two variables with the 

dual objective of minimizing the truss weight while 

concurrently adhering to stress, deflection, and buckling 

constraints. Given the constrained character of this 

problem's search space, it necessitates an exhaustive 

exploration and meticulous analysis. A graphical 

representation of this problem, as detailed in references 

(Sandgren, 1990; Soler-Dominguez et al., 2017; Vogel et al., 

2018; Vallverdú et al., 2018) is depicted in Fig. 3. 

Mathematical Formulation 

The mathematical encapsulation of the three-bar truss 

design problem is presented as follows: 
 
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑋) = 𝐿 × (2√2𝑥1 + 𝑥2) (3) 
 

Subject to constraints: 
 

 
√2𝑥1+𝑥2

2𝑥1𝑥2+√2𝑥1
2 𝑃 ≤ 𝜎 (4) 

 
𝑥2

2𝑥1𝑥2+√2𝑥1
2 𝑃 ≤ 𝜎 (5) 

 
1

𝑥1+√2𝑥2
𝑃 ≤ 𝜎 (6) 

 
With 0.01 ≤ 𝑥𝑖 ≤ 1 𝑓𝑜𝑟 𝑖 = 1, 2 parameters where, L = 

100 cm, P = 2 km/cm2 and 𝜎 = 2 km/cm2.  
 

Table 2 furnishes the optimal solutions procured 

using the Slime Mould Reproduction (SMR) algorithm 

for the three-bar truss design problem. For a more 

holistic assessment, the SMR algorithm's performance is 

benchmarked against prominent algorithms such as 

Particle Swarm Optimization (PSO) (Coello, 2000) 

Slime Mould Algorithm (SMA) (Wolpert and Macready, 

1997) Artificial Bee Colony (ABC) (Karaboga and 

Basturk, 2008) Differential Evolution (DE) (Yang, 

2010a) Whale Optimization Algorithm (WOA) (Yang, 

2010b) and Grasshopper Optimization Algorithm 

(GOA) (Zäpfel et al., 2010). 

Table 2: Performance analysis of the bar truss design problem 

 Decision variables 

 ----------------------------- 

Algorithm X1 X2 Optimum cost 

SMR 0.78546 0.42680 191.7042 

SMA 0.76345 0.46321 215.6541 

PSO 0.78997 0.66579 228.6549 

DE 0.81815 0.36946 267.8173 

ABC 0.74669 0.41526 265.9358 

GOA 0.78967 0.41932 264.9815 

WOA 0.79603 0.42945 261.8754 

 

Discussion 

Inspection of the optimal cost values from various 

algorithms clearly show cases the superiority of the 

proposed SMR algorithm. Its exceptional performance 

suggests that it cannot only parallel but exceed the 

proficiency of other leading algorithms for complex 

structural optimization tasks like the three-bar truss 

design problem. Delving into the practical implications, 

the SMR algorithm's adaptability and robustness earmark 

it as a potent tool for real-world engineering applications. 

The success observed here further beckons exploration of 

the algorithm's capabilities across a wider array of 

engineering challenges. 

Welded Beam Design Problem  

The welded beam design problem manifests as a 

salient challenge in the realm of structural optimization 

(Wolpert and Macready, 1997) primarily oriented 

toward minimizing the manufacturing costs of a welded 

beam. Figure 4 provides a graphical representation of 

the welded beam design problem, as delineated in 

references (Sandgren, 1990; Soler-Dominguez et al., 

2017; Vogel et al., 2018; Vallverdú et al., 2018). This 

problem involves the consideration of several factors, 

including the weld throat size of the beam (θ), buckling 

load (Pc), and beam end deflection (δ). The 

optimization process encompasses four variables: 

Welded thickness (h), clamping bar length (l), bar 

height (t), and bar thickness (b). 
 

 
 
Fig. 4: Welded beam design problem 
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Mathematical Formulation 

The mathematical formulation of the welded beam 

design problem is as follows: 

 
Consider 𝑥 = (𝑥1, 𝑥2, 𝑥3, 𝑥4) = [ℎ 𝑙 𝑡 𝑏] 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
𝑓(𝑥) = 1.10471𝑥1

2𝑥2 + 

0.04811𝑥3𝑥4(14.0 + 𝑥2)
 (7)  

 

Subject to constraints: 

 

𝑔1(𝑥) = 𝜏(𝑥) − 𝜏𝑚𝑎𝑥 ≤ 0  (8) 

 

𝑔2(𝑥) = 𝜎(𝑥) − 𝜎𝑚𝑎𝑥 ≤ 0   (9) 

 

𝑔3(𝑥) = 𝛿(𝑥) − 𝛿𝑚𝑎𝑥 ≤ 0  (10) 

 

𝑔4(𝑥) = 𝑥1 − 𝑥4 ≤ 0  (11) 

 

𝑔5(𝑥) = 𝑃 − 𝑃𝑐(𝑥) ≤ 0 (12) 

 

𝑔6(𝑥) = 0.125 − 𝑥1 ≤ 0 (13) 

 
𝑔7(𝑥) = 1.10471𝑥1

2 + 0.04811𝑥3𝑥4 

(14.0 + 𝑥2) − 5.0 ≤ 0 (14) 

 

With: 

 
0.1 ≤ 𝑥1 ≤ 2, 0.1 ≤ 𝑥2 ≤ 10, 0.1 ≤ 𝑥3 ≤ 10, 0.1 ≤ 𝑥4 ≤ 2: 

 

where: 

 

𝜏(𝑥) = √(𝜏′)2 + 2𝜏′𝜏′′ 𝑥2

2𝑅
+ (𝜏′′)2 (15) 

 

 𝜏′ =
𝑃

√2𝑥1𝑥2
, 𝜏′′ =

𝑀𝑅

𝐽
, 𝑀 = 𝑃 (𝐿 +

𝑥2

2
) (16) 

 

𝑅 = √𝑥2
2

4
+ (

𝑥1+𝑥3

2
)

2
 (17) 

 

𝐽 = 2 {√2 𝑥1𝑥2 [
𝑥2

2

4
+ (

𝑥1+𝑥3

2
)

2
]} (18) 

 

𝜎(𝑥) =
6𝑃𝐿

𝑥4𝑥3
2 (19) 

 

𝛿(𝑥) =
6𝑃𝐿3

𝐸𝑥3
2𝑥4

  (20) 

 

𝑃𝑐(𝑥) =
4.013𝐸√𝑥3

2𝑥4
6

36

𝐿2 (1 −
𝑥3

2𝐿
√

𝐸

4𝐺
) (21) 

 
With P = 6000lb, L = 14 in., δmax = 0.25 in., E = 30×16 

psi, G = 12×106 psi, τmax = 13,600 psi, σmax = 30,000 psi. 

Table 3: Performance analysis of welded beam design problem 

 Optimum values for variables 

 --------------------------------------------  Optimum 

Algorithm h l t b cost 

SMR 0.2016 3.2324 9.0461 0.2057 1.65704 

SMA 0.2046 3.2874 9.0321 0.2086 1.69752 

PSO 0.2047 3.3702 9.0462 0.2046 1.76454 

DE 0.2035 3.4611 9.0375 0.2081 1.72997 

ABC 0.2059 3.4785 9.0158 0.2034 1.72328 

GOA 0.2028 3.3603 9.0563 0.2054 1.71492 

WOA 0.2043 3.3725 9.0453 0.2145 1.72523 

 

The study employed the Slime Mould Reproduction 

(SMR) algorithm to address the Welded Beam Design 

Problem and the results were contrasted with those of 

renowned algorithms such as Particle Swarm 

Optimization (PSO) (Coello, 2000) Slime Mould 

Algorithm (SMA) (Wolpert and Macready, 1997) and 

others. As illustrated in Table 3, the SMR algorithm 

showcased its merit by outclassing the other algorithms in 

formulating a cost-effective design for the welded beam. 

Upon thorough scrutiny of the results, it is evident 

that the SMR algorithm demonstrates considerable 

prowess in structural optimization tasks, especially 

when juxtaposed against its contemporaries. This 

observation holds immense significance as the welded 

beam design problem is inherently intricate, 

necessitating precise manipulation of multiple 

parameters to achieve cost-efficiency without 

compromising on structural integrity. 

Potential Scope of the SMR Algorithm 

Beyond the constrained engineering problems explicitly 

tackled in this study, the underlying mechanics of the SMR 

algorithm suggest a vast landscape of potential applications: 

 

 Complex system simulations: The SMR's adaptability 

could be instrumental in modeling and optimizing 

intricate systems, be it traffic flow in a metropolitan city 

or the dynamics of a natural ecosystem 

 Machine learning and data mining: Given its ability 

to navigate large search spaces, the SMR algorithm 

could be applied to feature selection or 

hyperparameter tuning, ensuring more accurate and 

efficient machine learning models 

 Network design and optimization: Whether optimizing 

the layout of a computer network or designing efficient 

supply chains, the SMR's balance of exploration and 

exploitation might offer unique solutions 

 Scheduling problems: In scenarios like airline 

scheduling, production line optimization, or task 

allocation, the SMR algorithm could be employed to 

find solutions that maximize efficiency while 

adhering to constraints 
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Conclusion 

In conclusion, this study introduces the Slime Mould 

Reproduction (SMR) algorithm, a novel optimization 

approach inspired by the fascinating reproductive 

behavior of slime molds. Particularly, the SMR 

algorithm ingeniously simulates the strategies of spore 

production and dispersal employed by these organisms, 

balancing an efficient exploration and exploitation of the 

search space. The algorithm considers external factors 

and translates them into a stochastic system, enhancing 

its capability to navigate a diverse range of search 

domains. The application of the SMR algorithm to three 

distinct constrained engineering problems underscored 

its immense potential as an optimization technique. 

When juxtaposed with conventional optimization 

algorithms such as Particle Swarm Optimization (PSO), 

Artificial Bee Colony (ABC), Differential Evolution 

(DE), Grasshopper Optimization Algorithm (GOA), and 

Whale Optimization Algorithm (WOA), the SMR 

algorithm exhibited superior performance in procuring 

promising solutions for intricate problems. 

Nevertheless, it is crucial to bear in mind the 

principles laid out by the No Free Lunch (NFL) theorem. 

It advocates that no single optimization algorithm is 

capable of effectively addressing all optimization 

problems. As such, while the SMR algorithm has 

demonstrated significant potential in resolving complex 

issues across diverse search domains, it should be 

regarded as one of many optimization algorithms, each 

with its own merits and limitations. Looking towards 

future research, several promising avenues can be 

charted. First, there is scope to further refine the SMR 

algorithm or amalgamate it with other techniques to 

optimize its efficiency. Second, as the SMR algorithm 

derives its inspiration from the reproductive behavior 

of slime molds, other biological behaviors could 

potentially be harnessed to design innovative 

algorithms. Third, the development of a binary version 

of the SMR algorithm to tackle multi-objective 

problems could substantially broaden its applicability 

and effectiveness across a wider range of optimization 

scenarios. Lastly, the application of the SMR algorithm 

to problems beyond the engineering domain could offer 

additional insights into its practicality. 

In essence, the SMR algorithm signifies a significant 

advancement in the field of meta-heuristic optimization. 

Rooted in the intriguing biological phenomena of slime 

mold reproduction, its proven efficacy in complex 

problem-solving scenarios sets a compelling precedent. 

We anticipate that this innovative approach will continue to 

inspire new research directions and contribute to the ongoing 

advancement of optimization techniques. 
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