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Abstract: Deep Neural Networks (DNNs), specifically Convolution Neural 

Networks (CNNs) are found well suited to address the problem of sound 

classification due to their ability to capture the pattern of time and frequency 

domain. Mostly the convolutional neural networks are trained and tested with 

time-frequency patches of sound samples in the form of 2D pattern vectors. 

Generally, existing pre-trained convolutional neural network models use 

static-sized filters in all the convolution layers. In this present work, we 

consider the three different types of convolutional neural network 

architectures with different variable-size filters. The training set pattern 

vectors of time and frequency dimensions are constructed with the input 

samples of the spectrogram. In our proposed architectures, the size of kernels 

and the number of kernels are considered with a scale of variable length 

instead of fixed-size filters and static channels. The paper further presents the 

reformulation of a minibatch stochastic gradient descent optimizer with 

adaptive learning rate parameters according to the proposed architectures. 

The experimental results are obtained on the existing dataset of sound 

samples. The simulated results show the better performance of the proposed 

convolutional neural network architectures over existing pre-trained 

networks on the same dataset. 

 

Keywords: Deep Neural Network, Convolution Neural Networks, Sound 

Recognition, VGGNet, Pattern Classification, Stochastic Gradient Descent 

Optimizer 

 

Introduction 

In recent years, deep neural networks have been 

successfully applied to many real-world problems of 

various domains (Chu et al., 2009; Radhakrishnan et al., 

2005; Mydlarz et al., 2017). More emphasis has been given 

to the problem domain of image recognition. It includes the 

task of classification or labeling of object recognition from 

the input images (Nair and Hinton, 2009). Convolutional 

Neural Networks (CNNs) are successfully applied in the 

domain of automatic speech recognition (Graves et al., 

2013). Convolutional neural networks are used for various 

audio-processing tasks (Choi et al., 2016). Sound 

identification and sound tagging have many applications in 

security systems mainly for crime detection, alarm 

controlling, and password control (Radhakrishnan et al., 

2005). The Internet of Things (IoT) devices are embedding 

automatic sound recognition systems for controlling 

various devices (Wang et al., 2014; Mydlarz et al., 2017). 

The machine may become adaptive to understand the 

sounds and able to recognize the sounds with an individual 

being. The deep neural network exhibited its strength and 

capabilities to accomplish such types of complex pattern 

recognition tasks. A deep convolution neural network 

considers the supervised environment to adjust its behavior 

for the given classification tasks. Thus, CNNs are 

considered the most suited machine learning technique to 

perform the sound classification task due to their ability to 

capture the pattern vectors from the time and frequency 

domains. The spectrogram is used in some cases to 

construct the input patterns with time and frequency pattern 

patches (Bogdanov et al., 2013). In early work, hand-drawn 

feature extraction methods were used to construct the 

pattern training set of the sound frequency samples. These 
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feature extraction methods used filters and different 

transformations to remove unwanted noise from the sound 

inputs. In this attempt, the Mel Frequency Cepstral 

Coefficient (MFCC) modeled with the Gaussian mixture 

method and support vector machines were used in many 

applications (Salamon et al., 2014). The hand-crafted 

feature extraction technique leads to inferior performance 

due to the different pitches of the sound signals. Therefore, 

more discriminative features were developed but all of 

them were hand-crafted and derived from low-level 

descriptors such as MFCC (Phan et al., 2015), filter bank 

(Geiger and Helwani, 2015), or time-frequency descriptors 

(Chu et al., 2009). It is analyzed that all these models 

discard the temporal order of the frame level features and 

due to this, the considerable information loss. Thus, the 

earlier methods based on a handcrafted approach optimized 

the feature extraction process and the classification process 

separately rather than learning end-to-end. Further, the 

artificial neural networks were used for the classification of 

automatic sound recognition systems but again the training 

set for the fully connected feed-forward neural network was 

constructed with a handcrafted feature extraction process 

(Srisuk et al., 2018). The instinctive nature of convolution 

neural networks to jointly learn feature representation and 

appropriate classification leads the way for better 

performance for the automatic sound recognition system 

(Kons et al., 2013). Lots of research has been reported on 

automatic sound recognition using various models of deep 

neural networks, especially with convolutional neural 

networks. The spectrogram-based features of frequency 

and time vector were used generally for training. Lots of 

attempts were made to obtain better accuracy and good 

generalization for sound signals, but still, there is a 

challenge to efficiently improve the accuracy and 

generalization for the sound classification even though it 

contains noise. Thus, to improve the efficiency in sound 

classification there is a requirement for evolving the 

optimal architecture of CNNs with effective learning 

methods. In this present work, we consider the three 

different types of convolutional neural network 

architectures with different variable-size filters. The time 

and frequency dimensions are used to construct the training 

set pattern vectors from the input samples of the 

spectrogram. Thus, the 2D input samples of sound signals 

are used as input to the proposed convolutional networks. 

Our proposed architectures of convolutional neural 

networks are inspired by VGGNet Simonyan and 

Zisserman (2014) because it replaces large convolutional 

kernels with a stack of small kernels without pooling 

between these layers. Thus, it helps in the reduction of 

network parameters. In our proposed architectures of 

convolutional networks, the size of kernels and number of 

kernels are considered with a scale of variable length in 

ascending and descending order. In the proposed approach, 

a kernel of variable size is used to distribute the features 

extracted from the 2D input data to convolutional filters of 

variable size arranged in parallel. The novelty of the 

proposed approach is that it considers the convolution 

layers of filters and the number of filters as per the variable 

length scale. Thus, the size of kernels and the number of 

filters in a convolution layer are selected dynamically 

with variable length scale instead of fixed size filters and 

static channels. The proposed convolutional networks 

are trained with a reformulated mini-batch stochastic 

gradient descent optimizer with adaptive learning rate 

parameters. The experimental results show the better 

performance of the proposed convolutional neural 

networks over existing pre-trained convolutional neural 

networks on the same dataset. The effect of changes in 

the variable length scale of filters and size of filters are 

analyzed and the role of regularization and optimization 

are also considered in the performance analysis for the 

classification. The accuracy in the classification for 

sound samples of proposed models is considered and the 

suitable optimized design of the convolutional neural 

network is identified, which yields state-of-the-art 

performance for the classification of given sound data. 

The major contribution of the authors in this present 

research paper can be considered as: 

 

 A novel approach has been used for the construction 

of convolutional neural network models. The 

proposed approach considered the variable size filters 

of the receptive field instead of fixed size filters in all 

convolution layers. Besides this, the number of 

channels for each convolution layer is also 

considered variable length scale 

 Mini-batch stochastic gradient descent optimizer is 

re-formulated for the proposed architectures of CNNs 

 The proposed architectures of CNNs exhibited 

more flexibility for deciding the size of filters of 

receptive fields with respect to other existing pre-

trained models 

 Performance analysis of proposed architectures 

was presented on different parameters of 

classification accuracy 

 

In recent work, the dynamic convolution is proposed to 

increase the complexity of the without increasing the 

network depth or width (Chen et al., 2020). In this 

approach, a single convolution kernel per layer, dynamic 

convolution aggregates multiple parallel convolution 

kernels dynamically based upon their attentions, which are 

input dependent. It has been found that by simply using 

dynamic convolution architecture accuracy of ImageNet 

classification is increased by 2.9%. In another approach, the 
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Dynamic Convolutional Neural Network (DCNN) is used 

for the reconstruction of high-resolution images from single 

low-resolution images (Bhujel and Pant, 2017). In this 

approach, the dynamic convolutional neural network 

directly learns an end-to-end mapping between low-

resolution and high-resolution images. It has been found 

that the performance of the network is measured by PSNR, 

WPSNR, SSIM, and MSSSIM better than the pre-trained 

networks. Further, a Dynamic and Progressive Filter 

Pruning (DPFPS) scheme is proposed which is directly 

learning the structured sparsity network from Scratch 

(Ruan et al., 2021). It has been found that the proposed 

network increases the performance of the Convolutional 

Neural Networks for images. A stacked CNN and 

Recurrent Neural Network (RNN) model for sound event 

classification using weakly labeled data is proposed by 

Adavanne and Virtanen (2017). The model was evaluated 

on the UrbanSound8k dataset and outperformed several 

baseline models. Earlier, in convolution neural networks a 

general approach was followed to deal with classification 

problems for sound signals. In this approach, the audio 

signals are first converted into 2-dimensional pattern 

vectors, and then after, these are presented to pre-trained 

convolutional neural network architecture of image 

recognition (Deng et al., 2014). Generally, in most of the 

cases pre-trained CNN architectures are used for automatic 

sound recognition in which the spectrogram pattern of 

sound samples is considered as the training set (Cotton and 

Ellis, 2011). The problem that encountered here is the non-

availability of the large quantities of training data to learn a 

non-linear function from input to output that is generalized 

well and yields high classification accuracy on unseen data. 

A method based on a 2D CNN with five layers is proposed 

(Salamon and Bello, 2017). In this method, new training 

samples are generated using the data augmentation method. 

In another method, 2D CNNs with random weights are 

proposed (Pons and Serra, 2019) for extracting features 

from sound spectrograms, and raw audio samples are used 

for sound classification. In this attempt, several 

experiments were conducted to find the best architecture for 

this method and the best result was obtained with VGG 2D 

CNN model with SVM classifier. In the Boddapati et al. 

(2017) spectrogram, the Mel-Frequency Cepstral Coefficient 

(MFCC) and Cross Recurrence Plot (CRP) are used with 

AlexNet and GoogleNet for the classification of sounds. A 

new technique of learning is proposed (Abdoli et al., 2019) 

named as Between Class (BC) learning for the training of 

neural networks. In this model the input is considered as the 

mixture of two audio samples and the network is trained to 

predict the mixing ratio of the samples. It performed well 

on various datasets of sounds compared to convolutional 

learning techniques (Piczak, 2015a). An end-to-end 

learning approach is proposed for speech recognition based 

on multi-scale convolutional that learns the representation 

directly from audio waveforms (Zhu et al., 2016). In this 

approach, three 1D convolutional layers with different filter 

sizes have been used for feature extraction and these 

features are further concatenated by a pooling layer to 

ensure a consistent sampling frequency for the rest of the 

network. Another end-to-end approach named SincNet is 

proposed for speaker identification and verification 

(Ravanelli and Bengio, 2018). An important investigation 

is considered for speech recognition using end-to-end 

multi-channel 1D CNN. It is found that the timing 

difference between channels is an indicator of the location 

of the input in space (Hoshen et al., 2015). Recently, 

several new deep convolutional models have been 

proposed for sound classification (Dai et al., 2017). These 

models consist of batch normalization, residual learning, 

and downsampling in the initial layers of CNN. In another 

approach dilated convolutional is used for feature 

extraction in audio clips to improve classification accuracy 

(Zhang et al., 2017). The dilated convolution is different 

from conventional CNN in that it does not use max-pooling 

layers and achieves good performance for sound 

classification. In another approach, one network learns 

directly from the audio waveform and the other one learns 

high-level representation from log-Mel features. These 

models are trained independently and the prediction of two 

models is combined using the dempster-Shafer method 

(Kim et al., 2018). Further, another hybrid model is 

proposed which also combines the prediction of two CNNs 

using the dempster-Shafer method (Salamon et al., 2014). 

In this approach, features such as Log-Mel spectrogram, 

MFCC, Chroma, Spectral contrast, and Tonnetz (CST) are 

extracted from the audio signals. The log-Mel, spectral 

contrast, and Tonnetz are stacked and considered as one 

feature set. Similarly, MFCC and CST features are stacked 

and considered as another feature set. These two feature 

sets are used for the training of two identical four-layer 

CNNs and the Dempster-Shafer method is used for the 

prediction from the combined CNNs. Thus, lots of research 

has reported on automatic sound recognition using various 

models of deep neural networks, especially with 

convolutional neural networks. The spectrogram-based 

features of frequency and time vector were used generally 

for training.  

Materials and Methods 

The existing dataset of sound samples i.e., 

UrbanSound8k is used for the construction of sample 

patterns for training and testing with the log scale Mel 

spectrogram method. In the simulation, we considered the 

8732 time-frequency patches of the spectrogram as the 

input samples. Among these 6985 samples were used for 

training purposes 1747 samples were used for testing and a 

total (of 10) classes or labels were used for the classification 

of input samples. The class distribution of the 

UrbanSound8k dataset is shown in Table 1.  
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Table 1: Class distribution of UrbanSound8k dataset 

Class Air conditioner Car horn Children playing Dog bark Drilling Engine idling Gun shot  Jackhammer Siren Street music 

name [AI] [CA] [CH] [DO] [DR] [EN] [GU] [JA] [SI] [ST] 

Label 1 2 3 4 5 6 7 8 9 10 

Size 1000 429 1000 1000 1000 1000 374 1000 929 1000 

 

 
 

Fig. 1: Steps for UrbanSound classification 
 

These input samples were presented to the 

convolutional neural network architectures. In our 

proposed method three convolutional neural network 

architectures were considered with different variable size 

filters of the receptive field. The size of the kernels and 

the number of channels are considered with a scale of 

variable length for the first two architectures. In the third 

architecture, the kernel of maximum variable size as per 

our scale i.e., 2n is used to distribute the feature map 

extracted from the 2D input samples of sound signals to a 

block of the three convolution filters of scale 2𝑛 arranged 

in parallel. In all three architectures, a single max pool is 

used after the last convolution layer followed by the two 

fully connected layers (dense network). 

Deep Convolutional Neural Networks 

Deep Neural Network architectures proposed in this 

present work are inspired by the Visual Geometry Group 

Network (VGGNet) (Simonyan and Zisserman, 2014). 

In the VGGNet, the depth of the network is a critical 

component to achieving better recognition or 

classification accuracy in Convolutional Neural 

Networks (CNNs). In our proposed model the two 

Convolutional Neural Network (CNN) architectures are 

comprised of variable length scales for a number of 

filters and for the size of filters of the convolution layers 

interleaved with one pooling operation followed by two 

fully connected layers. The first dense layer uses the 

regularization function whereas the output layer or 

classification layer uses the SoftMax activation function. 

The third proposed architecture consists of one 

convolution layer of maximum size variable scaled 

filters followed by a stack of convolution layers with the 

dynamical size of filters. These layers are further 

concatenated and passed through one pooling operation. 

The output of the pooling layer passes through the two 

fully connected layers as discussed earlier for the 

previous two proposed architectures. The steps for urban 

sound classification can be shown in Fig 1. The input to 

these networks consists of time-frequency patches of 

log-scaled mel-spectrogram representation of the audio 

signal. Generally, we use Essentia (Bogdanov et al., 

2013) to extract a log-scale mel-spectrogram with 128 

components covering the audible frequency. Thus, we 

considered the size of input TF patch X-128 frames i.e. 

𝑋 ∈  𝑅128×128. 

Therefore, the two-dimensional input 𝑋 applies to the 

first convolution layer (H1) which consists of 𝑚 channels 

(filters) of size n  n, where n = 1, 2, … … … .N Let [𝑋]𝑖,𝑗 

and [𝐻1]𝑖,𝑗 denote the value (TF patch) at location (𝑖, 𝑗) in 

the 2D representation of the audio signal. Hence, this 

input data is processed through several trainable 

convolution layers for an appropriate representation of the 

input. Since the neurons in a layer are connected only to a 

small region of the previous layer, each of the hidden units 

receives input from each of the input pixels through the 

parameter weight tensor 𝑊. Let 𝑈 contain biases, so that 

we can express the layer output as (Luo et al., 2016; 

Bologna and Pellegrini, 1998): 
 
[𝐻]𝑖,𝑗 = 𝐹[[𝑈]𝑖,𝑗 +  ∑ ∑ [𝑊]𝑖,𝑗,𝑘,𝑙[𝑋]𝑘,𝑙𝑗𝑘 ]  (1) 
 

Or: 
 
[𝐻]𝑖,𝑗 = 𝐹[[𝑈]𝑖,𝑗 +  ∑ ∑ [𝑉]𝑖,𝑗,𝑎,𝑏[𝑋]𝑖+𝑎,𝑗+𝑏𝑏𝑎 ]  (2) 
 

Such that 𝑘 = 𝑖 + 𝑎 and 𝑙 = 𝑗 + 𝑏 

 

Here V represents the convolution filter or kernel of 

the convolution layer and F is a non-linear output 

function. Therefore, the deep convolution network is 
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designed to learn the set of parameters 𝑉 of convolution 

layers and of the dense (fully connected) layers to map the 

input to the predicted output T. Generally, with the 

hierarchy of layers and to use the Eq. 2, we can express 

the predicted output 𝑇 in the terms of unknown parameters 

(W) for a fully connected network with non-linear output 

function F as: 
 

𝑇1 = Ϫ[𝐹(𝑋|𝑉)] 
or: 
 
𝑇1 = Ϫ[𝐹𝐿 (… … … 𝐹2 (𝐹1[𝑉 + 𝑉1  ⊗  𝑋1]|𝑉𝟐  )|𝑉𝐿 )]  (3) 
 
and: 
 
 𝑇 = 𝐹(𝑇1 |𝑊) =𝐹𝑜(𝐹𝐻(𝑇1 ∗  𝑊𝐻 + 𝑏𝐻) ∗ 𝑊𝑜 + 𝑏𝑜) (4) 
 

where, ⊗ represents the convolution operation or tensor 

product * represents the dot product of the vectors, Ϫ 

represents the max pool operator, T1 is the final feature map 

obtained from the max pool layer inserted after the last 

convolution layer and b is a bias vector used by the layers 

of a fully connected network, L is the number of 

convolution (hidden) layers of the network, X1 is the 2-

dimensional input matrix of N features maps and 𝑉 is a 

collection of the two-dimensional filters. The output of the 

final convolution layer (after max-pooling) is flattered and 

used as input for the first layer of the dense network. In the 

case of multiclass classification, the number of neurons in 

the output layer is considered according to the number of 

classes. Hence, for the output layer of the classification 

layer, the SoftMax activation function is used. The network 

is trained for the input samples and the parameters of the 

network are optimized using mini-batch stochastic gradient 

learning and regularization methods to minimize the error 

or cross-entropy (Kukačka et al., 2017). 

In our proposed work, the variable length scale filters 

and channels are considered for the convolution layers 

instead of static size filters. In this approach, we select the 

size of filters and number of channels in a dynamic way 

according to the variable length scale for each convolution 

layer. Let 𝑛 represent the variable scale according to 

which the size of filters is considered with variable scale 

𝑘 for considering the number of channels or filters of the 

receptive field. Hence, the size of filters of the 

convolution layer (𝐿) is considered according to 2n2n 

where n = 1, 2, 3 … N. The numbers of filters are 

considered as: 
 
𝑐 = 2𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 = 2𝑛 + 𝑛 (5) 
 

The output from the first convolution layer for a 

number of channels i.e., c1 can be expressed as:  
 
𝐻1

𝑐1 =  𝑓1
𝑐1((𝑊1 ⊗ 𝑋) + 𝑈1

𝑐1 (6) 
 

Similarly, for the second layer and third layer, we have: 

𝐻2
𝑐2 =  𝑓2

𝑐2((𝑊2 ⊗ 𝑍1
𝐶1) + 𝑈2

𝑐2) (7) 
 

 𝐻3
𝑐3 =  𝑓3

𝑐3((𝑊3 ⊗ 𝑍2
𝐶2) + 𝑈3

𝑐3)  (8) 

 

Thus, in general, for the 𝐿th Layer, we have: 

 

𝐻𝐿
𝑐𝐿 =  𝑓𝐿

𝑐𝐿((𝑊𝐿 ⊗ 𝑍𝐿−1
𝐶𝐿−1) + 𝑈𝐿

𝑐𝐿)  (9) 

 

Let d0 and d1 be the dimension of the input vector 

and m0 and m1 be the dimension of the first convolution 

filter. Thus, the shape of X0 and V will be (N, d0, d1) 

and (M, N, m0, m1) respectively.  

Now, we can define the shape of 𝑊 and 𝐻 in a general 

way. The shape of 𝑊1 will be (𝑐1, 𝑁, 𝑚0, 𝑚1) and the shape 

of 𝐻1
𝑐1 will be (𝑐1, 𝑑0 − 𝑚0 + 1, 𝑑1 − 𝑚1 + 1). Similarly, the 

shape of 𝑊2 will be (𝑐2, 𝑐1, 𝑚2, 𝑚3) and shape of 𝐻2
𝑐2 will 

be (𝑐2, (𝑑0 − 𝑚0 + 1 − 𝑚2 + 1), ( 𝑑1 − 𝑚1 + 1 −  𝑚3 + 1) or 

(𝑐2, (𝑑0 − (𝑚0 + 𝑚2) + 2), ( 𝑑1 − (𝑚1 + 𝑚3) + 2). 

Similarly, the shape of 𝑊3 will be (𝑐3, 𝑐2, 𝑚4, 𝑚5) and 

the shape of 𝐻3
𝑐3 will be: 

 
(𝑐3, (𝑑0 − (𝑚0 + 𝑚2 + 𝑚4) + 3),  (10) 
( 𝑑1 − (𝑚1 +  𝑚3 + 𝑚5) + 3))   
 

Hence, in this way, we can compute the size of 𝑊𝐿 

and 𝐻𝐿
𝑐𝐿. Thus, the shape of 𝑊𝐿 will be (𝑐𝐿, 𝑐𝐿−1, 𝑚𝐿, 𝑚𝐿+1) 

and the shape of 𝐻𝐿
𝑐𝐿 will be: 

 

(
𝑐𝐿−1, (𝑑0 − (𝑚0 + 𝑚2 + 𝑚4 +  … … 𝑚𝐿−1) + 𝐿),

( 𝑑1 − (𝑚1 +  𝑚3 + 𝑚5 + ⋯ 𝑚𝐿) + 𝐿)
)  (11) 

 

Thus, in our proposed architectures the variable length 

scale for the number of filters as specified in equation 5 is 

considered. The first proposed architecture consists of 

three convolution layers and two dense layers (one hidden 

and one classification layer). Hence, 𝑛 = 1, 2, 3, and the 

number of filters in each layer will be of size 8×8, 4×4, 

and 2×2 respectively with the number of filters 𝑐 = 2 𝑘 

i.e., 22, 12, and 6 respectively. A detailed description of 

this architecture is as follows: 

 

𝐿1 layer : 22 Filters with a receptive field of 8×8, so that 

𝑊1 has the shape (22, 1, 8, 8) and the shape of 

𝐻1 is (22, 121, 121). It uses the Rectified Linear 

Unit (ReLU) activation function i.e., 𝑓1(𝑦) =
 max (𝑦, 0)  

𝐿2 layer : 12 Filters with a receptive field of 44, so that 

𝑊2 has the shape (12, 22, 4, 4) and the shape of 

𝐻2 is (12, 118, 118). It also uses the rectified 

linear unit activation function 

𝐿3 layer : 6 Filters with a receptive field of 22, so that 

𝑊3 has the shape (6, 12, 2, 2) and the shape 

of 𝐻3 is (6, 117, 117). This is also followed 

by a Rectified Linear Unit (ReLU) activation 

unit function  
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Fig. 2: Third convolution neural network architecture 
 

Max-pool layer: 𝐿3  layer is followed by (4, 4) stride 

max-pooling. Therefore, the size of 𝐻3 after the max pool 

will be (6, 29, 29): 

 

𝐿4 layer : The number of units for this layer is considered 

with the variable-length scale i.e. 𝑣 = 2 ×

𝑚𝑎𝑥(𝑐). Thus, for this architecture, there will be 

44 hidden units, and the connection weight 𝑊ℎ 

has the shape (5046, 44) followed by the ReLu 

activation function 

𝐿5 layer : In this layer, the 10 output units are used, and 

the weight 𝑊𝑜 has the shape (44, 10) followed 

by a SoftMax activation function 
 

The second proposed architecture consists of three 

convolution layers and two dense layers (one hidden and 

one classification layer). Again, n = 1, 2, 3 and the number 

of filters in each layer are of size 22, 44, and 88 

respectively. A detailed description of this architecture 

can be discussed as: 
 
𝐿1 layer: 22 Filters with a receptive field of 22, so 

that 𝑊1 has the shape (22, 1, 2, 2) and the 
shape of 𝐻1 is (22, 127, 127). It uses the 

Rectified Linear Unit (ReLU) activation 
function i.e., 𝑓1(𝑦) =  max (𝑦, 0) 

𝐿2 layer: 12 filters with a receptive field of 44, so 

that 𝑊2 has the shape (12, 22, 4, 4) and 

the shape of 𝐻2 is (12, 124, 124). It also 

uses the rectified linear unit activation 

function 

𝐿3 layer:  6 filters with a receptive field of 88, so that 

𝑊3 has the shape (6, 12, 8, 8) and the shape 

of 𝐻3 is (6, 123, 123). This is also followed 

by a Rectified Linear Unit (ReLU) 

activation unit function 

 

Maxpool layer: In this architecture, the 𝐿3 layer is 

followed by (4, 4) stride max-pooling. Therefore, the size 

of 𝐻3 after the max pool will be (6, 30, 30): 
 

𝐿4 layer: The number of units for this layer is considered 

with the variable length scale i.e., 𝑣 = 2 ×

𝑚𝑎𝑥(𝑐). Thus, for this architecture, there will 

be 44 hidden units and connection weight 𝑊ℎ 

has the shape (5400, 44) followed by the ReLu 

activation function 
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𝐿5 layer : In this layer, the 10 output units are used, and 

the weight 𝑊𝑜 has the shape (44,10) followed by 

the SoftMax activation function 
 

In the proposed third convolutional neural network 

architecture, we considered n = 4 and as per equation 5, the 

first convolution layer {𝐿0} consists of 40 filters of size 1616. 

The output of the 𝐿0 layer is further distributed parallelly in 

the second convolution layer which consists of three 

convolution blocks i.e., {𝐿1, 𝐿2, and 𝐿3} as shown in Fig. 2. 

A detailed description of this architecture is as follows: 
 

𝐿0 layer: 40 filters with a receptive field of 1616, so that 

𝑊0 has the shape of (40, 1, 16, 16) and the 

shape of 𝐻0 is (40, 113, 113). It uses the 

Rectified Linear Unit (ReLU) activation 

function i.e. 𝑓1(𝑦) =  max (𝑦, 0)  
 

The output of 𝑡ℎ𝑒 𝐿0 layer is distributed into the three 

convolution blocks 𝐿1, 𝐿2, and 𝐿3 in parallel. Hence, the 

parameters of 𝐿1, 𝐿2 and 𝐿3 are as follows: 
 

𝐿1 block:  22 Filters with a receptive field of 88, so 

that 𝑊1 has the shape of (22, 40, 8, 8) and 

the shape of 𝐻1 is (22, 113, 113). This is also 

followed by the Rectified Linear Unit 

(ReLU) activation function 

𝐿2 block:  12 Filters with a receptive field of 44, so 

that 𝑊2 has the shape of (12, 40, 4, 4) and 

the shape of 𝐻2 is (12, 113, 113). It also uses 

the rectified linear unit activation function 

𝐿3 block:  6 Filters with a receptive field of 22, so 

that 𝑊3 has the shape of (6, 40, 2, 2) and the 

shape of 𝐻3 is (6, 113, 113). This is also 

followed by a Rectified Linear Unit (ReLU) 

activation unit function 
 

The output of 𝐿1, 𝐿2, and 𝐿3 blocks are concatenated 

to produce a feature map as: 
 
𝑦 = 𝐻𝑐[𝐻1, 𝐻2, 𝐻3 (12) 
 

Here, 𝐻𝑐 represents the composite function for the 

concatenation. The shape of 𝑊𝑐 is (40, 40, 8, 8) and the 

shape of 𝑦 is (40, 113, 113). Now the 𝑦 is passed through 

44 stride max pooling.  

Maxpool layer: The concatenated output y is passed 

through (4, 4) stride max pooling. Therefore, the size of y 

after the max pool will be (40, 28, 28): 
 

𝐿4 layer : The number of units for this layer is decided 

with the variable-length scale i.e., 𝑢 = 2 ×

𝑚𝑎𝑥(𝑐). Thus, for this architecture, there are 80 

hidden units, and the connection weight 𝑊ℎ has 

the shape (31360, 80), followed by the ReLU 

activation function 

𝐿5 layer : In this layer, the ten output units are used, so 

that the weight 𝑊𝑜 has the shape (80,10) 

followed by the SoftMax activation function 
 

Thus, for the first and second architectures, the layer 

𝐿4 is containing 44 hidden units followed by a ReLU 

activation function. In the third architecture layer, 

𝐿4 contains 80 hidden units. The 𝐿5 layer contains 10 

output units i.e., 𝑊𝑜 has the shape (44, 10) for the first and 

second architecture whereas (80, 10) for the third 

architecture followed by a SoftMax activation function. It 

is quite clear, that dynamically sized filters of the 

receptive field according to Eq. 5 allow the network to 

learn small, localized features that can be fused at 

subsequent layers to gather evidence in support of a larger 

time-frequency patch that is indicative of the presence or 

absence of different sound classes even when the Spectro-

temporal is masking with interfacing sources. 

Learning 

The proposed three architectures of CNNs are using 
mini-batch stochastic gradient descent learning (Bottou, 
2010) to train the networks for the given log-el-
spectrogram representation of the sample patterns. These 
sample patterns are considered in the form of TF-Patch 
and each batch consists of 128 TF-patches randomly 
selected from the training data without any repetition. The 
mini-batch Stochastic Gradient Descent (SGD) uses the 
independent identically distributed samples or batches as 
the sample sets to update the unknown parameters in each 
iteration. SGD has the advantages over the earlier 
gradient-based approaches due to the reason that SGD is 
using one sample randomly to update the gradient per 
iteration, rather than directly calculating the extract value of 
the gradient. It reduces the variance of the gradient and 
makes the convergence more stable (Darken et al., 1992). 
Therefore, the SGD has a better chance of finding the 
global optimal solution for complex problems 
(Nemirovski et al., 2009). In the proposed approach the 
models optimize the error function 𝑙(𝑊). Here 𝑙 is an error 
function and 𝑊𝑜 is the parameter to be optimised. The 
error function can be expressed as: 
 

𝑙(𝑊𝑜) =  
1

2𝑀
 ∑ (𝑑𝑗 −  𝑓𝑜(𝑦𝑗))2𝑁

𝑗=1   (13) 
 
where:  
 

𝑦𝑖 =  ∑ 𝑊𝑜
𝑖

𝑁

𝑗=1

𝐻𝑖 + 𝑏𝑗 
 

Here, 𝑀 is the number of training samples, 𝑁 is the 

number of units in the output layer, 𝑑 is the predicated 

class and 𝑦 is the activation of the unit. 

In the stochastic gradient descent approach, change along 

the error function is obtained in the descent direction with 

respect to unknown parameter 𝑊𝑜 in the weight space as: 
 
𝜕𝑙(𝑊𝑜)

𝜕𝑊𝑜
 ∝  − 

1

𝑀
 ∑ (𝑑𝑗 −  𝑓𝑜(𝑦𝑗)) . 𝐻𝑖

𝑁
𝑗=1   (14) 



Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87 

DOI: 10.3844/jcssp.2024.69.87 

 

76 

The weight update in (t +1) iteration can be expressed as: 

 

𝑊𝑜(𝑡 + 1) =  𝑊𝑜(𝑡) + 𝜂𝑜
1

𝑀
 ∑ (𝑑𝑗 −  𝑓𝑜(𝑦𝑗)) . 𝐻𝑖

𝑁
𝑗=1   (15) 

 

Here, to reduce the over-fitting, the batch 

normalization is applied after the activation function of 

each convolution layer, whereas the dropout and 

regularization method is applied to the weights of both 

two layers i.e., L4 and L5 with a probability of 0.5 and 

penalty factor of 0.001 respectively (Srivastava et al., 

2014). However, the performance of mini-batch SGD can 

be further improved with the use of various optimization 

and regularization processes (Bühlmann and Van De 

Geer, 2011). One of the important factors is the choice of 

a proper learning rate. A too-small learning rate results in 

a slower convergence rate while a too-large learning rate 

can hinder convergence making error function fluctuate at 

the minimum. Besides the learning rate due to the 

existence of fluctuations in the SGD, the objective 

function is trapped in infinite numbers of local minimum. 

Therefore, the Nesterov Accelerated Gradient Descent 

method (Botev et al., 2017) can be used to make 

improvements in the performance of SGD: 

 

�̂� = 𝑊𝑡 +  𝑣𝑜𝑙𝑑 . 𝛼 = 𝑣𝑜𝑙𝑑 . 𝛼 +  𝜂 (−
𝜕𝑙(�̂�)

𝜕𝑊
)  (16)  

and, 𝑊𝑡+1 = 𝑊𝑡 + 𝑣   

 

Here, 𝛼 is a momentum factor and 𝑣𝑜𝑙𝑑 represents the 

previous updates. Another issue in SGD is related to the 

choice of learning rate parameter. The most 

straightforward improvement in NAGD can be observed 

with the Adagrad method (Lydia and Francis, 2019). It 

adjusts the learning rate dynamically based on the reused 

gradients as: 

 

𝑔𝑡 =  
𝜕𝑙(𝑊𝑡)

𝜕𝑊
𝑉𝑡 =  √∑(𝑔𝑖)2+∈

𝑡

𝑖=1

 

 

And:  

 

𝑊𝑡+1 =  𝑊𝑡 − 𝜂
𝑔𝑡

𝑉𝑡
  (17) 

 

Here, 𝑔𝑡 is the gradient of parameter 𝑊 at iteration 𝑡. 

𝑉𝑡 represents the reused gradient of parameter 𝑊 at 

iteration 𝑡 and 𝑊𝑡 is the value of parameter 𝑊 at iteration 𝑡. 

Thus, the learning process for the proposed architectures 

is formulated with improvement as specified in Eqs. 16-17 

for mini-batch SGD. Now the mini-batch SGD is 

reformulated for the proposed architectures of CNNs. Let 

us consider the first and second architectures for the 

formulation of the learning rule. In both architectures, 

three convolution layers are used followed by the two 

dense layers, and batch normalization is applied after each 

convolution layer. The 2-order state-dependent 

connection can be defined by the fact that the output of 

the 𝐿1layer is just only related to the input of the 𝐿2 layer 

and so on. The weight filters of different sizes are 

associated with each convolution layer {𝐿1, 𝐿2, 𝐿3, … . . }. 

The input pattern (𝑋) is two-dimensional and the output of 

𝐿1, 𝐿2, and 𝐿3 are also two-dimensional, whereas input to 

the dense layer 𝐿4 and 𝐿5 are one-dimensional pattern 

vectors. Thus, the forward propagation of 𝐿1, 𝐿2 and 𝐿3 

layers can be defined as: 

 

𝐻1 =  𝑓1[(𝑋 ⊗  𝑊1
𝑐1 + 𝑏)] (18) 

 

where, 𝑐1 is the number of channels of respective filters 

used in the 𝐻1 layer and 𝑏 represents the offset value. 

Or: 

 

𝐻1(𝑖, 𝑗) = 𝑓1[𝐵𝑁 [∑ ∑ ∑ [𝑋𝑐1
(𝑖 + 𝑚, 𝑗 + 𝑛)𝑛𝑚𝑐1

  (19) 

𝑊𝑐1

1(𝑥, 𝑦)] + 𝑏]] 

 

Here, 𝐻(𝑖, 𝑗) corresponds to the pixel on the feature 

map, 𝑐1 is the number of channels of the feature map, and 

m and n are the size of the convolution kernel. 𝐵𝑁( ) is the 

batch normalization and 𝑓( ) is the activation function. 

Similarly, for 𝑡ℎ𝑒 𝐿2 layer, we have:  

 

𝐻2(𝑖, 𝑗) = 𝑓2[𝐵𝑁[∑ ∑ ∑ [𝐻1(𝑖 + 𝑚1, 𝑗 + 𝑛1)𝑛1𝑚1𝑐2
 (20) 

𝑊𝑐2

2(𝑥, 𝑦)] + 𝑏]] 

 

For 𝑡ℎ𝑒 𝐿3 layer, we have the: 

 

𝐻3(𝑖, 𝑗) = 𝑓3[𝐵𝑁[∑ ∑ ∑ [𝐻2(𝑖 + 𝑚2, 𝑗 + 𝑛2)𝑛2𝑚2𝑐3
 (21) 

𝑊𝑐3

3(𝑥, 𝑦)] + 𝑏]] 

 

Now, we consider the same for layers 𝐿4 and 𝐿5 as: 

 

𝐻4 = 𝑓𝐻(∑ 𝑊ℎ𝑖
. 𝐻3

𝑖𝑐3×𝑚2×𝑛2

𝑖=1 + 𝑏ℎ) (22) 

 

And: 

 

𝑆𝑗 = 𝑓𝑜(∑ 𝑊𝑜. 𝐻4
ℎ𝑅

ℎ=1 + 𝑏𝑜)  (23) 

 

where, R is the number of units in the 𝐿4 layer and 𝑓𝑜( ) is 

the SoftMax function. The backpropagated error is 

computed for these architectures and the weight update 

for each layer output as: 

 

𝐿5 or output layer: 

 

𝑊𝑜ℎ(𝑡 + 1) =  𝑊𝑜ℎ(𝑡)  (24) 
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𝜂 (
𝜕𝑙

𝜕𝑊𝑜ℎ(𝑡)
) √∑ (

𝜕𝑙(𝑖)

𝜕𝑊𝑜ℎ(𝑖)
)

2𝑡

𝑖=1

+ 𝜖⁄  

 
or: 
 
𝑊𝑜ℎ(𝑡 + 1) =  𝑊𝑜ℎ(𝑡) − 𝜂𝛿1(𝑡) ∆1(𝑡)⁄   (25) 
 
𝐿4 Layer: 𝑊ℎ𝑖

(𝑡 + 1) =  𝑊ℎ𝑖
(𝑡) −  𝜂𝛿2(𝑡) ∆2(𝑡)⁄   (26) 

 
𝐿3 Layer: 𝑊𝑐3

3(𝑚2, 𝑛2)(𝑡 + 1) =  (27) 

𝑊𝑐3

3(𝑚2, 𝑛2)(𝑡) −  𝜂𝛿3(𝑡) ∆3(𝑡)⁄  
 
𝐿2 Layer: 𝑊𝑐2

2 (𝑚1, 𝑛1)(𝑡 + 1) =  𝑊𝑐2

2 (𝑚1, 𝑛1)  (28) 

(𝑡) −  𝜂𝛿4(𝑡)/∆4(𝑡) 

    

𝐿1 Layer: 𝑊𝑐1

1(𝑚, 𝑛)(𝑡 + 1) =  𝑊𝑐1

1(𝑚, 𝑛) (29) 

(𝑡) −  𝜂𝛿5(𝑡)/∆5(𝑡) 
 

Here, 𝛿(𝑡) 𝑎𝑛𝑑 ∆(𝑡) are presenting the first derivative 

of the error and reused gradient respectively. 

Hence, the learning will take place here with the 

update of weight vectors to minimize the back-propagated 

error. Thus, the back-propagating process with weight 

update for the first two architectures can be represented 

for each layer as: 

 

Output layer: 𝛿𝑜 =  
𝜕𝐿

𝜕𝑆𝑗
 

 

𝐿5 Layer: 𝛿1 =  𝛿0 ∗  𝑊𝑜ℎ.
𝜕𝑆𝑗

𝜕𝐻4
 (30) 

 

𝐿4 Layer: 𝛿2 =  𝛿1 ∗  𝑊ℎ𝑖
⊗

𝜕𝐻4

𝜕𝐻3
 (31) 

 

𝐿3 Layer: 𝛿3 =  𝛿2 ∗  𝑊𝑐3

3 ⊗
𝜕𝐻3

𝜕𝐻2
 (32) 

 

𝐿2 Layer: 𝛿2 =  𝛿1 ∗  𝑊𝑐2

2 ⊗
𝜕𝐻2

𝜕𝐻1
 (33) 

 

𝐿1 Layer: 𝛿1 =  𝛿2 ∗  𝑊𝑐2

1 ⊗ 𝑋 (34) 
 

Now, we consider the third architecture for 

formulating the learning process. In the third architecture, 

one convolution layer {𝐿0} is used for the input layer 

followed by the three convolution blocks {𝐿1,  𝐿2, and 𝐿3} 

in parallel with variable scale filters of receptive field. The 

feature maps of these three convolution layers are 

concatenated followed by a max-pooling layer. The 

feature map from the max-pool layer is flattened and 

presented to the first dense layer {𝐿4} followed by the 

dense output layer {𝐿5}. The 2-order state-dependent 

connection can be defined by the fact that the output of 

the {𝐿0} layer is related to the input of the {𝐿1, 𝐿2,𝑎𝑛𝑑 𝐿3} 

layers, and the output of these layers is further 

concatenated. The input pattern 𝑋 is two-dimensional and 

the output of {𝐿0, 𝐿1, 𝐿2, and 𝐿3} are also two dimensional 

whereas the input to the dense layer {𝐿4 and 𝐿5} are one-

dimensional pattern vectors. Thus, the forward 

propagation for 𝐿0, 𝐿1, 𝐿2 and 𝐿3 can be defined as: 
 
𝐻0 =  𝑓1(𝑋 ⊗ 𝑊0

𝑐1 + 𝑏)  (35) 

 

or: 

 

𝐻0(𝑖, 𝑗) = 𝑓1 (36) 

(𝐵𝑁(∑ ∑ ∑ [𝑋𝑐1
(𝑖 + 𝑚, 𝑗 + 𝑛)𝑊𝑐0

0(𝑥, 𝑦)] + 𝑏𝑛𝑚𝑐1
))  

 

Here, 𝑐0 is the number of channels of receptive filters 

used in the 𝐿0 layer and 𝑏 represents the offset value. 

Similarly, for 𝑡ℎ𝑒 𝐿1 block we have: 

 

𝐻1(𝑖, 𝑗) = 𝑓2 (37) 

(𝐵𝑁(∑ ∑ ∑ [𝐻0(𝑖 + 𝑚1, 𝑗 + 𝑛1)𝑊𝑐1

1(𝑥, 𝑦)] + 𝑏𝑛1𝑚1𝑐2
))   

 

for 𝑡ℎ𝑒 𝐿2 block, we have the: 

 

𝐻2(𝑖, 𝑗) = 𝑓3 (38) 

(𝐵𝑁(∑ ∑ ∑ [𝐻0(𝑖 + 𝑚1, 𝑗 + 𝑛1)𝑊𝑐2

2(𝑥, 𝑦)] + 𝑏𝑛1𝑚1𝑐2
))  

 

and for 𝑡ℎ𝑒 𝐿3 block, we have: 

 

𝐻3(𝑖, 𝑗) = 𝑓4  (39) 

(𝐵𝑁(∑ ∑ ∑ [𝐻0(𝑖 + 𝑚2, 𝑗 + 𝑛2)𝑊𝑐3

3(𝑥, 𝑦)] + 𝑏𝑛2𝑚2𝑐3
))  

 

Since, for a 2-order state-dependent connection, the 

final output (𝐻4) from the concatenation of feature maps 

produced by the previous blocks {𝐿1, 𝐿2,𝐿3} can be 

represented as: 

 

𝐻4 = ℎ([ 𝐻1, 𝐻2, 𝐻3]) (40) 

 

Here, ℎ( ) represents the concatenation function. 

Now, we obtain the output for layers 𝐿4 and 𝐿5 as: 
 
𝐻5 = 𝑓𝐻(∑ 𝑊ℎ𝑖

𝑢
𝑖=1 ∗  𝐻4

𝑖 + 𝑏ℎ)  (41) 

 

Here: 
 
𝑢 = [(𝑐1, 𝑐2, 𝑐3) ∗ (𝑚1, 𝑚2, 𝑚3) ∗ (𝑛1, 𝑛2, 𝑛3)]  (42) 

and 𝑆𝑗 = 𝑓
𝑜
(∑ 𝑊𝑜ℎ. 𝐻5

ℎ𝑅
ℎ=1 + 𝑏𝑜)  

 
Here, R is the number of units in the 𝐿5 layer and 

𝑓𝑜( )is the softmax function. 

Now, we compute the backpropagated error for this 

architecture and perform the weight update for each 

layer as: 
 
Output 𝐿5: 𝑊𝑜ℎ(𝑡 + 1) =  𝑊𝑜ℎ(𝑡) −  𝜂𝛿1(𝑡)/∆1(𝑡)  (43) 
 

Here 𝛿1(𝑡) and ∆(𝑡) have been already specified 

from Eq. 24: 
 
𝐿4 Layer: 𝑊ℎ𝑖

(𝑡 + 1) =  𝑊ℎ𝑖
(𝑡) −  𝜂𝛿2(𝑡)/∆2(𝑡) (44) 
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𝐿3 Block: 𝑊𝑐3

3(𝑚2, 𝑛2)(𝑡 + 1) = (45) 

𝑊𝑐3

3(𝑚2, 𝑛2)(𝑡) −  𝜂𝛿3(𝑡)/∆3(𝑡) 
 
𝐿2 Block: 𝑊𝑐2

2(𝑚1, 𝑛1)(𝑡 + 1) =  (46) 

𝑊𝑐2

2(𝑚1, 𝑛1)(𝑡) −  𝜂𝛿4(𝑡)/∆4(𝑡) 

 
𝐿1 Block: 𝑊𝑐1

1(𝑚, 𝑛)(𝑡 + 1) =  (47) 

𝑊𝑐1

1(𝑚, 𝑛)(𝑡) −  𝜂𝛿5(𝑡)/∆5(𝑡) 

 

𝐿0 Layer: 𝑊𝑐0

0(𝑥, 𝑦)(𝑡 + 1) =  (48) 

𝑊𝑐1

𝑜(𝑥, 𝑦)(𝑡) −  𝜂𝛿6(𝑡). ∆6(𝑡) 

 

The weight update for these layers to minimize the 

backpropagated error can be expressed as: 

 

Output layer: 𝛿𝑜 =  
𝜕𝐿

𝜕𝑆𝑗
 

 

𝐿5 Layer: 𝛿1 =  𝛿𝑜 ∗  𝑊𝑜ℎ.
𝜕𝑆𝑗

𝜕𝐻5
  (49) 

 

𝐿4 Layer: 𝛿2 =  𝛿1 ∗  𝑊ℎ𝑖
⊗

𝜕𝐻5

𝜕𝐻4
  (50) 

 

𝐿3 Block: 𝛿3 =  𝛿2 ∗  𝑊𝑐3

3 ⊗
𝜕𝐻3

𝜕𝐻0
  (51) 

 

𝐿2 Block: 𝛿2 =  𝛿2 ∗  𝑊𝑐2

2 ⊗
𝜕𝐻2

𝜕𝐻0
  (52) 

 

𝐿1 Block: 𝛿1 =  𝛿2 ∗  𝑊𝑐1

1 ⊗
𝜕𝐻1

𝜕𝐻0
  (53) 

 

𝐿0 Layer: 𝛿𝑜 =  𝛿1 ∗  𝑊0
𝑐1 ⊗ 𝑋 +  𝛿2 ∗  (54) 

𝑊0
𝑐1 ⊗ 𝑋 + 𝛿3 ∗  𝑊0

𝑐1 ⊗ 𝑋 

 

Thus, the back-propagated error from the output 

layer to all convolution layers is expressed and the 

weight update is also formulated for each layer. In the 

third architecture, the backpropagation needs to 

calculate the influence of the block layers, and the same 

error information is used for all the blocks i.e., 

𝐿3, 𝐿2, and 𝐿1. Thus, it is more conducive to the 

calculation of gradient information and the overall 

convergence speed of the network in comparison to the 

other two architectures. In the third architecture, 

equation 40 reflects the concatenation output. It merges 

the multi-channel parallel outputs into a single channel. 

In all three architectures, only one max-pooling layer 

is used in the end to avoid the loss of important features 

from the TF patches. The output of the last pooling 

layer for all features map is flattened and used as input 

to a fully connected layer. 

Implementation Details and Simulation Design 

In this present work, the audio signals of 

environmental sounds are considered for classification. 

The existing dataset UrbanSound8k of sound samples 

is used to provide the training of the proposed three 

different architectures of convolutional neural 

networks. Four methods i.e., Log-Mel Scale 

Spectrogram (LM), Mel Frequency Cepstral 

Coefficient (MFCC), Gammatone Frequency Cepstral 

Coefficients (GFCC) and Spectrogram. are used to 

extract the features from sound samples Though, 

MFCC is the most widely used feature extraction 

scheme for speech recognition and audio classification 

due to its better adaptability of network when noise is 

taken into consideration but most of the audio data we 

considered from already available datasets were clean 

samples so that, the spectrogram method is used for the 

feature extraction and to represent the audio data into 

the time-frequency patches. In the process of feature 

extraction, audio data pre-processing is performed with 

sampling, quantization, pre-emphasis processing, and 

windowing to convert the Analog audio signal into a 

sequence of audio frames. Further, a log-scale Mel-

spectrogram is used to represent the pre-processed 

audio data into the time-frequency patches. Thus, two-

dimensional feature vectors in the form of TF patches 

are used as input to the proposed convolutional neural 

network architectures as shown in Fig. 3. 
 

 
 

 
 

 
 
Fig. 3: Spectrogram for Siren, children playing, and horn voice 

sample
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Table 2: Number of parameters for the first CNN architecture 

Layer (type)  Output shape  Param #  

Conv2d (Conv2d)  (None, 121, 121, 22) 1430 

Activation (activation) (None, 121, 121, 22)  0 

Batch normalization  (None, 121, 121, 22)  88 

Conv2d_1 (Conv2D)  (None, 118, 118, 12)  4236 

Activation_1 (activation)  (None, 118, 118, 12)  0 

Batch_normalization_1 (None, 118, 118, 12)  48 

Conv2d_2 (Conv2D)  (None, 117, 117, 6)  294 

Activation_2 (activation)  (None, 117, 117, 6)  0 

Batch_normalization_2 (None, 117, 117, 6) 24 

Max_pooling2d (None, 29, 29, 6)  0 

Flatten (flatten) (None, 5046)  0 

Dropout (Dropout)  (None, 5046)  0 

Dense (dense) (None, 44)  222068 

Activation_3 (activation) (None, 44)  0 

Dense_1 (dense) (None, 10)  450 

Activation_4 (activation) (None, 10)  0 

Total params: 228, 638 

Trainable params: 228, 558 

Non-trainable params: 80 
 

Three convolutional neural network architectures are 
proposed with different variable-size filters of the receptive 
field. The size of the kernels and the number of channels are 
considered with a scale of variable length for the first two 
architectures. In the third architecture, the kernel of 
maximum variable size as per our scale i.e., 2𝑛 is used to 
distribute the feature map extracted from the 2D input 
samples of sound signals to a block of the three convolution 
filters of scale 2𝑛 arranged in parallel. In all three 
architectures, a single max pool is used after the last 
convolution layer followed by the two fully connected layers 
(Dense network). The number of units in the first dense layer 
is set according to the maximum number of channels as per 
the variable-length scale parameter i.e., 𝑐 = 2𝑘 where 𝑘 =
2𝑛 + 𝑛, the value of 𝑛 is considered as 𝑛 = 1, 2 and 3 for 
the first two architectures and 𝑛 = 1, 2, 3 and 4 for the third 
architecture. The number of units in the second dense layer 
is set according to the number of classes in which the sample 
audio will be classified. The ten (10) distinct classes are 
considered to classify the environmental sound samples. In 
the first architecture, we select 𝑛 = 1, 2 and 3, so that, the 
three convolution layer filters with the receptive field of 88, 
44, and 22. The numbers of channels are 22, 12, and 6 
respectively in the three convolution layers. The last 
convolution layer is followed by 44 stride max-pooling 
over the obtained feature maps. The batch normalization has 
been applied after each convolution layer. There are two 
dense layers are used after the max-pool layer. Dropout is 
applied to the input of both the dense layers with 0.5 
probabilities with L1-regularization to the weights of these 
two layers with a penalty factor of 0.001. The number of 
parameters for the first architecture can be shown in Table 2. 

Now, in the second proposed convolutional neural 

network architecture, we again select the scale 𝑛 = 1, 2, 3 

and use the filters in reverse order i.e., the three convolution 

layer filters with receptive field of size 22, 44 and 88 and 

the number of channels are 22, 12 and 6 respectively in 

these convolution layers. Again, the last convolution layer 

i.e., 𝐿3 is followed by the (4, 4) stride max-pooling over the 

obtained features map. The batch-normalization and 

regularization as used in the first architecture are 

considered in the same way also with the same probability 

and penalty factor. Thus, the number of parameters for the 

second architecture can be shown in Table 3. 

In the third proposed CNN architecture, the variable 

length scale for the size of filters and number of channels 

is selected according to 𝑛 = 1, 2, 3 and 4. Thus, primary 

convolution layer 𝐿0 is considered with 40 channels 𝑐 =

2𝑘, 𝑘 = 2𝑛 + 𝑛 and 𝑛 =  4 with receptive field of 1616. 

The output feature map of the 𝐿0 layer is distributed 

further in the convolution block which contains three 

convolution blocks {𝐿1, 𝐿2, and 𝐿3} in parallel with 

convolution filters with the receptive field of 22, 4 and 

88 with 22, 12, and 6 number of channels respectively. 

The feature maps of blocks 𝐿1, 𝐿2, and 𝐿3 are concatenated 

and passed through the (4, 4) stride max-pooling layer. The 

batch normalization and regularization are used after each 

convolution layer. Again, there are two dense layers are used 

after the max pool layer. Dropout is applied to the input of 

both the dense layers with 0.5 probability with L1 

regularization to the weights of these layers with a penalty 

factor of 0.001. The number of parameters for the third 

architecture can be shown in Table 4.  

It is quite clear from the simulation design of all the 

proposed architectures that the variable length scale is used 

for the number of channels and the filters of the receptive 

field (2𝑛, 2𝑛). The maximum variable scale length i.e., 𝑛 = 3 

is used for the number of channels and filters of the receptive 

field i.e., (8, 8), (4, 4), and (2, 2) for the first two architectures, 

and the maximum variable scale length i.e., n = 4 is used 

for the number of channels and filters of receptive field 

i.e., (16, 16), (8, 8), (4, 4) and (2, 2) for the third architecture. 
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Table 3: Number of parameters for the second CNN architecture 

Layer (type)  Output shape  Param #  

Conv2d (Conv2D)  (None, 127, 127, 22) 110 

Activation (activation)  (None, 127, 127, 22)  0 

Batch normalization (None, 127, 127, 22)  88 

Conv2d_1 (Conv2D)  (None, 124, 124, 12)  4236 

Activation_1 (activation)  (None, 124, 124, 12)  0 

Batch_normalization_1 (None, 124, 124, 12)  48 

Conv2d_2 (Conv2D)  (None, 123, 123, 6)  294 

Activation_2 (None, 123, 123, 6)  0 

Batch_normalization_2 (None, 123, 123, 6)  24 

Max_pooling2d (None, 30, 30, 6)  0 

Flatten (flatten)  (None, 5400)  0 

Dropout (dropout)  (None, 5400)  0 

Dense (dense)  (None, 44)  237644  

Activation_3 (activation)  (None, 44)  0 

Dense_1 (dense)  (None, 10)  450 

Activation_4 (activation)  (None, 10)  0 

Total params: 242, 894 

Trainable params: 242, 814 

Non-trainable params: 80 
 
Table 4: Number of parameters for the third CNN architecture 

Layer (type)  Output shape  Param #  

Input_1 (input Layer)  [(None, 128, 128, 1)] 0 

Conv2d (Conv2D)  (None, 113, 113, 40)  10280  

conv2d_1 (Conv2D)  (None, 113, 113, 6)  966 

Conv2d_2 (Conv2D)  (None, 113, 113, 12)  7692  

Conv2d_3 (Conv2D)  (None, 113, 113, 22)  56342  

Batch normalization (None, 113, 113, 6)  24 

Batch_normalization_1 (None, 113, 113, 12)  48 

Batch_normalization_2 (None, 113, 113, 22)  88 

Concatenate (concatenate)  (None, 113, 113, 40) 0 

Max_pooling2d (Maxpooling2d)  (None, 28, 28, 40)  0 

Flatten (flatten)  (None, 31360)  0 

Dropout (dropout)  (None, 31360)  0 

Dense (dense)  (None, 80)  2508880 

Dense_1 (dense)  (None, 10)  810 

Total params: 2, 585, 130 

Trainable params: 2, 585, 050 

Non-trainable params: 80 
 

Mini-batch Nesterov Accelerated Gradient Descent 

with AdaGrad method is reformulated for the proposed 

architectures to minimize the mean squared error. During 

the training mini batches are constructed for the given 

sound data. Each batch consists of 128 TF patches 

randomly selected from the training samples without any 

repetition. Each 3-sec TF-patch is taken from a random 

position in time from the full log-Mel Spectrogram 

representation of each training sample. All three proposed 

models are trained for a maximum of 200 epochs and a 

checkpoint is used. After each epoch, the models are 

trained on random mini-batches until 1/10 of all training 

data is exhausted. A validation set is used to identify the 

parameters setting achieving the highest classification 

accuracy, where prediction is performed by slicing the test 

sample into overlapping TF- patches, making a prediction 

for each TF patch and finally choosing the sample label 

prediction of the class with the highest near output 

activation over all frames. Simulation results for the 

proposed architecture are obtained in a Python 

programming environment (Rolon-Mérette et al., 2016). 

Results and Discussion 

Three different types of convolutional neural 

network architectures are considered with different 

variable-size filters and channels. The pattern vectors 

of time and frequency dimensions are considered for 

the training and testing. In the proposed three 

architectures of convolutional neural networks, the size 

of the filters and the number of filters are considered 

dynamically with variable length scale instead of fixed 

or static sizes. In the first proposed architecture, three 

convolution layers followed by the max-pooling layer 
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with a stride of (4, 4) are used. The flattened feature 

map from the max pool is presented as input to the first 

dense layer. The output of this dense layer is fed 

forwarded to the output layer for classification. 

The first proposed convolutional neural network is 

trained with Nadam Optimizer with the loss function of 

mean square error. The simulated results are presented in 

Table 1 with a test loss of 0.0287 and test classification 

accuracy of 0.833. The simulation results are presenting 

99.62% maximum accuracy and 85.25% maximum 

validation accuracy for the proposed architecture. The 

confusion matrix of this architecture for testing and 

training data is presented in Figs. 4a-b. The model 

accuracy and model loss are presented in Figs. 5-6. The 

Fig. 5 represents the model accuracy for training and 

validation. It can be observed that there is a continuous 

curve for training but a fluctuation in validation.  
 

 
 (a) 

 

 
 (b) 

 

Fig. 4: (a) Confusion matrix of first CNN architecture for 

training; (b) Confusion matrix for first CNN 

architecture for testing 

 

 

Fig. 5: Accuracy for First CNN evaluated on training and 

testing data 

 

 

 
Fig. 6: Loss for First CNN evaluated on training data and 

testing data 

 

 
 (a) 
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 (b) 
 

Fig. 7: (a) Confusion Matrix of second CNN architecture for 

training; (b): Confusion Matrix of second CNN 

architecture for testing 
 

 
 
Fig. 8: Accuracy for second CNN evaluated on training and 

testing data 
 

 
 
Fig. 9: Loss for second CNN evaluated on training and 

testing data 
 

The second proposed convolutional neural network is 

trained with Nadam optimizer with the loss function of 

mean square error. The simulated results are presented in 

Table 2 with a test loss of 0.032 and test classification 

accuracy of 0.815. The simulation results present 99.64% 

maximum accuracy and a maximum validation accuracy 

of 82.54% for this architecture. The confusion matrix of 

this architecture for training and testing data is presented 

in Figs. 7a-b. The model accuracy and model loss are 

presented in Figs. 8-9. The Fig. 8 represents the model 

accuracy for training and validation. It can be observed 

that there is also a continuous curve for training but 

fluctuation in validation.  

The third proposed convolutional neural network is 

implemented and trained with Nadam Optimizer with the 

loss function of mean square error. The simulated results 

are presented in Table 3 with a test loss of 0.042 and test 

classification accuracy of 0.736. The simulation results 

are presenting a 97.59% maximum accuracy and a 

maximum validation accuracy of 75.95% for this 

architecture. The confusion matrix of this architecture for 

training and testing samples is presented in Figs. 10a-b. The 

model accuracy and model loss are presented in Figs. 11-12. 

Figure 11 represents the model accuracy for training and 

validation. It can be observed that there is a continuous 

curve for training but a fluctuation in validation.  

The precision, recall, F1-score, and average accuracy 

are computed for the proposed architectures and presented 

in Table 5.  
 

 
 (a) 
 

 
 (b) 
 
Fig. 10: (a) Confusion matrix of third CNN architecture for training; (b) 

Confusion matrix of third CNN architecture for testing 
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Table 5: Performance of proposed architectures and existing pre-trained CNN architectures 

Models  AI CA CH DO DR EN GU JA SI ST Macro-average 

Arch1 Precision 0.68 0.96 0.75 0.86 0.89 0.83 0.97 0.92 0.86 0.82 0.85 
CNN Recall 0.91 0.93 0.65 0.80 0.82 0.86 0.88 0.94 0.87 0.76 0.84 
 F1-score 0.78 0.95 0.70 0.83 0.85 0.84 0.92 0.93 0.87 0.79 0.85 
Arch2 Precision 0.79 0.88 0.69 0.79 0.88 0.90 0.97 0.90 0.82 0.72 0.83 
CNN Recall 0.75 0.93 0.73 0.79 0.79 0.78 0.91 0.90 0.89 0.82 0.83 
 F1-score 0.77 0.90 0.71 0.79 0.83 0.83 0.94 0.90 0.86 0.76 0.83 
Arch3 Precision 0.80 0.92 0.55 0.57 0.87 0.73 0.73 0.86 0.84 0.69 0.75 
CNN Recall 0.78 0.90 0.50 0.78 0.67 0.80 0.85 0.87 0.81 0.59 0.75 
 F1-score 0.79 0.91 0.52 0.65 0.76 0.76 0.79 0.86 0.82 0.63 0.75 
Existing Precision 0.74 0.94 0.63 0.85 0.86 0.80 0.93 0.87 0.95 0.70 0.83 
Model Recall 0.83 0.79 0.71 0.80 0.81 0.84 0.89 0.84 0.83 0.73 0.81 
[ CNN] F1-score 0.78 0.86 0.67 0.83 0.83 0.82 0.91 0.85 0.88 0.71 0.82 

 

Table 6: Performance comparison of three proposed CNN architectures 
 Epoch Min loss Max accuracy (%) Max validate accuracy (%) Min validate loss 
Arch 1 CNN 200 0.008 99.6278 85.2891 0.027 
Arch 2 CNN 200 0.008 99.6421 82.5415 0.031 
Arch 3 CNN 200 0.009 97.5948 75.9588 0.040 

 

Table 7: Classification accuracy on the UrbanSound8k dataset 

Model Classifier Features Loss Optimizer Accuracy (%) 

Arch1 (Proposed Model -1) CNN Log Mel spectrogram MSE Nadam 85.29 

Arch2 (Proposed Model-2) CNN Log Mel spectrogram MSE Nadam 82.54 

Arch3 (Proposed Model-3) CNN Log Mel spectrogram MSE Nadam 75.95 

Salamon and Bello (2017) CNN Log Mel spectrogram Categorical cross-entropy Adam 73.00 

Salamon and Bello (2017) CNN + aug Log Mel spectrogram Categorical cross-entropy Adam 79.00 

Piczak (2015b) CNN Log Mel spectrogram MSE Nesterov 73.00 

Lezhenin et al. (2019) CNN Log Mel spectrogram Categorical cross-entropy Adam 80.48 

 

Further, the comparison of performance is performed 

for the parameters namely min loss, max accuracy, max 

validation accuracy, and min validate loss for all the three 

proposed convolutional neural network architectures. This 

comparison can be seen in Table 6. Per class accuracy for 

all three different types of Convolution Neural Networks on 

the UrbanSound8k dataset is shown in Figs. 13-15. 

Simulation results present the highest accuracy for the 

first proposed architecture. The simulation results indicate 

that the performance of our two proposed architectures i.e., 

first architecture and second architecture are better than the 

existing models of CNN for the classification of 

environment sounds. The accuracy of the third proposed 

model is 76% and it is better than the pretrained models of 

Salamon and Bello, 2017). The comparative analysis 

between the three proposed CNN models and the other 

existing models for the UrbanSound8k dataset can be 

presented in Table 7 and further in Fig. 16 to show the 

performances for validation accuracy. 

The obtained simulated results are presenting better 

performance and optimal implementation in terms of 

accuracy, individual class, total accuracy, precision, recall, 

and F1-score with respect to the existing pre-trained models 

performed on the same samples of sounds dataset. Overall, 

the performance of the first proposed architecture is better 

than all the other existing pretrained models besides the 

proposed two other models. Therefore, the dynamically 

selected number of filters and size of filters improves the 

performance of convolutional neural networks for all the 

accuracy measurement parameters, with respect to the 

static size filters for all the convolution layers. 

 
 
Fig. 11: Accuracy for third CNN evaluated on training and 

testing data 

 

 
 
Fig. 12: Loss for third CNN evaluated on training and testing data 
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Fig. 13: Class-wise accuracy for the first CNN architecture 
 

 
 
Fig. 14: Class-wise accuracy for second CNN architecture 

 

 
 
Fig. 15: Class-wise accuracy for the third CNN architecture 

 

 
 
Fig. 16: Three proposed convolution neural networks and other 

existing model's accuracy results on the 

UrbanSound8k dataset 

Conclusion 

In this presented work, a novel approach is used for 

the construction of convolutional neural network 

architectures. In this approach, the size of the kernels and 

the numbers of kernels are considered with a variable 

length scale i.e., the size of the kernels and numbers of 

channels in convolutional layers are selected dynamically 

with a variable length scale instead of static size filters and 

channels. Besides this, the filters are arranged in both 

ascending and descending order as per the dynamic scale 

to measure the accuracy of the networks for the 

classification of environmental sounds. The samples of 

environmental sound are used from the existing dataset & 

the 2D pattern vectors of time and frequency are 

constructed with a spectrogram. The log-scaled Mel-

spectrogram technique is used to represent the pre-

processed audio data into the time-frequency patches. 

Thus, a two-dimensional feature vector in the form of TF 

patches is used as input to the proposed convolutional 

neural network architectures. Three convolutional neural 

network architectures have been presented with 

dynamically selected filters of the receptive field. Thus, 

the proposed architectures are different from the existing 

pre-trained architectures due to their variability in the size 

of filters and number of filters. The proposed third 

architecture used the maximum variable size kernel as per 

the scale to distribute the feature map into the convolution 

layer of three convolution blocks of dynamic size filters. 

The mini-batch stochastic gradient descent learning with 

the Adagrad method is reformulated as per the proposed 

three architectures. The experimental results are obtained 

for proposed CNNs networks for the sound samples 

collected from the dataset of UrbanSound8k. The 

simulation is performed to analyze the effect of change in 

the variable length scale of filters and size of filters. The 

role of regularization and optimization are also considered 

in the performance analysis for the classification. 

Simulated results exhibit that the proposed architecture of 

dynamic variable length of filters and channels with 

reformulated stochastic gradient descent optimizer shows 

good accuracy for classification. The first proposed 

architecture has better accuracy than all the other existing 

models of classification for environmental sound samples. 

It is also observed that the dynamically sized filters of the 

receptive field and dynamically sized channels arranged 

in ascending order as per variable length scale performed 

better with respect to other proposed and existing models 

and it reports the classification accuracy of 85.29% for the 

existing dataset. It reflects that, as the variable scale 

increases, the size of filters and number of filters also 

increase, and if it increases in ascending order i.e., the last 

layer contains a smaller size filter and a smaller number 

of channels with respect to the first layer then better 

accuracy is obtained. In the first convolution architecture, 

this mechanism is implemented and the performance of 
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the network is found better than others. This interesting 

observation reflects that the relationship of feature 

extraction with variable size filters arranged in a specific 

order and the role of redesigned optimizer according to 

dynamically sized filters are improving the classification 

accuracy. These proposed architectures of dynamically 

sized filters of the receptive field and reformulated mini-

batch stochastic gradient descent learning with the 

Adagrad method are applied only for the environmental 

sounds. In the future, the same models and learning can 

be applied to the classification of human sounds.  
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