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Abstract: Post Translational Modification (PTM) is an important 

mechanism involved in regulating protein function. Post-translational 

modification refers to the addition of covalent and enzymatic modifications 

of proteins in protein biosynthesis, which has an important role in modifying 

protein function and regulating gene expression. One of the post-translational 

modifications is glycosylation. Glycosylation is the addition of a sugar group 

to a protein structure. One type of glycosylation is glycosylation, which 

occurs in sequence O. Glycosylation has been linked to several illnesses, 

including diabetes, cancer, and the flu. Therefore, it is important to anticipate 

the occurrence of glycosylation by carrying out predicted glycosylated or 

non-glycosylated data. Glycosylation prediction has been widely done using 

manual laboratory techniques, which results in the prediction process being 

long and expensive for lab equipment. To overcome this, computerized data 

is needed that can predict glycosylation more quickly. The data used is 

glycosylation data on sequence O obtained from the UniProt website, which 

can be openly accessed. This study aimed to improve the accuracy of post-

translational modification glycosylation in sequence O prediction using the 

method of extreme gradient boosting as a framework for gradient 

enhancement that tends to be faster. This accuracy is increased by conducting 

feature extraction experiments with the following types: AAIndex, 

hydrophobicity, sable, composition, CTD, and PseAAC. Feature selection uses 

the MRMR approach. Evaluation using k-fold cross-validation. The results of 

this study indicate the prediction performance of post-translational 

modification glycosylation in sequence O with an accuracy value of 100%. The 

study's findings indicate that the XGBoost algorithm performs better than other 

research that has been conducted. 
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Introduction  

Post-translational modification (PTM), often known 

as post-translational modification, is an important 

mechanism involved in regulating protein function. The 

term 'post-translational modification' describes enzymatic 

and covalent additions made to proteins during or 

following protein production. These modifications are 

crucial for controlling gene expression and altering the 

function of proteins (Minguez et al., 2012). Post-

translational modification refers to the addition of 

covalent and enzymatic modifications of proteins during 

protein biosynthesis, which has an important role in 

modifying protein function and regulating gene expression 

(Tak et al., 2019). Phosphorylation, glycosylation, 

ubiquitination, nitrosylation, methylation, acetylation, and 

lipidation are all examples of post-translational modification 

(Caragea et al., 2007; Yang and Han, 2017). When 
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compared to other post-translational modifications, 

glycosylation has the most variability since it involves the 

addition of sugar groups to the protein structure. When an 

enzyme can create a glycan, which links a nucleotide 

sugar to one of the amino acids, in this case, asparagine, 

glycosylation takes place. The most challenging step in 

protein modification is glycosylation (Naik et al., 2018). 

Glycosylation can also be tied to various diseases, 

including diabetes, cancer, and influenza (Taherzadeh et al., 

2019; Weerapana and Imperiali, 2006). Glycan 

alterations can result in illness (Everest-Dass et al., 

2018). Alzheimer's disease can also be brought on by 

glycosylation. Alzheimer's disease is a brain illness that 

causes memory loss in its victims (Regan et al., 2019). 

 Therefore, predicting glycosylation is very important to 

determine whether a sequence is glycosylated or not. 

Glycosylation prediction has traditionally been performed 

using manual laboratory techniques, which makes the 

prediction process lengthy and expensive due to the 

required lab equipment. While numerous techniques, such 

as genetic modification, genetic engineering, and other 

biological studies, have been utilized for glycosylation 

prediction, these methods still necessitate repeated testing, 

thereby prolonging the process (Li et al., 2019). With its 

advancement, computational technology is required to 

more swiftly forecast glycosylation (Lumbanraja et al., 

2018). Therefore, to solve these issues, a computational 

data model using machine learning techniques to predict 

glycosylation must be created (Chien et al., 2020). In the 

study of protein function, computational approaches are 

crucial for understanding post-translational modification 

(Bateman et al., 2014).  

Machine learning is a branch of artificial intelligence 

that involves the development of algorithms capable of 

completing tasks, often similar to those performed by 

humans. Through the use of computers, machine learning 

enables the prediction of data based on patterns and trends 

identified within datasets. The field has undergone 

significant advancements and development, employing 

various methodologies to enhance the capabilities of 

machine learning algorithms (Vieira et al., 2020) Despite 

the little data, machine learning techniques are thought to 

be able to make predictions with a better level of accuracy 

(Lumbanraja et al., 2019). 
An identical problem has been previously addressed in 

several earlier experiments involving glycosylation 

prediction. These experiments also utilized machine 

learning techniques for glycosylation prediction, but the 

accuracy results still require improvement. The previous 

study demonstrated a glycosylation projection accuracy of 

77-86%. (Alkuhlani et al., 2023). Additionally, the study 

also rectified O-glycosylation, giving a 90.7% accuracy 

rate (Li et al., 2015). The purpose of this study was to 

increase glycosylation prediction accuracy by using the 

extreme gradient boosting algorithm. Gradient boosting is 

an algorithm capable of identifying the best solutions to a 

wide range of issues, particularly in the areas of 

regression, classification, and ranking. The fundamental 

idea of this algorithm is to continuously modify the 

learning parameter. 

XGBoost is a framework for gradient enhancement 

introduced by Friedman in 2001 that tends to be more 

efficient, scalable, and faster (Chen and Guestrin, 2016; 

Chen and He, 2024; Zhang and Zhan, 2017). The XGBoost 

package includes solutions for linear models and tree-

learning algorithms (Chien et al., 2020). XGBoost has 

reliable features such as speed in performance and a 

customizer that supports objective and evaluation 

functions, resulting in better performance across various 

datasets (Chen et al., 2015). Currently, XGBoost is the 

most popular algorithm for addressing machine learning 

challenges. XGBoost provides a more structured 

approach to creating regression tree structures, yielding 

improved results and simplifying the model. Essentially, 

the XGBoost technique represents an algorithmic 

evolution from gradient tree-boosting ensembles. The 

XGBoost method was chosen due to its additional features 

that enhance computational efficiency. XGBoost can 

effectively handle a wide range of regression and 

classification scenarios. The computation involves 

assembling a collection of trees, known as XGBoost.  

To achieve superior performance, we conducted 

experiments involving several feature extraction methods. 

Specifically, glycosylation prediction was performed 

using five types of feature extraction: Amino Acid Index 

(AAIndex), hydrophobicity, Solvent Accessibility 

(Sable), Composition Transition and Distribution (CTD), 

and Pseudo-Amino Acid Composition (PseAAC). The 

purpose of feature extraction is to convert string data into 

numerical data suitable for computer processing. 

The novelty and contribution of our proposed study lie 

in the addition of SABLE feature extraction and 

hydrophobicity, which were not previously explored in 

order to enhance glycosylation predictive accuracy. 

Furthermore, efforts to enhance glycosylation-O 

prediction accuracy will involve selecting features using 

the Minimum Redundancy Maximum Relevance 

(MRMR) approach. This research is crucial as it identifies 

glycosylated proteins as key subjects for research in 

diagnosing diseases resulting from the glycosylation 

process. Nearly all proteins in human and other 

mammalian cells undergo glycosylation. 

Materials and Methods 

The data for this research consists of amino acid 

sequences for various types of O-glycosylation, which are 

sequences of serine obtained from the UniProt website 

(https://www.UniProt.org/). The European Molecular 

https://www.uniprot.org/
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Biology Organization collaborated to create the protein 

sequence and annotation database UniProt (Bateman et al., 

2014). Data in the form of human proteins were extracted 

from these databases. We investigated the amino acids of 

the various types of O-glycosylation based on accurate 

data. The research stages consist of data collection, data 

preprocessing, feature extraction, feature selection, 

modeling and evaluation, and results in Fig. 1. 

This section presents the research method. The research 

stages consist of data collection, data preprocessing, feature 

extraction, feature selection, modeling and evaluation, and 

results in Fig. 1. 

Data Collection 

Various types of O-glycosylation, which consist of 

sequences of serine, were openly retrieved from the 

UniProt website (https://www.UniProt.org/). The 

European Molecular Biology Organization collaborated 

to create the protein sequence and annotation database 

UniProt (Bateman et al., 2014). Data in the form of human 

proteins were extracted from these databases. We 

investigated the amino acid compositions of the various 

types of O-glycosylation based on accurate data. We used 

R-Studio software for our analysis. The UniProt Database 

is a website that provides protein sequences (Bateman et al., 

2015). The following are the algorithms used to collect the 

data (Bateman et al., 2015). The following are the 

algorithms used to collect the data. 

 

Algorithm 1: Collecting Data 

library(protr) 

NegIndependent_O<-

read.csv("D:/GLIKOSILASI/DATA 

/NegIndependent_O.txt", header = FALSE, sep="\t") 

windows=21; 

jumlah_seq=1 

seq_iter=array() 

sink('New_NegIndependent_O.fasta') 

for(j in 1:nrow(NegIndependent_O)){ 

  prots<-getUniProt(NegIndependent_O[j,2]) 

  start=NegIndependent_O[j,3]-((windows-1)/2) 

  end=NegIndependent_O[j,3]+((windows-1)/2) 

  sq=substr(prots[[1]],start,end) 
 
  if(nchar(sq)==windows){ 
 
#cat(paste('>',NegIndependent_O[j,2],NegIndependent_
O[j,3],'\n')) 
 cat(paste(sq,'\n')) 

  seq_iter[jumlah_seq]=sq 

 jumlah_seq=jumlah_seq+1 

 } 

} 

 

sink() 

 
 
Fig. 1: The research stages 

 

The collected data is presented in the form of a 

collection grouped based on benchmark data and 

independent data, each of which contains negative and 

positive values. Negative data represents instances that 

are not glycosylated, while positive data represents 

instances that are glycosylated. The data used is presented 

in Table 1. 

Preprocessing Data 

The initial data amounted to 1925, consisting of 

benchmark data and independent data, which include 

negative and positive data, respectively, as shown in 

Table 1. The displayed data represent 21 residues of 

protein glycosylation, derived from sequences of both 10 

lengths of the right sequence and 10 lengths of the left 

sequence. Algorithm 1 illustrates this information. 

Following data collection, the next step involves data 

preprocessing. One of the phases in data preprocessing is 

data cleaning The first thing that needs to be done is 

cleaning the data, which is sometimes referred to as 

data preparation. This suggests that further screening of 

the unprocessed data is needed. Next, eliminate or erase 

any inaccurate, superfluous, or incomplete data. 

Skipredundant is the technique used. Example of the 

data collected in Fig. 2. Next, we eliminate redundant 

data to obtain optimal data. The tools we use to eliminate 

redundant data are skip redundant no greater than 30% 

(Li et al., 2015; Chien et al., 2020). This was a crucial 

step in removing sequence redundancy and preventing 

overestimations of machine learning-based classifiers' 

performance (Li et al., 2015). This procedure proved 

crucial for removing sequence redundancy and preventing 

overestimations of machine learning-based classifiers' 

performance. The cleaned data totaled 204 instances, 

ready to be processed for modeling. The amount of 

cleaned data can be seen in Table 2. The dataset contains 

both negative and positive labels, where the negative label 

indicates that the dataset is not glycosylated, while the 

positive label indicates that the dataset is glycosylated. The 

O-sequence data for length 21 is presented in Table 3.

https://www.uniprot.org/
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Table 1: Dataset of glycosylation sequence O on the website UniProt 

Types of glycosylation Amount of data Actual 

NegBenchMark_O 1018.000 Negative 

NegIndependent_O  258.000 Negative 

PosBenchMark_O  520.000 Positive 

PosIndependent_O 129.000 Positive 

Total  1.925  

The post-translational modification glycosylation in sequence O 

dataset available on the UniProt website is 1.925 sequences 
 
Table 2: Clean data 

Types of glycosylation Amount of data Actual 

NegBenchMark_O 53 Negatif 

NegIndependent_O  37 Negatif 

PosBenchMark_O  76 Positif 

PosIndependent_O 38 Positif 

Total  204 
 
Table 3: O-sequence data 

ID  Types of    

protein Position glycosylation Sequence Label 

Q8TDJ6  588  NegBench LLHQEGMSVGS Not glycosylated 

  Mark_O PHGSQPHSRS  

Q8TDJ6  2711 NegBench IGEEYDRESKSS Not glycosylated 

  Mark_O DDVDYRGST  

E7EV10  52 NegBench VVCFYRRRDIS Not glycosylated 

  Mark_O NTLIMLADKH  

E7EV10  552 NegBench KKPNVIRSTP Not glycosylated 

  Mark_O SLQTPTTKRML  

P13647  62 NegBench AGACGVGGYG Not glycosylated 

  Mark_O SRSLYNLGGSK  

P13647  232 NegBench LLFRTSLKFRN Not glycosylated 

  Mark_O THLGKKGSEI  

E9PJ03  98 NegBench QISGVKKLM Not glycosylated 

  Mark_O HSSSLNNTSISR  

E9PJ03  100 NegBench SGVKKLMH Not glycosylated 

  Mark_O SSSLNNTSISRFG  

E5RJ61  21 NegBench PGSVSPSR Not glycosylated 

  Mark_O DSSVPGSPSSIV  

E9PJU3  81 NegBench QQFLPQFPED Not glycosylated 

  Mark_O SAEQQNELILA  

A3KN83  588 PosBench TIVMTKTPP Glycosylated 

  Mark_O VTTNRQTITLTK  

E7ENI0  2711 PosBench GALQQKIPG Glycosylated 

  Mark_O VSTPQTLAGTQK  

O14639  552 PosBench VRDRMIHRST Glycosylated 

  Mark_O SQGSINSPVYS  

 

Feature Extraction 

The collected data requires further extraction by 

performing hydrophobicity, Amino Acid Index (AAIndex), 

solvent accessibility (Sable), Composition Transition and 

Distribution (CTD), and Pseudo-Amino Acid Composition 

(PseAAC). Feature extraction aims to convert string data 

into numeric data. This stage involves feature extraction so 

that the resulting data can be used (Khaire and 

Dhanalakshmi, 2022). Feature extraction is very important 

in the machine learning process. Feature extraction aims to 

produce higher accuracy. The feature extraction stage is 

one of the most critical steps in machine learning research. 

This feature extraction aims to increase the accuracy 

of predicting Post-Translational Modification (PTM) to 

sequence O. There are five types of feature extraction 

used in this study. 

Amino Acid Index (AAindex) 

The package used for feature extraction uses the 

Amino Acid Index (AAindex), namely the BioSeqClass 

package with the feature index () function. This feature 

consists of 21 amino acid sequences, which are then 

stored in the example directory in a document storage 

format with the format. pep.  

Hydrophobicity 

The package used for feature extraction using 

hydrophobicity is the BioSeqClass package with the 

featureHydro (). The feature consists of a 21-residue 

amino acid sequence, which is then saved in the example 

directory in the document with the format. pep. The 

physical characteristic of a chemical that makes it 

resistant to water masses is called hydrophobicity 

(Verlicchi et al., 2013).  

Composition, Transition and Distribution (CTD) 

The package used for feature extraction uses 

Composition, Transition, and Distribution (CTD), namely 

the BioSeqClass package with the featured () function. 

This feature consists of 21 amino acid sequences; then, it 

is stored in the example directory with a document storage 

format with format. Text.  

Pseudo Amino Acid Composition (PseAAC) 

In this feature extraction, the package used is the 

BioSeqClass package with the featurePseudoAAComp() 

function. This feature consists of 24 amino acid 

sequences, which are then stored in the example directory 

in a document storage format with format. Pep.  

Solvent Accessibility (Sable)  

Sable is a website used for generic structure prediction 

that identifies the folds of a given sequence that are most 

compatible. The name of the protein sequence and the 

amino acid sequence can be entered on the website Sable 

Protein https://sable.cchmc.org/ to acquire results. The 

feature extraction result is then delivered via email.  

The five extractions are combined into one using the 

bind () function. All positive and negative data extractions 

are combined and then saved in CSV format. Then the 

next step is the labeling of each class. The label consists 

of 0 and 1, meaning class 0 is negative and class 1 is 

positive. Data extraction using Sable is shown in Fig. 2. 

Figure 2 shows the sequence's length on the first 

line and the feature extraction output using Sable is 

shown on the second line. Solvent Accessibility 

(SABLE) transforms 21 characters. Character 

sequences from the feature extraction procedure into 

numeric values. Numerical data that can be processed 

by XGBoost modeling.  
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Fig. 2: Output of sable 

 
Table 4: Feature extraction method contributes 

Feature Total feature  Percentage 

extraction type contribution (%) 

Sable 11 44 

AAIndex 1 4 

CTD 3 12 

Hydrophobicity 

 1 4 

PseAAC 9 36 

 Total  100 

 

Based on Table 4, it is known that the feature 

contributing the most to the increase in post-translation 

modification for predicting O-glycosylation is the 

extraction of the SABLE feature, which accounts for 44%. 

Meanwhile, the smallest contribution is shown by the 

AAIndex extraction and the hydrophobicity 

characteristics, each contributing 4%. 

Feature Selection 

The data collected is in the form of benchmark and 

independent data, which are then combined into a dataset. 

To achieve optimal accuracy, this study employs feature 

selection using the Minimum Redundancy Maximum 

Relevance (mRMR) technique. mRMR is a technique that 

filters features based on two variables: relevance and 

redundancy. The primary objective of the mRMR 

technique is to reduce redundancy between features while 

retaining the most relevant features related to the target 

variable for forecasting or classification. The feature 

selection stage aims to select features with the highest 

relevance to the target variable and minimize redundancy. 

The application of MRMR feature selection to O-

glycosylation was investigated in this research (Chien et al., 

2020; Alkuhlani et al., 2022). he MRMR feature selection 

process consists of two stages: selecting features with the 

highest correlation level to generate the most relevant 

features, and then refining the selection from the first 

stage to minimize redundancy between the selected 

features. This algorithm is believed to enhance model 

accuracy by reducing data. The way that mRMR functions 

is as follows: 

 

1. Minimal redundancy: Minimal redundancy: This 

stage determines how each feature relates to the target 

or class you wish to predict using relevance 

calculation. Metrics such as mutual information, 

correlation, and other statistically significant 

variables are typically used to measure it 

 

The next stage involves reducing redundancy within 

the features themselves, after determining which features 

exhibit a strong association with the objective. One 

approach to achieve this is by selecting features with high 

correlation among several others and removing features 

that are highly interconnected. 

 

2. Maximum significance: sThis stage prioritizes the 

selection of attributes that are most relevant to the 

intended audience. Features that exhibit a strong 

correlation with the target variable are given priority 

in this strategy 

 
This process considers the relationship of each feature 

to the target features to ensure the diversity of information 

represented by those features. 

This study employs the mRMR approach for feature 

selection. The objective of the feature selection stage is to 

enhance accuracy. The mRMR feature selection process 

requires the use of the mRMR library, specifically the 

mRMR.classic() function. The feature selection in mRMR 

involves selecting 25 features. The document will be 

saved in .csv format to select the desired variables. The 

use of mRMR was chosen because this approach has been 

shown to improve accuracy. 

Model and Evaluation 

This stage involves modeling and evaluation to predict 

post-translational modifications in O-glycosylation. 

During this phase, glycosylation prediction modeling is 

performed using the extreme gradient boosting method. 

Gradient boosting has evolved into the XGBoost 

technique. The machine learning model utilized in the 

XGBoost approach is built using gradient decision trees 

and is expected to enhance performance. Gradient 

boosting, as a technique, is capable of identifying optimal 

solutions to various problems, particularly those 

involving regression and classification. The fundamental 

concept of this algorithm is to minimize the loss function 

by adjusting parameters during iterative learning. To 

mitigate model complexity and prevent overfitting, 

XGBoost constructs a regression tree structure using a 

more regularized model, resulting in improved outcomes 

(Ma et al., 2020). At present, the most widely used 

algorithm for solving machine learning problems is 

XGBoost. With XGBoost, regression tree structures can 

be created in a more structured manner, which can 

simplify the model and yield better results. 
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The following equation represents the training loss and 

regularization terms that constitute the objective in Eq. 1: 

 

𝑂𝑏𝑗 (𝜃) = ℒ(𝜃) + 𝛺(𝜃)  (1) 

 

The function shows the training loss, while Ω is the 

regularization term function. Then θ is the parameter used 

(Zhang and Zhan, 2017). The function of defining training 

loss can be seen in Eq. 2: 

 

ℒ(𝜃) =  ∑ 𝜄(𝑦𝑖, �̂�𝑖)𝑛
𝑖=1   (2) 

 

The 𝑦𝑖  function shows the valid actual value, while 

the  �̂�𝑖  function shows the predicted value. Then, the 

function 𝑛 is the number of iterations used to get a better 

agreement, which can be seen in Eq. 3: 

 

𝐿(𝜃) = −[𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖) log(1 − �̂�𝑖)]  (3) 

 

where, 𝑦𝑖 is the actual value considered accurate and �̂�𝑖 is 

the predicted result of the model, while n is the number of 

iterations of the input value for the related model. 

Next, we conducted an evaluation using cross-

validation. This cross-validation is employed to assess the 

accuracy of the model. The cross-validation strategy 

utilizes the k-fold cross-validation method, where the data 

utilized for the model creation process is referred to as 

training data, and the data employed for model validation 

is referred to as testing data. The dataset was randomly 

split, and k experiments were performed to evaluate the 

cross-validation performance. Accuracy data is averaged 

after experiments using the kth partition data, which is 

utilized as both training and testing data. In this study, 

cross-validation was performed up to five times to achieve 

the desired prediction results. Figure 3 illustrates the k-

fold cross-validation simulation. 

The results of the prediction performance of post-

translational modifications in O-glycosylation are 

represented in a matrix, which is presented in terms of 

Accuracy (ACC), Sensitivity (Sn), Specificity (Sp), and 

Matthews Correlation Coefficient (MCC). In the 

confusion matrix, the number of accurately predicted 

glycosylation sites is known as True Positive (TP). The 

number of glycosylation sites incorrectly predicted as 

positive is False Positive (FP). The number of correctly 

predicted non-O-glycosylation sites is True Negative 

(TN). The number of non-glycosylated sites incorrectly 

predicted as negative is known as False Negative (FN). 

The following are the equations used for Accuracy, Sn, 

Sp, and MCC: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
  (4) 

 
 

Fig. 3: K-fold cross-validation simulation 

 

𝑆𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
  (5) 

 

𝑆𝑝 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
  (6) 

 

𝑀𝐶𝐶 =  
𝑇𝑃 𝑋 𝑇𝑁−𝐹𝑃 𝑋 𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
  (7) 

 

Results and Discussion 

The research findings will be explained in detail 

below, based on the investigation.  

Performance Evaluation 

This research has succeeded in carrying out five types 

of feature extraction. The five feature extraction 

techniques have contributed to improving the accuracy of 

glycosylation prediction. How each feature extraction 

method contributes to improving the accuracy of 

glycosylation prediction can be seen in Table 4. The 

SABLE feature contributes the most to increasing the 

accuracy of post-translational prediction of glycosylation 

modifications in sequence O. The increase in accuracy of 

glycosylation prediction is also influenced by feature 

selection using the mRMR technique. This technique 

takes optimal features from the most relevant features 

with a low level of redundancy.  

The predictive performance of post-translational 

alterations in O-glycosylation is depicted by a matrix, 

which is presented in terms of accuracy, sensitivity, 

specificity, and Matthews correlation coefficient. The 

performance of each benchmark data, training data, and 

independent data is shown in Table 3. Consequently, the 

accuracy of glycosylation prediction on sequence O using 

the XGBoost algorithm tends to increase. This is 

demonstrated by a benchmark accuracy of 99.27% and an 

independent accuracy of 100%, as indicated in Table 5: Post 

Translational Modification (PTM) glycosylation results. 
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Table 5: Results of the glycosylation on sequence O test 

Glycosylation sequence O Accuracy Sensitivity Specificity Matthews correlation coefficient 

Benchmark 99,27 98,13 100 98,64 

Independent 100 100 100 100 

 
Table 6: Comparative research 

Year Author Method Accuracy (%) Year 

2015 Li et al. (2015) Random forest 95 2015 

2020 Chien et al. (2020) XGBoost 94,60 2020 

2023 Alkuhlani et al. (2023) XGBoost 77,86 2023 

2023 Damayanti et al. (2023) XGBoost 100 2023 

 

 
 
Fig. 4: Performance of Post Translational Modification (PTM) 

to sequence O 

 

 
 

Fig. 5: Comparison with research that has been developed 

 

Table 5 shows the accuracy, sensitivity, specificity, 

and Matthew correlation coefficient values for the 

research conducted. The results of the study can also be 

seen in Fig. 4. The results showed that the accuracy rate 

of the XGBoost algorithm is a recommendation that can 

be used for the prediction of Post Translational 

Modification (PTM) glycosylation on sequence O. 

Prediction using the XGBoost algorithm was 100%. 

Testing using the XGBoost model shows that the accuracy 

prediction for benchmark data tends to be higher. Namely, 

99.27% compared to the independent 100%, thus 

outperforming previous studies. In the survey, benchmark 

data accuracy was 95%, while independent data was 95% 

(Pitti et al., 2019). Then, for research by Chien et al., 

(2020), the study's results showed an accuracy rate for 

Post Translational Modification (PTM) glycosylation on 

sequence O independent data of 94.6%. Furthermore, this 

study also outperformed research (Alkuhlani et al., 2023). 

This study discusses independent data on o-glycosylation 

with an accuracy of 77.86%. 

Comparative Research 

This study shows that the accuracy results tend to be 

higher compared with research that has been developed 

previously. In comparison to previous research, there 

was a 5% increase. The increase in the accuracy of 

predictions of post-translational modification of 

glycosylation in sequence O was influenced by several 

experiments that we carried out. First, we cleaned the 

data using skip redundant from 1925 data to 204 so that 

the processed data tends to be small. This can increase 

the accuracy value because the data used is the most 

optimal data. First, we cleaned the data using skip 

redundant from 1925 data to 204 so that the processed 

data tends to be small. This can increase the accuracy 

value because the data used is the most optimal data. 

Second, we carried out five types of feature extraction 

experiments, each of which contributed to increasing the 

accuracy value of O-glycosylation predictions. Third, 

we carried out feature selection using mRMR to obtain 

the most correlated features and those with the lowest 

level of redundancy. Fourth, we used the XGBoost 

algorithm modeling to improve O-glycosylation 

predictions so that, when compared with previous 

research, the accuracy of our research tends to increase. 

A comparison of the results of this research with several 

previous studies can be seen in Table 6.  

A comparison of the results of the research that has 

been carried out with previous research can be seen in Fig. 5 

tends to have a higher accuracy value, namely 100%. with 

an increase in accuracy of 5%. The findings of this study 

demonstrate that the performance of the XGBoost 

algorithm offers a greater level of accuracy than 

glycosylation prediction using a variety of previous 

methods. Such as for research by Chien et al., (2020) the 

study's results showed an accuracy rate for Post 

Translational Modification (PTM) glycosylation on 

sequence O independent data of 94.6%. Furthermore, this 

study also outperformed research (Alkuhlani et al., 2023).  

Li et al.               Chin et al.        lkuhlani et al.     Damayanti et al. 

(2015)              (2020)              (2023)                 (2023) 
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The XGBoost algorithm is a recommendation that can 

be used to predict Post Translational Modification (PTM) 

glycosylation on O sequence glycosylation. Things that 

increase the accuracy of glycosylation predictions 

include: First, the data processed is small, namely 204 out 

of 1925, so it can affect the quality of the data. Second, 

reliability in handling XGBoost features can overcome 

the problem of high-impact or irrelevant features. This 

algorithm can identify and extract the most important 

features from the data. Comparing the research findings 

to earlier studies, the XGBoost algorithm performs better 

in this study. Thus, XGBoost can prioritize these features 

and ignore features that are less influential. This helps 

improve accuracy by focusing on the most informative 

features. Thus, the XGBoost algorithm can be 

recommended for future research by adding larger 

amounts of data with predictions of other post-

translational modifications. 

Conclusion 

Prediction of Post Translational Modification (PTM) 

Glycosylation on Sequence O using the XGBoost 

algorithm can be used to increase accuracy. The results 

of this research show that the accuracy value is 100%, 

which is shown in Fig. 5. The evaluation of the model 

uses k-fold cross-validation with a parameter of k = 5. 

The increase in accuracy that has been achieved is 

supported by five types of feature extraction techniques, 

namely: AAindex, hydrophobicity, CTD, SABLE, and 

PseAAC. Each type of feature extraction contributed to 

increasing the accuracy of O glycosylation predictions. 

SABLE contributed the most, namely 44%, AAIndex 

contributed 4%, CTD contributed 12%, hydrophobicity 

contributed 4% and PseAAC contributed 36%. 

Furthermore, this very high increase in accuracy is also 

influenced by feature selection using the MRMR 

approach technique. This technique aims to reduce the 

dimensions of the dataset by selecting the most relevant 

and least redundant features. Prediction of O-

glycosylation using the Extreme Gradient Boosting 

algorithm tends to be faster and saves experimental 

costs. This research succeeded in improving compared 

to previously developed research. The implications of 

this research can be used further in the clinical field for 

drug development. Glycosylation prediction by applying 

feature extraction techniques and feature selection and 

modeling using XGBoost can predict glycosylation 

quickly. This research has limitations with datasets, so it 

can be developed in further research by adding the amount 

of data with a sequence length of 51. 
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