

 © 2024 Manu Pratap Singh and Pratibha Rashmi. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Convolution Neural Networks of Dynamically Sized Filters

with Modified Stochastic Gradient Descent Optimizer for

Sound Classification

Manu Pratap Singh and Pratibha Rashmi

Department of Computer Science, Dr. Bhimrao Ambedkar University, Khandari Campus, Agra, India

Article history

Received: 18-02-2023

Revised: 16-04-2023

Accepted: 27-09-2023

Corresponding Author:

Pratibha Rashmi

Department of Computer

Science, Dr. Bhimrao

Ambedkar University,

Khandari Campus, Agra, India
Email: pratibha.rashmi@gmail.com

Abstract: Deep Neural Networks (DNNs), specifically Convolution Neural

Networks (CNNs) are found well suited to address the problem of sound

classification due to their ability to capture the pattern of time and frequency

domain. Mostly the convolutional neural networks are trained and tested with

time-frequency patches of sound samples in the form of 2D pattern vectors.

Generally, existing pre-trained convolutional neural network models use

static-sized filters in all the convolution layers. In this present work, we

consider the three different types of convolutional neural network

architectures with different variable-size filters. The training set pattern

vectors of time and frequency dimensions are constructed with the input

samples of the spectrogram. In our proposed architectures, the size of kernels

and the number of kernels are considered with a scale of variable length

instead of fixed-size filters and static channels. The paper further presents the

reformulation of a minibatch stochastic gradient descent optimizer with

adaptive learning rate parameters according to the proposed architectures.

The experimental results are obtained on the existing dataset of sound

samples. The simulated results show the better performance of the proposed

convolutional neural network architectures over existing pre-trained

networks on the same dataset.

Keywords: Deep Neural Network, Convolution Neural Networks, Sound

Recognition, VGGNet, Pattern Classification, Stochastic Gradient Descent

Optimizer

Introduction

In recent years, deep neural networks have been

successfully applied to many real-world problems of

various domains (Chu et al., 2009; Radhakrishnan et al.,

2005; Mydlarz et al., 2017). More emphasis has been given

to the problem domain of image recognition. It includes the

task of classification or labeling of object recognition from

the input images (Nair and Hinton, 2009). Convolutional

Neural Networks (CNNs) are successfully applied in the

domain of automatic speech recognition (Graves et al.,

2013). Convolutional neural networks are used for various

audio-processing tasks (Choi et al., 2016). Sound

identification and sound tagging have many applications in

security systems mainly for crime detection, alarm

controlling, and password control (Radhakrishnan et al.,

2005). The Internet of Things (IoT) devices are embedding

automatic sound recognition systems for controlling

various devices (Wang et al., 2014; Mydlarz et al., 2017).

The machine may become adaptive to understand the

sounds and able to recognize the sounds with an individual

being. The deep neural network exhibited its strength and

capabilities to accomplish such types of complex pattern

recognition tasks. A deep convolution neural network

considers the supervised environment to adjust its behavior

for the given classification tasks. Thus, CNNs are

considered the most suited machine learning technique to

perform the sound classification task due to their ability to

capture the pattern vectors from the time and frequency

domains. The spectrogram is used in some cases to

construct the input patterns with time and frequency pattern

patches (Bogdanov et al., 2013). In early work, hand-drawn

feature extraction methods were used to construct the

pattern training set of the sound frequency samples. These

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

70

feature extraction methods used filters and different

transformations to remove unwanted noise from the sound

inputs. In this attempt, the Mel Frequency Cepstral

Coefficient (MFCC) modeled with the Gaussian mixture

method and support vector machines were used in many

applications (Salamon et al., 2014). The hand-crafted

feature extraction technique leads to inferior performance

due to the different pitches of the sound signals. Therefore,

more discriminative features were developed but all of

them were hand-crafted and derived from low-level

descriptors such as MFCC (Phan et al., 2015), filter bank

(Geiger and Helwani, 2015), or time-frequency descriptors

(Chu et al., 2009). It is analyzed that all these models

discard the temporal order of the frame level features and

due to this, the considerable information loss. Thus, the

earlier methods based on a handcrafted approach optimized

the feature extraction process and the classification process

separately rather than learning end-to-end. Further, the

artificial neural networks were used for the classification of

automatic sound recognition systems but again the training

set for the fully connected feed-forward neural network was

constructed with a handcrafted feature extraction process

(Srisuk et al., 2018). The instinctive nature of convolution

neural networks to jointly learn feature representation and

appropriate classification leads the way for better

performance for the automatic sound recognition system

(Kons et al., 2013). Lots of research has been reported on

automatic sound recognition using various models of deep

neural networks, especially with convolutional neural

networks. The spectrogram-based features of frequency

and time vector were used generally for training. Lots of

attempts were made to obtain better accuracy and good

generalization for sound signals, but still, there is a

challenge to efficiently improve the accuracy and

generalization for the sound classification even though it

contains noise. Thus, to improve the efficiency in sound

classification there is a requirement for evolving the

optimal architecture of CNNs with effective learning

methods. In this present work, we consider the three

different types of convolutional neural network

architectures with different variable-size filters. The time

and frequency dimensions are used to construct the training

set pattern vectors from the input samples of the

spectrogram. Thus, the 2D input samples of sound signals

are used as input to the proposed convolutional networks.

Our proposed architectures of convolutional neural

networks are inspired by VGGNet Simonyan and

Zisserman (2014) because it replaces large convolutional

kernels with a stack of small kernels without pooling

between these layers. Thus, it helps in the reduction of

network parameters. In our proposed architectures of

convolutional networks, the size of kernels and number of

kernels are considered with a scale of variable length in

ascending and descending order. In the proposed approach,

a kernel of variable size is used to distribute the features

extracted from the 2D input data to convolutional filters of

variable size arranged in parallel. The novelty of the

proposed approach is that it considers the convolution

layers of filters and the number of filters as per the variable

length scale. Thus, the size of kernels and the number of

filters in a convolution layer are selected dynamically

with variable length scale instead of fixed size filters and

static channels. The proposed convolutional networks

are trained with a reformulated mini-batch stochastic

gradient descent optimizer with adaptive learning rate

parameters. The experimental results show the better

performance of the proposed convolutional neural

networks over existing pre-trained convolutional neural

networks on the same dataset. The effect of changes in

the variable length scale of filters and size of filters are

analyzed and the role of regularization and optimization

are also considered in the performance analysis for the

classification. The accuracy in the classification for

sound samples of proposed models is considered and the

suitable optimized design of the convolutional neural

network is identified, which yields state-of-the-art

performance for the classification of given sound data.

The major contribution of the authors in this present

research paper can be considered as:

 A novel approach has been used for the construction

of convolutional neural network models. The

proposed approach considered the variable size filters

of the receptive field instead of fixed size filters in all

convolution layers. Besides this, the number of

channels for each convolution layer is also

considered variable length scale

 Mini-batch stochastic gradient descent optimizer is

re-formulated for the proposed architectures of CNNs

 The proposed architectures of CNNs exhibited

more flexibility for deciding the size of filters of

receptive fields with respect to other existing pre-

trained models

 Performance analysis of proposed architectures

was presented on different parameters of

classification accuracy

In recent work, the dynamic convolution is proposed to

increase the complexity of the without increasing the

network depth or width (Chen et al., 2020). In this

approach, a single convolution kernel per layer, dynamic

convolution aggregates multiple parallel convolution

kernels dynamically based upon their attentions, which are

input dependent. It has been found that by simply using

dynamic convolution architecture accuracy of ImageNet

classification is increased by 2.9%. In another approach, the

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

71

Dynamic Convolutional Neural Network (DCNN) is used

for the reconstruction of high-resolution images from single

low-resolution images (Bhujel and Pant, 2017). In this

approach, the dynamic convolutional neural network

directly learns an end-to-end mapping between low-

resolution and high-resolution images. It has been found

that the performance of the network is measured by PSNR,

WPSNR, SSIM, and MSSSIM better than the pre-trained

networks. Further, a Dynamic and Progressive Filter

Pruning (DPFPS) scheme is proposed which is directly

learning the structured sparsity network from Scratch

(Ruan et al., 2021). It has been found that the proposed

network increases the performance of the Convolutional

Neural Networks for images. A stacked CNN and

Recurrent Neural Network (RNN) model for sound event

classification using weakly labeled data is proposed by

Adavanne and Virtanen (2017). The model was evaluated

on the UrbanSound8k dataset and outperformed several

baseline models. Earlier, in convolution neural networks a

general approach was followed to deal with classification

problems for sound signals. In this approach, the audio

signals are first converted into 2-dimensional pattern

vectors, and then after, these are presented to pre-trained

convolutional neural network architecture of image

recognition (Deng et al., 2014). Generally, in most of the

cases pre-trained CNN architectures are used for automatic

sound recognition in which the spectrogram pattern of

sound samples is considered as the training set (Cotton and

Ellis, 2011). The problem that encountered here is the non-

availability of the large quantities of training data to learn a

non-linear function from input to output that is generalized

well and yields high classification accuracy on unseen data.

A method based on a 2D CNN with five layers is proposed

(Salamon and Bello, 2017). In this method, new training

samples are generated using the data augmentation method.

In another method, 2D CNNs with random weights are

proposed (Pons and Serra, 2019) for extracting features

from sound spectrograms, and raw audio samples are used

for sound classification. In this attempt, several

experiments were conducted to find the best architecture for

this method and the best result was obtained with VGG 2D

CNN model with SVM classifier. In the Boddapati et al.

(2017) spectrogram, the Mel-Frequency Cepstral Coefficient

(MFCC) and Cross Recurrence Plot (CRP) are used with

AlexNet and GoogleNet for the classification of sounds. A

new technique of learning is proposed (Abdoli et al., 2019)

named as Between Class (BC) learning for the training of

neural networks. In this model the input is considered as the

mixture of two audio samples and the network is trained to

predict the mixing ratio of the samples. It performed well

on various datasets of sounds compared to convolutional

learning techniques (Piczak, 2015a). An end-to-end

learning approach is proposed for speech recognition based

on multi-scale convolutional that learns the representation

directly from audio waveforms (Zhu et al., 2016). In this

approach, three 1D convolutional layers with different filter

sizes have been used for feature extraction and these

features are further concatenated by a pooling layer to

ensure a consistent sampling frequency for the rest of the

network. Another end-to-end approach named SincNet is

proposed for speaker identification and verification

(Ravanelli and Bengio, 2018). An important investigation

is considered for speech recognition using end-to-end

multi-channel 1D CNN. It is found that the timing

difference between channels is an indicator of the location

of the input in space (Hoshen et al., 2015). Recently,

several new deep convolutional models have been

proposed for sound classification (Dai et al., 2017). These

models consist of batch normalization, residual learning,

and downsampling in the initial layers of CNN. In another

approach dilated convolutional is used for feature

extraction in audio clips to improve classification accuracy

(Zhang et al., 2017). The dilated convolution is different

from conventional CNN in that it does not use max-pooling

layers and achieves good performance for sound

classification. In another approach, one network learns

directly from the audio waveform and the other one learns

high-level representation from log-Mel features. These

models are trained independently and the prediction of two

models is combined using the dempster-Shafer method

(Kim et al., 2018). Further, another hybrid model is

proposed which also combines the prediction of two CNNs

using the dempster-Shafer method (Salamon et al., 2014).

In this approach, features such as Log-Mel spectrogram,

MFCC, Chroma, Spectral contrast, and Tonnetz (CST) are

extracted from the audio signals. The log-Mel, spectral

contrast, and Tonnetz are stacked and considered as one

feature set. Similarly, MFCC and CST features are stacked

and considered as another feature set. These two feature

sets are used for the training of two identical four-layer

CNNs and the Dempster-Shafer method is used for the

prediction from the combined CNNs. Thus, lots of research

has reported on automatic sound recognition using various

models of deep neural networks, especially with

convolutional neural networks. The spectrogram-based

features of frequency and time vector were used generally

for training.

Materials and Methods

The existing dataset of sound samples i.e.,

UrbanSound8k is used for the construction of sample

patterns for training and testing with the log scale Mel

spectrogram method. In the simulation, we considered the

8732 time-frequency patches of the spectrogram as the

input samples. Among these 6985 samples were used for

training purposes 1747 samples were used for testing and a

total (of 10) classes or labels were used for the classification

of input samples. The class distribution of the

UrbanSound8k dataset is shown in Table 1.

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

72

Table 1: Class distribution of UrbanSound8k dataset

Class Air conditioner Car horn Children playing Dog bark Drilling Engine idling Gun shot Jackhammer Siren Street music

name [AI] [CA] [CH] [DO] [DR] [EN] [GU] [JA] [SI] [ST]

Label 1 2 3 4 5 6 7 8 9 10

Size 1000 429 1000 1000 1000 1000 374 1000 929 1000

Fig. 1: Steps for UrbanSound classification

These input samples were presented to the

convolutional neural network architectures. In our

proposed method three convolutional neural network

architectures were considered with different variable size

filters of the receptive field. The size of the kernels and

the number of channels are considered with a scale of

variable length for the first two architectures. In the third

architecture, the kernel of maximum variable size as per

our scale i.e., 2n is used to distribute the feature map

extracted from the 2D input samples of sound signals to a

block of the three convolution filters of scale 2𝑛 arranged

in parallel. In all three architectures, a single max pool is

used after the last convolution layer followed by the two

fully connected layers (dense network).

Deep Convolutional Neural Networks

Deep Neural Network architectures proposed in this

present work are inspired by the Visual Geometry Group

Network (VGGNet) (Simonyan and Zisserman, 2014).

In the VGGNet, the depth of the network is a critical

component to achieving better recognition or

classification accuracy in Convolutional Neural

Networks (CNNs). In our proposed model the two

Convolutional Neural Network (CNN) architectures are

comprised of variable length scales for a number of

filters and for the size of filters of the convolution layers

interleaved with one pooling operation followed by two

fully connected layers. The first dense layer uses the

regularization function whereas the output layer or

classification layer uses the SoftMax activation function.

The third proposed architecture consists of one

convolution layer of maximum size variable scaled

filters followed by a stack of convolution layers with the

dynamical size of filters. These layers are further

concatenated and passed through one pooling operation.

The output of the pooling layer passes through the two

fully connected layers as discussed earlier for the

previous two proposed architectures. The steps for urban

sound classification can be shown in Fig 1. The input to

these networks consists of time-frequency patches of

log-scaled mel-spectrogram representation of the audio

signal. Generally, we use Essentia (Bogdanov et al.,

2013) to extract a log-scale mel-spectrogram with 128

components covering the audible frequency. Thus, we

considered the size of input TF patch X-128 frames i.e.

𝑋 ∈ 𝑅128×128.

Therefore, the two-dimensional input 𝑋 applies to the

first convolution layer (H1) which consists of 𝑚 channels

(filters) of size n n, where n = 1, 2, … … … .N Let [𝑋]𝑖,𝑗

and [𝐻1]𝑖,𝑗 denote the value (TF patch) at location (𝑖, 𝑗) in

the 2D representation of the audio signal. Hence, this

input data is processed through several trainable

convolution layers for an appropriate representation of the

input. Since the neurons in a layer are connected only to a

small region of the previous layer, each of the hidden units

receives input from each of the input pixels through the

parameter weight tensor 𝑊. Let 𝑈 contain biases, so that

we can express the layer output as (Luo et al., 2016;

Bologna and Pellegrini, 1998):

[𝐻]𝑖,𝑗 = 𝐹[[𝑈]𝑖,𝑗 + ∑ ∑ [𝑊]𝑖,𝑗,𝑘,𝑙[𝑋]𝑘,𝑙𝑗𝑘] (1)

Or:

[𝐻]𝑖,𝑗 = 𝐹[[𝑈]𝑖,𝑗 + ∑ ∑ [𝑉]𝑖,𝑗,𝑎,𝑏[𝑋]𝑖+𝑎,𝑗+𝑏𝑏𝑎] (2)

Such that 𝑘 = 𝑖 + 𝑎 and 𝑙 = 𝑗 + 𝑏

Here V represents the convolution filter or kernel of

the convolution layer and F is a non-linear output

function. Therefore, the deep convolution network is

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

73

designed to learn the set of parameters 𝑉 of convolution

layers and of the dense (fully connected) layers to map the

input to the predicted output T. Generally, with the

hierarchy of layers and to use the Eq. 2, we can express

the predicted output 𝑇 in the terms of unknown parameters

(W) for a fully connected network with non-linear output

function F as:

𝑇1 = Ϫ[𝐹(𝑋|𝑉)]
or:

𝑇1 = Ϫ[𝐹𝐿 (… … … 𝐹2 (𝐹1[𝑉 + 𝑉1 ⊗ 𝑋1]|𝑉𝟐)|𝑉𝐿)] (3)

and:

 𝑇 = 𝐹(𝑇1 |𝑊) =𝐹𝑜(𝐹𝐻(𝑇1 ∗ 𝑊𝐻 + 𝑏𝐻) ∗ 𝑊𝑜 + 𝑏𝑜) (4)

where, ⊗ represents the convolution operation or tensor

product * represents the dot product of the vectors, Ϫ

represents the max pool operator, T1 is the final feature map

obtained from the max pool layer inserted after the last

convolution layer and b is a bias vector used by the layers

of a fully connected network, L is the number of

convolution (hidden) layers of the network, X1 is the 2-

dimensional input matrix of N features maps and 𝑉 is a

collection of the two-dimensional filters. The output of the

final convolution layer (after max-pooling) is flattered and

used as input for the first layer of the dense network. In the

case of multiclass classification, the number of neurons in

the output layer is considered according to the number of

classes. Hence, for the output layer of the classification

layer, the SoftMax activation function is used. The network

is trained for the input samples and the parameters of the

network are optimized using mini-batch stochastic gradient

learning and regularization methods to minimize the error

or cross-entropy (Kukačka et al., 2017).

In our proposed work, the variable length scale filters

and channels are considered for the convolution layers

instead of static size filters. In this approach, we select the

size of filters and number of channels in a dynamic way

according to the variable length scale for each convolution

layer. Let 𝑛 represent the variable scale according to

which the size of filters is considered with variable scale

𝑘 for considering the number of channels or filters of the

receptive field. Hence, the size of filters of the

convolution layer (𝐿) is considered according to 2n2n

where n = 1, 2, 3 … N. The numbers of filters are

considered as:

𝑐 = 2𝑘 𝑤ℎ𝑒𝑟𝑒 𝑘 = 2𝑛 + 𝑛 (5)

The output from the first convolution layer for a

number of channels i.e., c1 can be expressed as:

𝐻1

𝑐1 = 𝑓1
𝑐1((𝑊1 ⊗ 𝑋) + 𝑈1

𝑐1 (6)

Similarly, for the second layer and third layer, we have:

𝐻2
𝑐2 = 𝑓2

𝑐2((𝑊2 ⊗ 𝑍1
𝐶1) + 𝑈2

𝑐2) (7)

 𝐻3
𝑐3 = 𝑓3

𝑐3((𝑊3 ⊗ 𝑍2
𝐶2) + 𝑈3

𝑐3) (8)

Thus, in general, for the 𝐿th Layer, we have:

𝐻𝐿
𝑐𝐿 = 𝑓𝐿

𝑐𝐿((𝑊𝐿 ⊗ 𝑍𝐿−1
𝐶𝐿−1) + 𝑈𝐿

𝑐𝐿) (9)

Let d0 and d1 be the dimension of the input vector

and m0 and m1 be the dimension of the first convolution

filter. Thus, the shape of X0 and V will be (N, d0, d1)

and (M, N, m0, m1) respectively.

Now, we can define the shape of 𝑊 and 𝐻 in a general

way. The shape of 𝑊1 will be (𝑐1, 𝑁, 𝑚0, 𝑚1) and the shape

of 𝐻1
𝑐1 will be (𝑐1, 𝑑0 − 𝑚0 + 1, 𝑑1 − 𝑚1 + 1). Similarly, the

shape of 𝑊2 will be (𝑐2, 𝑐1, 𝑚2, 𝑚3) and shape of 𝐻2
𝑐2 will

be (𝑐2, (𝑑0 − 𝑚0 + 1 − 𝑚2 + 1), (𝑑1 − 𝑚1 + 1 − 𝑚3 + 1) or

(𝑐2, (𝑑0 − (𝑚0 + 𝑚2) + 2), (𝑑1 − (𝑚1 + 𝑚3) + 2).

Similarly, the shape of 𝑊3 will be (𝑐3, 𝑐2, 𝑚4, 𝑚5) and

the shape of 𝐻3
𝑐3 will be:

(𝑐3, (𝑑0 − (𝑚0 + 𝑚2 + 𝑚4) + 3), (10)
(𝑑1 − (𝑚1 + 𝑚3 + 𝑚5) + 3))

Hence, in this way, we can compute the size of 𝑊𝐿

and 𝐻𝐿
𝑐𝐿. Thus, the shape of 𝑊𝐿 will be (𝑐𝐿, 𝑐𝐿−1, 𝑚𝐿, 𝑚𝐿+1)

and the shape of 𝐻𝐿
𝑐𝐿 will be:

(
𝑐𝐿−1, (𝑑0 − (𝑚0 + 𝑚2 + 𝑚4 + … … 𝑚𝐿−1) + 𝐿),

(𝑑1 − (𝑚1 + 𝑚3 + 𝑚5 + ⋯ 𝑚𝐿) + 𝐿)
) (11)

Thus, in our proposed architectures the variable length

scale for the number of filters as specified in equation 5 is

considered. The first proposed architecture consists of

three convolution layers and two dense layers (one hidden

and one classification layer). Hence, 𝑛 = 1, 2, 3, and the

number of filters in each layer will be of size 8×8, 4×4,

and 2×2 respectively with the number of filters 𝑐 = 2 𝑘

i.e., 22, 12, and 6 respectively. A detailed description of

this architecture is as follows:

𝐿1 layer : 22 Filters with a receptive field of 8×8, so that

𝑊1 has the shape (22, 1, 8, 8) and the shape of

𝐻1 is (22, 121, 121). It uses the Rectified Linear

Unit (ReLU) activation function i.e., 𝑓1(𝑦) =
 max (𝑦, 0)

𝐿2 layer : 12 Filters with a receptive field of 44, so that

𝑊2 has the shape (12, 22, 4, 4) and the shape of

𝐻2 is (12, 118, 118). It also uses the rectified

linear unit activation function

𝐿3 layer : 6 Filters with a receptive field of 22, so that

𝑊3 has the shape (6, 12, 2, 2) and the shape

of 𝐻3 is (6, 117, 117). This is also followed

by a Rectified Linear Unit (ReLU) activation

unit function

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

74

Fig. 2: Third convolution neural network architecture

Max-pool layer: 𝐿3 layer is followed by (4, 4) stride

max-pooling. Therefore, the size of 𝐻3 after the max pool

will be (6, 29, 29):

𝐿4 layer : The number of units for this layer is considered

with the variable-length scale i.e. 𝑣 = 2 ×

𝑚𝑎𝑥(𝑐). Thus, for this architecture, there will be

44 hidden units, and the connection weight 𝑊ℎ

has the shape (5046, 44) followed by the ReLu

activation function

𝐿5 layer : In this layer, the 10 output units are used, and

the weight 𝑊𝑜 has the shape (44, 10) followed

by a SoftMax activation function

The second proposed architecture consists of three

convolution layers and two dense layers (one hidden and

one classification layer). Again, n = 1, 2, 3 and the number

of filters in each layer are of size 22, 44, and 88

respectively. A detailed description of this architecture

can be discussed as:

𝐿1 layer: 22 Filters with a receptive field of 22, so

that 𝑊1 has the shape (22, 1, 2, 2) and the
shape of 𝐻1 is (22, 127, 127). It uses the

Rectified Linear Unit (ReLU) activation
function i.e., 𝑓1(𝑦) = max (𝑦, 0)

𝐿2 layer: 12 filters with a receptive field of 44, so

that 𝑊2 has the shape (12, 22, 4, 4) and

the shape of 𝐻2 is (12, 124, 124). It also

uses the rectified linear unit activation

function

𝐿3 layer: 6 filters with a receptive field of 88, so that

𝑊3 has the shape (6, 12, 8, 8) and the shape

of 𝐻3 is (6, 123, 123). This is also followed

by a Rectified Linear Unit (ReLU)

activation unit function

Maxpool layer: In this architecture, the 𝐿3 layer is

followed by (4, 4) stride max-pooling. Therefore, the size

of 𝐻3 after the max pool will be (6, 30, 30):

𝐿4 layer: The number of units for this layer is considered

with the variable length scale i.e., 𝑣 = 2 ×

𝑚𝑎𝑥(𝑐). Thus, for this architecture, there will

be 44 hidden units and connection weight 𝑊ℎ

has the shape (5400, 44) followed by the ReLu

activation function

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

75

𝐿5 layer : In this layer, the 10 output units are used, and

the weight 𝑊𝑜 has the shape (44,10) followed by

the SoftMax activation function

In the proposed third convolutional neural network

architecture, we considered n = 4 and as per equation 5, the

first convolution layer {𝐿0} consists of 40 filters of size 1616.

The output of the 𝐿0 layer is further distributed parallelly in

the second convolution layer which consists of three

convolution blocks i.e., {𝐿1, 𝐿2, and 𝐿3} as shown in Fig. 2.

A detailed description of this architecture is as follows:

𝐿0 layer: 40 filters with a receptive field of 1616, so that

𝑊0 has the shape of (40, 1, 16, 16) and the

shape of 𝐻0 is (40, 113, 113). It uses the

Rectified Linear Unit (ReLU) activation

function i.e. 𝑓1(𝑦) = max (𝑦, 0)

The output of 𝑡ℎ𝑒 𝐿0 layer is distributed into the three

convolution blocks 𝐿1, 𝐿2, and 𝐿3 in parallel. Hence, the

parameters of 𝐿1, 𝐿2 and 𝐿3 are as follows:

𝐿1 block: 22 Filters with a receptive field of 88, so

that 𝑊1 has the shape of (22, 40, 8, 8) and

the shape of 𝐻1 is (22, 113, 113). This is also

followed by the Rectified Linear Unit

(ReLU) activation function

𝐿2 block: 12 Filters with a receptive field of 44, so

that 𝑊2 has the shape of (12, 40, 4, 4) and

the shape of 𝐻2 is (12, 113, 113). It also uses

the rectified linear unit activation function

𝐿3 block: 6 Filters with a receptive field of 22, so

that 𝑊3 has the shape of (6, 40, 2, 2) and the

shape of 𝐻3 is (6, 113, 113). This is also

followed by a Rectified Linear Unit (ReLU)

activation unit function

The output of 𝐿1, 𝐿2, and 𝐿3 blocks are concatenated

to produce a feature map as:

𝑦 = 𝐻𝑐[𝐻1, 𝐻2, 𝐻3 (12)

Here, 𝐻𝑐 represents the composite function for the

concatenation. The shape of 𝑊𝑐 is (40, 40, 8, 8) and the

shape of 𝑦 is (40, 113, 113). Now the 𝑦 is passed through

44 stride max pooling.

Maxpool layer: The concatenated output y is passed

through (4, 4) stride max pooling. Therefore, the size of y

after the max pool will be (40, 28, 28):

𝐿4 layer : The number of units for this layer is decided

with the variable-length scale i.e., 𝑢 = 2 ×

𝑚𝑎𝑥(𝑐). Thus, for this architecture, there are 80

hidden units, and the connection weight 𝑊ℎ has

the shape (31360, 80), followed by the ReLU

activation function

𝐿5 layer : In this layer, the ten output units are used, so

that the weight 𝑊𝑜 has the shape (80,10)

followed by the SoftMax activation function

Thus, for the first and second architectures, the layer

𝐿4 is containing 44 hidden units followed by a ReLU

activation function. In the third architecture layer,

𝐿4 contains 80 hidden units. The 𝐿5 layer contains 10

output units i.e., 𝑊𝑜 has the shape (44, 10) for the first and

second architecture whereas (80, 10) for the third

architecture followed by a SoftMax activation function. It

is quite clear, that dynamically sized filters of the

receptive field according to Eq. 5 allow the network to

learn small, localized features that can be fused at

subsequent layers to gather evidence in support of a larger

time-frequency patch that is indicative of the presence or

absence of different sound classes even when the Spectro-

temporal is masking with interfacing sources.

Learning

The proposed three architectures of CNNs are using
mini-batch stochastic gradient descent learning (Bottou,
2010) to train the networks for the given log-el-
spectrogram representation of the sample patterns. These
sample patterns are considered in the form of TF-Patch
and each batch consists of 128 TF-patches randomly
selected from the training data without any repetition. The
mini-batch Stochastic Gradient Descent (SGD) uses the
independent identically distributed samples or batches as
the sample sets to update the unknown parameters in each
iteration. SGD has the advantages over the earlier
gradient-based approaches due to the reason that SGD is
using one sample randomly to update the gradient per
iteration, rather than directly calculating the extract value of
the gradient. It reduces the variance of the gradient and
makes the convergence more stable (Darken et al., 1992).
Therefore, the SGD has a better chance of finding the
global optimal solution for complex problems
(Nemirovski et al., 2009). In the proposed approach the
models optimize the error function 𝑙(𝑊). Here 𝑙 is an error
function and 𝑊𝑜 is the parameter to be optimised. The
error function can be expressed as:

𝑙(𝑊𝑜) =
1

2𝑀
 ∑ (𝑑𝑗 − 𝑓𝑜(𝑦𝑗))2𝑁

𝑗=1 (13)

where:

𝑦𝑖 = ∑ 𝑊𝑜
𝑖

𝑁

𝑗=1

𝐻𝑖 + 𝑏𝑗

Here, 𝑀 is the number of training samples, 𝑁 is the

number of units in the output layer, 𝑑 is the predicated

class and 𝑦 is the activation of the unit.

In the stochastic gradient descent approach, change along

the error function is obtained in the descent direction with

respect to unknown parameter 𝑊𝑜 in the weight space as:

𝜕𝑙(𝑊𝑜)

𝜕𝑊𝑜
 ∝ −

1

𝑀
 ∑ (𝑑𝑗 − 𝑓𝑜(𝑦𝑗)) . 𝐻𝑖

𝑁
𝑗=1 (14)

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

76

The weight update in (t +1) iteration can be expressed as:

𝑊𝑜(𝑡 + 1) = 𝑊𝑜(𝑡) + 𝜂𝑜
1

𝑀
 ∑ (𝑑𝑗 − 𝑓𝑜(𝑦𝑗)) . 𝐻𝑖

𝑁
𝑗=1 (15)

Here, to reduce the over-fitting, the batch

normalization is applied after the activation function of

each convolution layer, whereas the dropout and

regularization method is applied to the weights of both

two layers i.e., L4 and L5 with a probability of 0.5 and

penalty factor of 0.001 respectively (Srivastava et al.,

2014). However, the performance of mini-batch SGD can

be further improved with the use of various optimization

and regularization processes (Bühlmann and Van De

Geer, 2011). One of the important factors is the choice of

a proper learning rate. A too-small learning rate results in

a slower convergence rate while a too-large learning rate

can hinder convergence making error function fluctuate at

the minimum. Besides the learning rate due to the

existence of fluctuations in the SGD, the objective

function is trapped in infinite numbers of local minimum.

Therefore, the Nesterov Accelerated Gradient Descent

method (Botev et al., 2017) can be used to make

improvements in the performance of SGD:

�̂� = 𝑊𝑡 + 𝑣𝑜𝑙𝑑 . 𝛼 = 𝑣𝑜𝑙𝑑 . 𝛼 + 𝜂 (−
𝜕𝑙(�̂�)

𝜕𝑊
) (16)

and, 𝑊𝑡+1 = 𝑊𝑡 + 𝑣

Here, 𝛼 is a momentum factor and 𝑣𝑜𝑙𝑑 represents the

previous updates. Another issue in SGD is related to the

choice of learning rate parameter. The most

straightforward improvement in NAGD can be observed

with the Adagrad method (Lydia and Francis, 2019). It

adjusts the learning rate dynamically based on the reused

gradients as:

𝑔𝑡 =
𝜕𝑙(𝑊𝑡)

𝜕𝑊
𝑉𝑡 = √∑(𝑔𝑖)2+∈

𝑡

𝑖=1

And:

𝑊𝑡+1 = 𝑊𝑡 − 𝜂
𝑔𝑡

𝑉𝑡
 (17)

Here, 𝑔𝑡 is the gradient of parameter 𝑊 at iteration 𝑡.

𝑉𝑡 represents the reused gradient of parameter 𝑊 at

iteration 𝑡 and 𝑊𝑡 is the value of parameter 𝑊 at iteration 𝑡.

Thus, the learning process for the proposed architectures

is formulated with improvement as specified in Eqs. 16-17

for mini-batch SGD. Now the mini-batch SGD is

reformulated for the proposed architectures of CNNs. Let

us consider the first and second architectures for the

formulation of the learning rule. In both architectures,

three convolution layers are used followed by the two

dense layers, and batch normalization is applied after each

convolution layer. The 2-order state-dependent

connection can be defined by the fact that the output of

the 𝐿1layer is just only related to the input of the 𝐿2 layer

and so on. The weight filters of different sizes are

associated with each convolution layer {𝐿1, 𝐿2, 𝐿3, … . . }.

The input pattern (𝑋) is two-dimensional and the output of

𝐿1, 𝐿2, and 𝐿3 are also two-dimensional, whereas input to

the dense layer 𝐿4 and 𝐿5 are one-dimensional pattern

vectors. Thus, the forward propagation of 𝐿1, 𝐿2 and 𝐿3

layers can be defined as:

𝐻1 = 𝑓1[(𝑋 ⊗ 𝑊1
𝑐1 + 𝑏)] (18)

where, 𝑐1 is the number of channels of respective filters

used in the 𝐻1 layer and 𝑏 represents the offset value.

Or:

𝐻1(𝑖, 𝑗) = 𝑓1[𝐵𝑁 [∑ ∑ ∑ [𝑋𝑐1
(𝑖 + 𝑚, 𝑗 + 𝑛)𝑛𝑚𝑐1

 (19)

𝑊𝑐1

1(𝑥, 𝑦)] + 𝑏]]

Here, 𝐻(𝑖, 𝑗) corresponds to the pixel on the feature

map, 𝑐1 is the number of channels of the feature map, and

m and n are the size of the convolution kernel. 𝐵𝑁() is the

batch normalization and 𝑓() is the activation function.

Similarly, for 𝑡ℎ𝑒 𝐿2 layer, we have:

𝐻2(𝑖, 𝑗) = 𝑓2[𝐵𝑁[∑ ∑ ∑ [𝐻1(𝑖 + 𝑚1, 𝑗 + 𝑛1)𝑛1𝑚1𝑐2
 (20)

𝑊𝑐2

2(𝑥, 𝑦)] + 𝑏]]

For 𝑡ℎ𝑒 𝐿3 layer, we have the:

𝐻3(𝑖, 𝑗) = 𝑓3[𝐵𝑁[∑ ∑ ∑ [𝐻2(𝑖 + 𝑚2, 𝑗 + 𝑛2)𝑛2𝑚2𝑐3
 (21)

𝑊𝑐3

3(𝑥, 𝑦)] + 𝑏]]

Now, we consider the same for layers 𝐿4 and 𝐿5 as:

𝐻4 = 𝑓𝐻(∑ 𝑊ℎ𝑖
. 𝐻3

𝑖𝑐3×𝑚2×𝑛2

𝑖=1 + 𝑏ℎ) (22)

And:

𝑆𝑗 = 𝑓𝑜(∑ 𝑊𝑜. 𝐻4
ℎ𝑅

ℎ=1 + 𝑏𝑜) (23)

where, R is the number of units in the 𝐿4 layer and 𝑓𝑜() is

the SoftMax function. The backpropagated error is

computed for these architectures and the weight update

for each layer output as:

𝐿5 or output layer:

𝑊𝑜ℎ(𝑡 + 1) = 𝑊𝑜ℎ(𝑡) (24)

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

77

𝜂 (
𝜕𝑙

𝜕𝑊𝑜ℎ(𝑡)
) √∑ (

𝜕𝑙(𝑖)

𝜕𝑊𝑜ℎ(𝑖)
)

2𝑡

𝑖=1

+ 𝜖⁄

or:

𝑊𝑜ℎ(𝑡 + 1) = 𝑊𝑜ℎ(𝑡) − 𝜂𝛿1(𝑡) ∆1(𝑡)⁄ (25)

𝐿4 Layer: 𝑊ℎ𝑖

(𝑡 + 1) = 𝑊ℎ𝑖
(𝑡) − 𝜂𝛿2(𝑡) ∆2(𝑡)⁄ (26)

𝐿3 Layer: 𝑊𝑐3

3(𝑚2, 𝑛2)(𝑡 + 1) = (27)

𝑊𝑐3

3(𝑚2, 𝑛2)(𝑡) − 𝜂𝛿3(𝑡) ∆3(𝑡)⁄

𝐿2 Layer: 𝑊𝑐2

2 (𝑚1, 𝑛1)(𝑡 + 1) = 𝑊𝑐2

2 (𝑚1, 𝑛1) (28)

(𝑡) − 𝜂𝛿4(𝑡)/∆4(𝑡)

𝐿1 Layer: 𝑊𝑐1

1(𝑚, 𝑛)(𝑡 + 1) = 𝑊𝑐1

1(𝑚, 𝑛) (29)

(𝑡) − 𝜂𝛿5(𝑡)/∆5(𝑡)

Here, 𝛿(𝑡) 𝑎𝑛𝑑 ∆(𝑡) are presenting the first derivative

of the error and reused gradient respectively.

Hence, the learning will take place here with the

update of weight vectors to minimize the back-propagated

error. Thus, the back-propagating process with weight

update for the first two architectures can be represented

for each layer as:

Output layer: 𝛿𝑜 =
𝜕𝐿

𝜕𝑆𝑗

𝐿5 Layer: 𝛿1 = 𝛿0 ∗ 𝑊𝑜ℎ.
𝜕𝑆𝑗

𝜕𝐻4
 (30)

𝐿4 Layer: 𝛿2 = 𝛿1 ∗ 𝑊ℎ𝑖
⊗

𝜕𝐻4

𝜕𝐻3
 (31)

𝐿3 Layer: 𝛿3 = 𝛿2 ∗ 𝑊𝑐3

3 ⊗
𝜕𝐻3

𝜕𝐻2
 (32)

𝐿2 Layer: 𝛿2 = 𝛿1 ∗ 𝑊𝑐2

2 ⊗
𝜕𝐻2

𝜕𝐻1
 (33)

𝐿1 Layer: 𝛿1 = 𝛿2 ∗ 𝑊𝑐2

1 ⊗ 𝑋 (34)

Now, we consider the third architecture for

formulating the learning process. In the third architecture,

one convolution layer {𝐿0} is used for the input layer

followed by the three convolution blocks {𝐿1, 𝐿2, and 𝐿3}

in parallel with variable scale filters of receptive field. The

feature maps of these three convolution layers are

concatenated followed by a max-pooling layer. The

feature map from the max-pool layer is flattened and

presented to the first dense layer {𝐿4} followed by the

dense output layer {𝐿5}. The 2-order state-dependent

connection can be defined by the fact that the output of

the {𝐿0} layer is related to the input of the {𝐿1, 𝐿2,𝑎𝑛𝑑 𝐿3}

layers, and the output of these layers is further

concatenated. The input pattern 𝑋 is two-dimensional and

the output of {𝐿0, 𝐿1, 𝐿2, and 𝐿3} are also two dimensional

whereas the input to the dense layer {𝐿4 and 𝐿5} are one-

dimensional pattern vectors. Thus, the forward

propagation for 𝐿0, 𝐿1, 𝐿2 and 𝐿3 can be defined as:

𝐻0 = 𝑓1(𝑋 ⊗ 𝑊0

𝑐1 + 𝑏) (35)

or:

𝐻0(𝑖, 𝑗) = 𝑓1 (36)

(𝐵𝑁(∑ ∑ ∑ [𝑋𝑐1
(𝑖 + 𝑚, 𝑗 + 𝑛)𝑊𝑐0

0(𝑥, 𝑦)] + 𝑏𝑛𝑚𝑐1
))

Here, 𝑐0 is the number of channels of receptive filters

used in the 𝐿0 layer and 𝑏 represents the offset value.

Similarly, for 𝑡ℎ𝑒 𝐿1 block we have:

𝐻1(𝑖, 𝑗) = 𝑓2 (37)

(𝐵𝑁(∑ ∑ ∑ [𝐻0(𝑖 + 𝑚1, 𝑗 + 𝑛1)𝑊𝑐1

1(𝑥, 𝑦)] + 𝑏𝑛1𝑚1𝑐2
))

for 𝑡ℎ𝑒 𝐿2 block, we have the:

𝐻2(𝑖, 𝑗) = 𝑓3 (38)

(𝐵𝑁(∑ ∑ ∑ [𝐻0(𝑖 + 𝑚1, 𝑗 + 𝑛1)𝑊𝑐2

2(𝑥, 𝑦)] + 𝑏𝑛1𝑚1𝑐2
))

and for 𝑡ℎ𝑒 𝐿3 block, we have:

𝐻3(𝑖, 𝑗) = 𝑓4 (39)

(𝐵𝑁(∑ ∑ ∑ [𝐻0(𝑖 + 𝑚2, 𝑗 + 𝑛2)𝑊𝑐3

3(𝑥, 𝑦)] + 𝑏𝑛2𝑚2𝑐3
))

Since, for a 2-order state-dependent connection, the

final output (𝐻4) from the concatenation of feature maps

produced by the previous blocks {𝐿1, 𝐿2,𝐿3} can be

represented as:

𝐻4 = ℎ([𝐻1, 𝐻2, 𝐻3]) (40)

Here, ℎ() represents the concatenation function.

Now, we obtain the output for layers 𝐿4 and 𝐿5 as:

𝐻5 = 𝑓𝐻(∑ 𝑊ℎ𝑖

𝑢
𝑖=1 ∗ 𝐻4

𝑖 + 𝑏ℎ) (41)

Here:

𝑢 = [(𝑐1, 𝑐2, 𝑐3) ∗ (𝑚1, 𝑚2, 𝑚3) ∗ (𝑛1, 𝑛2, 𝑛3)] (42)

and 𝑆𝑗 = 𝑓
𝑜
(∑ 𝑊𝑜ℎ. 𝐻5

ℎ𝑅
ℎ=1 + 𝑏𝑜)

Here, R is the number of units in the 𝐿5 layer and

𝑓𝑜()is the softmax function.

Now, we compute the backpropagated error for this

architecture and perform the weight update for each

layer as:

Output 𝐿5: 𝑊𝑜ℎ(𝑡 + 1) = 𝑊𝑜ℎ(𝑡) − 𝜂𝛿1(𝑡)/∆1(𝑡) (43)

Here 𝛿1(𝑡) and ∆(𝑡) have been already specified

from Eq. 24:

𝐿4 Layer: 𝑊ℎ𝑖

(𝑡 + 1) = 𝑊ℎ𝑖
(𝑡) − 𝜂𝛿2(𝑡)/∆2(𝑡) (44)

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

78

𝐿3 Block: 𝑊𝑐3

3(𝑚2, 𝑛2)(𝑡 + 1) = (45)

𝑊𝑐3

3(𝑚2, 𝑛2)(𝑡) − 𝜂𝛿3(𝑡)/∆3(𝑡)

𝐿2 Block: 𝑊𝑐2

2(𝑚1, 𝑛1)(𝑡 + 1) = (46)

𝑊𝑐2

2(𝑚1, 𝑛1)(𝑡) − 𝜂𝛿4(𝑡)/∆4(𝑡)

𝐿1 Block: 𝑊𝑐1

1(𝑚, 𝑛)(𝑡 + 1) = (47)

𝑊𝑐1

1(𝑚, 𝑛)(𝑡) − 𝜂𝛿5(𝑡)/∆5(𝑡)

𝐿0 Layer: 𝑊𝑐0

0(𝑥, 𝑦)(𝑡 + 1) = (48)

𝑊𝑐1

𝑜(𝑥, 𝑦)(𝑡) − 𝜂𝛿6(𝑡). ∆6(𝑡)

The weight update for these layers to minimize the

backpropagated error can be expressed as:

Output layer: 𝛿𝑜 =
𝜕𝐿

𝜕𝑆𝑗

𝐿5 Layer: 𝛿1 = 𝛿𝑜 ∗ 𝑊𝑜ℎ.
𝜕𝑆𝑗

𝜕𝐻5
 (49)

𝐿4 Layer: 𝛿2 = 𝛿1 ∗ 𝑊ℎ𝑖
⊗

𝜕𝐻5

𝜕𝐻4
 (50)

𝐿3 Block: 𝛿3 = 𝛿2 ∗ 𝑊𝑐3

3 ⊗
𝜕𝐻3

𝜕𝐻0
 (51)

𝐿2 Block: 𝛿2 = 𝛿2 ∗ 𝑊𝑐2

2 ⊗
𝜕𝐻2

𝜕𝐻0
 (52)

𝐿1 Block: 𝛿1 = 𝛿2 ∗ 𝑊𝑐1

1 ⊗
𝜕𝐻1

𝜕𝐻0
 (53)

𝐿0 Layer: 𝛿𝑜 = 𝛿1 ∗ 𝑊0
𝑐1 ⊗ 𝑋 + 𝛿2 ∗ (54)

𝑊0
𝑐1 ⊗ 𝑋 + 𝛿3 ∗ 𝑊0

𝑐1 ⊗ 𝑋

Thus, the back-propagated error from the output

layer to all convolution layers is expressed and the

weight update is also formulated for each layer. In the

third architecture, the backpropagation needs to

calculate the influence of the block layers, and the same

error information is used for all the blocks i.e.,

𝐿3, 𝐿2, and 𝐿1. Thus, it is more conducive to the

calculation of gradient information and the overall

convergence speed of the network in comparison to the

other two architectures. In the third architecture,

equation 40 reflects the concatenation output. It merges

the multi-channel parallel outputs into a single channel.

In all three architectures, only one max-pooling layer

is used in the end to avoid the loss of important features

from the TF patches. The output of the last pooling

layer for all features map is flattened and used as input

to a fully connected layer.

Implementation Details and Simulation Design

In this present work, the audio signals of

environmental sounds are considered for classification.

The existing dataset UrbanSound8k of sound samples

is used to provide the training of the proposed three

different architectures of convolutional neural

networks. Four methods i.e., Log-Mel Scale

Spectrogram (LM), Mel Frequency Cepstral

Coefficient (MFCC), Gammatone Frequency Cepstral

Coefficients (GFCC) and Spectrogram. are used to

extract the features from sound samples Though,

MFCC is the most widely used feature extraction

scheme for speech recognition and audio classification

due to its better adaptability of network when noise is

taken into consideration but most of the audio data we

considered from already available datasets were clean

samples so that, the spectrogram method is used for the

feature extraction and to represent the audio data into

the time-frequency patches. In the process of feature

extraction, audio data pre-processing is performed with

sampling, quantization, pre-emphasis processing, and

windowing to convert the Analog audio signal into a

sequence of audio frames. Further, a log-scale Mel-

spectrogram is used to represent the pre-processed

audio data into the time-frequency patches. Thus, two-

dimensional feature vectors in the form of TF patches

are used as input to the proposed convolutional neural

network architectures as shown in Fig. 3.

Fig. 3: Spectrogram for Siren, children playing, and horn voice

sample

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

79

Table 2: Number of parameters for the first CNN architecture

Layer (type) Output shape Param #

Conv2d (Conv2d) (None, 121, 121, 22) 1430

Activation (activation) (None, 121, 121, 22) 0

Batch normalization (None, 121, 121, 22) 88

Conv2d_1 (Conv2D) (None, 118, 118, 12) 4236

Activation_1 (activation) (None, 118, 118, 12) 0

Batch_normalization_1 (None, 118, 118, 12) 48

Conv2d_2 (Conv2D) (None, 117, 117, 6) 294

Activation_2 (activation) (None, 117, 117, 6) 0

Batch_normalization_2 (None, 117, 117, 6) 24

Max_pooling2d (None, 29, 29, 6) 0

Flatten (flatten) (None, 5046) 0

Dropout (Dropout) (None, 5046) 0

Dense (dense) (None, 44) 222068

Activation_3 (activation) (None, 44) 0

Dense_1 (dense) (None, 10) 450

Activation_4 (activation) (None, 10) 0

Total params: 228, 638

Trainable params: 228, 558

Non-trainable params: 80

Three convolutional neural network architectures are
proposed with different variable-size filters of the receptive
field. The size of the kernels and the number of channels are
considered with a scale of variable length for the first two
architectures. In the third architecture, the kernel of
maximum variable size as per our scale i.e., 2𝑛 is used to
distribute the feature map extracted from the 2D input
samples of sound signals to a block of the three convolution
filters of scale 2𝑛 arranged in parallel. In all three
architectures, a single max pool is used after the last
convolution layer followed by the two fully connected layers
(Dense network). The number of units in the first dense layer
is set according to the maximum number of channels as per
the variable-length scale parameter i.e., 𝑐 = 2𝑘 where 𝑘 =
2𝑛 + 𝑛, the value of 𝑛 is considered as 𝑛 = 1, 2 and 3 for
the first two architectures and 𝑛 = 1, 2, 3 and 4 for the third
architecture. The number of units in the second dense layer
is set according to the number of classes in which the sample
audio will be classified. The ten (10) distinct classes are
considered to classify the environmental sound samples. In
the first architecture, we select 𝑛 = 1, 2 and 3, so that, the
three convolution layer filters with the receptive field of 88,
44, and 22. The numbers of channels are 22, 12, and 6
respectively in the three convolution layers. The last
convolution layer is followed by 44 stride max-pooling
over the obtained feature maps. The batch normalization has
been applied after each convolution layer. There are two
dense layers are used after the max-pool layer. Dropout is
applied to the input of both the dense layers with 0.5
probabilities with L1-regularization to the weights of these
two layers with a penalty factor of 0.001. The number of
parameters for the first architecture can be shown in Table 2.

Now, in the second proposed convolutional neural

network architecture, we again select the scale 𝑛 = 1, 2, 3

and use the filters in reverse order i.e., the three convolution

layer filters with receptive field of size 22, 44 and 88 and

the number of channels are 22, 12 and 6 respectively in

these convolution layers. Again, the last convolution layer

i.e., 𝐿3 is followed by the (4, 4) stride max-pooling over the

obtained features map. The batch-normalization and

regularization as used in the first architecture are

considered in the same way also with the same probability

and penalty factor. Thus, the number of parameters for the

second architecture can be shown in Table 3.

In the third proposed CNN architecture, the variable

length scale for the size of filters and number of channels

is selected according to 𝑛 = 1, 2, 3 and 4. Thus, primary

convolution layer 𝐿0 is considered with 40 channels 𝑐 =

2𝑘, 𝑘 = 2𝑛 + 𝑛 and 𝑛 = 4 with receptive field of 1616.

The output feature map of the 𝐿0 layer is distributed

further in the convolution block which contains three

convolution blocks {𝐿1, 𝐿2, and 𝐿3} in parallel with

convolution filters with the receptive field of 22, 4 and

88 with 22, 12, and 6 number of channels respectively.

The feature maps of blocks 𝐿1, 𝐿2, and 𝐿3 are concatenated

and passed through the (4, 4) stride max-pooling layer. The

batch normalization and regularization are used after each

convolution layer. Again, there are two dense layers are used

after the max pool layer. Dropout is applied to the input of

both the dense layers with 0.5 probability with L1

regularization to the weights of these layers with a penalty

factor of 0.001. The number of parameters for the third

architecture can be shown in Table 4.

It is quite clear from the simulation design of all the

proposed architectures that the variable length scale is used

for the number of channels and the filters of the receptive

field (2𝑛, 2𝑛). The maximum variable scale length i.e., 𝑛 = 3

is used for the number of channels and filters of the receptive

field i.e., (8, 8), (4, 4), and (2, 2) for the first two architectures,

and the maximum variable scale length i.e., n = 4 is used

for the number of channels and filters of receptive field

i.e., (16, 16), (8, 8), (4, 4) and (2, 2) for the third architecture.

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

80

Table 3: Number of parameters for the second CNN architecture

Layer (type) Output shape Param #

Conv2d (Conv2D) (None, 127, 127, 22) 110

Activation (activation) (None, 127, 127, 22) 0

Batch normalization (None, 127, 127, 22) 88

Conv2d_1 (Conv2D) (None, 124, 124, 12) 4236

Activation_1 (activation) (None, 124, 124, 12) 0

Batch_normalization_1 (None, 124, 124, 12) 48

Conv2d_2 (Conv2D) (None, 123, 123, 6) 294

Activation_2 (None, 123, 123, 6) 0

Batch_normalization_2 (None, 123, 123, 6) 24

Max_pooling2d (None, 30, 30, 6) 0

Flatten (flatten) (None, 5400) 0

Dropout (dropout) (None, 5400) 0

Dense (dense) (None, 44) 237644

Activation_3 (activation) (None, 44) 0

Dense_1 (dense) (None, 10) 450

Activation_4 (activation) (None, 10) 0

Total params: 242, 894

Trainable params: 242, 814

Non-trainable params: 80

Table 4: Number of parameters for the third CNN architecture

Layer (type) Output shape Param #

Input_1 (input Layer) [(None, 128, 128, 1)] 0

Conv2d (Conv2D) (None, 113, 113, 40) 10280

conv2d_1 (Conv2D) (None, 113, 113, 6) 966

Conv2d_2 (Conv2D) (None, 113, 113, 12) 7692

Conv2d_3 (Conv2D) (None, 113, 113, 22) 56342

Batch normalization (None, 113, 113, 6) 24

Batch_normalization_1 (None, 113, 113, 12) 48

Batch_normalization_2 (None, 113, 113, 22) 88

Concatenate (concatenate) (None, 113, 113, 40) 0

Max_pooling2d (Maxpooling2d) (None, 28, 28, 40) 0

Flatten (flatten) (None, 31360) 0

Dropout (dropout) (None, 31360) 0

Dense (dense) (None, 80) 2508880

Dense_1 (dense) (None, 10) 810

Total params: 2, 585, 130

Trainable params: 2, 585, 050

Non-trainable params: 80

Mini-batch Nesterov Accelerated Gradient Descent

with AdaGrad method is reformulated for the proposed

architectures to minimize the mean squared error. During

the training mini batches are constructed for the given

sound data. Each batch consists of 128 TF patches

randomly selected from the training samples without any

repetition. Each 3-sec TF-patch is taken from a random

position in time from the full log-Mel Spectrogram

representation of each training sample. All three proposed

models are trained for a maximum of 200 epochs and a

checkpoint is used. After each epoch, the models are

trained on random mini-batches until 1/10 of all training

data is exhausted. A validation set is used to identify the

parameters setting achieving the highest classification

accuracy, where prediction is performed by slicing the test

sample into overlapping TF- patches, making a prediction

for each TF patch and finally choosing the sample label

prediction of the class with the highest near output

activation over all frames. Simulation results for the

proposed architecture are obtained in a Python

programming environment (Rolon-Mérette et al., 2016).

Results and Discussion

Three different types of convolutional neural

network architectures are considered with different

variable-size filters and channels. The pattern vectors

of time and frequency dimensions are considered for

the training and testing. In the proposed three

architectures of convolutional neural networks, the size

of the filters and the number of filters are considered

dynamically with variable length scale instead of fixed

or static sizes. In the first proposed architecture, three

convolution layers followed by the max-pooling layer

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

81

with a stride of (4, 4) are used. The flattened feature

map from the max pool is presented as input to the first

dense layer. The output of this dense layer is fed

forwarded to the output layer for classification.

The first proposed convolutional neural network is

trained with Nadam Optimizer with the loss function of

mean square error. The simulated results are presented in

Table 1 with a test loss of 0.0287 and test classification

accuracy of 0.833. The simulation results are presenting

99.62% maximum accuracy and 85.25% maximum

validation accuracy for the proposed architecture. The

confusion matrix of this architecture for testing and

training data is presented in Figs. 4a-b. The model

accuracy and model loss are presented in Figs. 5-6. The

Fig. 5 represents the model accuracy for training and

validation. It can be observed that there is a continuous

curve for training but a fluctuation in validation.

 (a)

 (b)

Fig. 4: (a) Confusion matrix of first CNN architecture for

training; (b) Confusion matrix for first CNN

architecture for testing

Fig. 5: Accuracy for First CNN evaluated on training and

testing data

Fig. 6: Loss for First CNN evaluated on training data and

testing data

 (a)

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

82

 (b)

Fig. 7: (a) Confusion Matrix of second CNN architecture for

training; (b): Confusion Matrix of second CNN

architecture for testing

Fig. 8: Accuracy for second CNN evaluated on training and

testing data

Fig. 9: Loss for second CNN evaluated on training and

testing data

The second proposed convolutional neural network is

trained with Nadam optimizer with the loss function of

mean square error. The simulated results are presented in

Table 2 with a test loss of 0.032 and test classification

accuracy of 0.815. The simulation results present 99.64%

maximum accuracy and a maximum validation accuracy

of 82.54% for this architecture. The confusion matrix of

this architecture for training and testing data is presented

in Figs. 7a-b. The model accuracy and model loss are

presented in Figs. 8-9. The Fig. 8 represents the model

accuracy for training and validation. It can be observed

that there is also a continuous curve for training but

fluctuation in validation.

The third proposed convolutional neural network is

implemented and trained with Nadam Optimizer with the

loss function of mean square error. The simulated results

are presented in Table 3 with a test loss of 0.042 and test

classification accuracy of 0.736. The simulation results

are presenting a 97.59% maximum accuracy and a

maximum validation accuracy of 75.95% for this

architecture. The confusion matrix of this architecture for

training and testing samples is presented in Figs. 10a-b. The

model accuracy and model loss are presented in Figs. 11-12.

Figure 11 represents the model accuracy for training and

validation. It can be observed that there is a continuous

curve for training but a fluctuation in validation.

The precision, recall, F1-score, and average accuracy

are computed for the proposed architectures and presented

in Table 5.

 (a)

 (b)

Fig. 10: (a) Confusion matrix of third CNN architecture for training; (b)

Confusion matrix of third CNN architecture for testing

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

83

Table 5: Performance of proposed architectures and existing pre-trained CNN architectures

Models AI CA CH DO DR EN GU JA SI ST Macro-average

Arch1 Precision 0.68 0.96 0.75 0.86 0.89 0.83 0.97 0.92 0.86 0.82 0.85
CNN Recall 0.91 0.93 0.65 0.80 0.82 0.86 0.88 0.94 0.87 0.76 0.84
 F1-score 0.78 0.95 0.70 0.83 0.85 0.84 0.92 0.93 0.87 0.79 0.85
Arch2 Precision 0.79 0.88 0.69 0.79 0.88 0.90 0.97 0.90 0.82 0.72 0.83
CNN Recall 0.75 0.93 0.73 0.79 0.79 0.78 0.91 0.90 0.89 0.82 0.83
 F1-score 0.77 0.90 0.71 0.79 0.83 0.83 0.94 0.90 0.86 0.76 0.83
Arch3 Precision 0.80 0.92 0.55 0.57 0.87 0.73 0.73 0.86 0.84 0.69 0.75
CNN Recall 0.78 0.90 0.50 0.78 0.67 0.80 0.85 0.87 0.81 0.59 0.75
 F1-score 0.79 0.91 0.52 0.65 0.76 0.76 0.79 0.86 0.82 0.63 0.75
Existing Precision 0.74 0.94 0.63 0.85 0.86 0.80 0.93 0.87 0.95 0.70 0.83
Model Recall 0.83 0.79 0.71 0.80 0.81 0.84 0.89 0.84 0.83 0.73 0.81
[CNN] F1-score 0.78 0.86 0.67 0.83 0.83 0.82 0.91 0.85 0.88 0.71 0.82

Table 6: Performance comparison of three proposed CNN architectures
 Epoch Min loss Max accuracy (%) Max validate accuracy (%) Min validate loss
Arch 1 CNN 200 0.008 99.6278 85.2891 0.027
Arch 2 CNN 200 0.008 99.6421 82.5415 0.031
Arch 3 CNN 200 0.009 97.5948 75.9588 0.040

Table 7: Classification accuracy on the UrbanSound8k dataset

Model Classifier Features Loss Optimizer Accuracy (%)

Arch1 (Proposed Model -1) CNN Log Mel spectrogram MSE Nadam 85.29

Arch2 (Proposed Model-2) CNN Log Mel spectrogram MSE Nadam 82.54

Arch3 (Proposed Model-3) CNN Log Mel spectrogram MSE Nadam 75.95

Salamon and Bello (2017) CNN Log Mel spectrogram Categorical cross-entropy Adam 73.00

Salamon and Bello (2017) CNN + aug Log Mel spectrogram Categorical cross-entropy Adam 79.00

Piczak (2015b) CNN Log Mel spectrogram MSE Nesterov 73.00

Lezhenin et al. (2019) CNN Log Mel spectrogram Categorical cross-entropy Adam 80.48

Further, the comparison of performance is performed

for the parameters namely min loss, max accuracy, max

validation accuracy, and min validate loss for all the three

proposed convolutional neural network architectures. This

comparison can be seen in Table 6. Per class accuracy for

all three different types of Convolution Neural Networks on

the UrbanSound8k dataset is shown in Figs. 13-15.

Simulation results present the highest accuracy for the

first proposed architecture. The simulation results indicate

that the performance of our two proposed architectures i.e.,

first architecture and second architecture are better than the

existing models of CNN for the classification of

environment sounds. The accuracy of the third proposed

model is 76% and it is better than the pretrained models of

Salamon and Bello, 2017). The comparative analysis

between the three proposed CNN models and the other

existing models for the UrbanSound8k dataset can be

presented in Table 7 and further in Fig. 16 to show the

performances for validation accuracy.

The obtained simulated results are presenting better

performance and optimal implementation in terms of

accuracy, individual class, total accuracy, precision, recall,

and F1-score with respect to the existing pre-trained models

performed on the same samples of sounds dataset. Overall,

the performance of the first proposed architecture is better

than all the other existing pretrained models besides the

proposed two other models. Therefore, the dynamically

selected number of filters and size of filters improves the

performance of convolutional neural networks for all the

accuracy measurement parameters, with respect to the

static size filters for all the convolution layers.

Fig. 11: Accuracy for third CNN evaluated on training and

testing data

Fig. 12: Loss for third CNN evaluated on training and testing data

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

84

Fig. 13: Class-wise accuracy for the first CNN architecture

Fig. 14: Class-wise accuracy for second CNN architecture

Fig. 15: Class-wise accuracy for the third CNN architecture

Fig. 16: Three proposed convolution neural networks and other

existing model's accuracy results on the

UrbanSound8k dataset

Conclusion

In this presented work, a novel approach is used for

the construction of convolutional neural network

architectures. In this approach, the size of the kernels and

the numbers of kernels are considered with a variable

length scale i.e., the size of the kernels and numbers of

channels in convolutional layers are selected dynamically

with a variable length scale instead of static size filters and

channels. Besides this, the filters are arranged in both

ascending and descending order as per the dynamic scale

to measure the accuracy of the networks for the

classification of environmental sounds. The samples of

environmental sound are used from the existing dataset &

the 2D pattern vectors of time and frequency are

constructed with a spectrogram. The log-scaled Mel-

spectrogram technique is used to represent the pre-

processed audio data into the time-frequency patches.

Thus, a two-dimensional feature vector in the form of TF

patches is used as input to the proposed convolutional

neural network architectures. Three convolutional neural

network architectures have been presented with

dynamically selected filters of the receptive field. Thus,

the proposed architectures are different from the existing

pre-trained architectures due to their variability in the size

of filters and number of filters. The proposed third

architecture used the maximum variable size kernel as per

the scale to distribute the feature map into the convolution

layer of three convolution blocks of dynamic size filters.

The mini-batch stochastic gradient descent learning with

the Adagrad method is reformulated as per the proposed

three architectures. The experimental results are obtained

for proposed CNNs networks for the sound samples

collected from the dataset of UrbanSound8k. The

simulation is performed to analyze the effect of change in

the variable length scale of filters and size of filters. The

role of regularization and optimization are also considered

in the performance analysis for the classification.

Simulated results exhibit that the proposed architecture of

dynamic variable length of filters and channels with

reformulated stochastic gradient descent optimizer shows

good accuracy for classification. The first proposed

architecture has better accuracy than all the other existing

models of classification for environmental sound samples.

It is also observed that the dynamically sized filters of the

receptive field and dynamically sized channels arranged

in ascending order as per variable length scale performed

better with respect to other proposed and existing models

and it reports the classification accuracy of 85.29% for the

existing dataset. It reflects that, as the variable scale

increases, the size of filters and number of filters also

increase, and if it increases in ascending order i.e., the last

layer contains a smaller size filter and a smaller number

of channels with respect to the first layer then better

accuracy is obtained. In the first convolution architecture,

this mechanism is implemented and the performance of

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

85

the network is found better than others. This interesting

observation reflects that the relationship of feature

extraction with variable size filters arranged in a specific

order and the role of redesigned optimizer according to

dynamically sized filters are improving the classification

accuracy. These proposed architectures of dynamically

sized filters of the receptive field and reformulated mini-

batch stochastic gradient descent learning with the

Adagrad method are applied only for the environmental

sounds. In the future, the same models and learning can

be applied to the classification of human sounds.

Acknowledgment

The authors thankfully acknowledge the financial

support of the Uttar Pradesh government, Lucknow,

India in the form of a major research project:

47/2021/606/seventy/4-2020-4(56)/2021.

Funding Information

This research is funded by the Uttar Pradesh government,

Lucknow, India in the form of a major research project:

47/2021/606/seventy/4-2020-4(56)/2021.

Author’s Contributions

Manu Pratap Singh: Participated in

Conceptualization, methodology, supervision,

mathematically modeled and contributed to the written of

the manuscript.

Pratibha Rashmi: Participated in data curation,

implementation, visualization, results, and validation.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

that no ethical issues are involved.

Declaration of Competing Interest

The authors declare that they have no known competing

financial interests or personal relationships that could have

appeared to influence the work reported in this study.

Availability of Data and Material

Data collection of voice samples of environmental

sounds has been considered from the existing dataset

UrbanSound8k.

Conflicts of Interest Statement

The authors whose names are listed immediately below

certify that they have no affiliations with or involvement in

any organization or entity with any financial interest (such

as honoraria; educational grants; participation in speakers’

bureaus; membership, employment, consultancies, stock

ownership, or other equity interest; and expert testimony

or patent-licensing arrangements), or non-financial

interest (such as personal or professional relationships,

affiliations, knowledge or beliefs) in the subject matter or

materials discussed in this manuscript.

References

Abdoli, S., Cardinal, P., & Koerich, A. L. (2019). End-to-

end environmental sound classification using a 1D

convolutional neural network. Expert Systems with

Applications, 136, 252-263.

https://doi.org/10.1016/j.eswa.2019.06.040

Adavanne, S., & Virtanen, T. (2017). Sound event

detection using weakly labeled dataset with stacked

convolutional and recurrent neural network Sound

event detection using weakly labeled dataset with

stacked convolutional and recurrent neural network.

arXiv preprint arXiv:1710.02998.

 https://doi.org/10.48550/arXiv.1710.02998

Bhujel, A., & Pant, D. R. (2017). Dynamic convolutional

neural network for image super-resolution. Journal

of Advanced College of Engineering and

Management, 3, 1-10.

 https://doi.org/10.3126/jacem.v3i0.18808

Boddapati, V., Petef, A., Rasmusson, J., & Lundberg, L.

(2017). Classifying environmental sounds using

image recognition networks. Procedia Computer

Science, 112, 2048-2056.

https://doi.org/10.1016/j.procs.2017.08.250

Bogdanov, D., Wack, N., Gómez Gutiérrez, E., Gulati, S.,

Boyer, H., Mayor, O., ... & Serra, X. (2013). Essentia:

An audio analysis library for music information

retrieval. In Britto A, Gouyon F, Dixon S, editors. 14th

Conference of the International Society for Music

Information Retrieval (ISMIR); 2013 Nov 4-8;

Curitiba, Brazil. [place unknown]: ISMIR; 2013. p.

493-8. International Society for Music Information

Retrieval (ISMIR).

https://doi.org/10.1145/2502081.2502229

Bologna, G., & Pellegrini, C. (1998, May). Constraining

the MLP power of expression to facilitate symbolic

rule extraction. In 1998 IEEE International Joint

Conference on Neural Networks Proceedings. IEEE

World Congress on Computational Intelligence (Cat.

No. 98CH36227) (Vol. 1, pp. 146-151). IEEE.
https://doi.org/10.1109/IJCNN.1998.682252

Botev, A., Lever, G., & Barber, D. (2017, May).

Nesterov's accelerated gradient and momentum as

approximations to regularised update descent.

In 2017 International Joint Conference on Neural

Networks (IJCNN) (pp. 1899-1903). IEEE.

https://doi.org/10.1109/IJCNN.2017.7966082

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

86

Bottou, L. (2010). Large-scale machine learning with

stochastic gradient descent. In Proceedings of

COMPSTAT'2010: 19th International Conference

on Computational Statistics Paris France, August

22-27, 2010 Keynote, Invited and Contributed

Papers (pp. 177-186). Physica-Verlag HD.

https://doi.org/10.1007/978-3-7908-2604-3_16

Bühlmann, P., & Van De Geer, S. (2011). Statistics for

high-dimensional data: Methods, Theory and

Applications. Springer Science and Business Media.
https://doi.org/10.1007/978-3-642-20192-9

Chen, Y., Dai, X., Liu, M., Chen, D., Yuan, L., & Liu, Z.

(2020). Dynamic convolution: Attention over

convolution kernels. In Proceedings of the

IEEE/CVF Conference on Computer Vision and

Pattern Recognition (pp. 11030-11039).

https://doi.org/10.1109/CVPR42600.2020.01104

Choi, K., Fazekas, G., & Sandler, M. (2016). Automatic

tagging using deep convolutional neural networks.

arXiv preprint arXiv:1606.00298.

https://doi.org/10.48550/arXiv.1606.00298

Chu, S., Narayanan, S., & Kuo, C. C. J. (2009).

Environmental sound recognition with time

frequency audio features. IEEE Transactions on

Audio, Speech, and Language Processing, 17(6),

1142-1158.

https://doi.org/10.1109/TASL.2009.2017438

Cotton, C. V., & Ellis, D. P. (2011, October). Spectral vs.

spectro-temporal features for acoustic event

detection. In 2011 IEEE Workshop on Applications

of Signal Processing to Audio and Acoustics

(WASPAA) (pp. 69-72). IEEE.

https://doi.org/10.1109/ASPAA.2011.6082331

Dai, W., Dai, C., Qu, S., Li, J., & Das, S. (2017, March).

Very deep convolutional neural networks for raw

waveforms. In 2017 IEEE International Conference

on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 421-425). IEEE.

https://doi.org/10.1109/ICASSP.2017.7952190

Darken, C., Chang, J., & Moody, J. (1992, August).

Learning rate schedules for faster stochastic

gradient search. In Neural Networks for Signal

Processing (Vol. 2, pp. 3-12). Helsinoger,

Denmark: Citeseer.

https://doi.org/10.1109/NNSP.1992.253713

Deng, S., Han, J., Zhang, C., Zheng, T., & Zheng, G.

(2014, May). Robust minimum statistics project

coefficients feature for acoustic environment

recognition. In 2014 IEEE International Conference

on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 8232-8236). IEEE.

 https://doi.org/10.1109/ICASSP.2014.6855206

Geiger, J. T., & Helwani, K. (2015, August). Improving

event detection for audio surveillance using gabor

filterbank features. In 2015 23rd European Signal

Processing Conference (EUSIPCO) (pp. 714-718).

IEEE.

 https://doi.org/10.1109/EUSIPCO.2015.7362476

Graves, A., Mohamed, A. R., & Hinton, G. (2013, May).

Speech recognition with deep recurrent neural

networks. In 2013 IEEE International

Conference on Acoustics, Speech and Signal

Processing (pp. 6645-6649). IEEE.

https://doi.org/10.1109/ICASSP.2013.6638947

Hoshen, Y., Weiss, R. J., & Wilson, K. W. (2015, April).

Speech acoustic modeling from raw multichannel

waveforms. In 2015 IEEE International Conference

on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 4624-4628). IEEE.

 https://doi.org/10.1109/SLT.2018.8639585

Kim, T., Lee, J., & Nam, J. (2018, April). Sample-level

CNN architectures for music auto-tagging using raw

waveforms. In 2018 IEEE International Conference

on Acoustics, Speech and Signal Processing

(ICASSP) (pp. 366-370). IEEE.

https://doi.org/10.1109/ICASSP.2018.8462046

Kons, Z., Toledo-Ronen, O., & Carmel, M. (2013,

August). Audio event classification using deep

neural networks. In Interspeech (Vol. 2013, pp.

1482-1486).
https://doi.org/10.21437/Interspeech.2013-384

Kukačka, J., Golkov, V., & Cremers, D. (2017).

Regularization for deep learning: A taxonomy. arXiv

preprint arXiv:1710.10686.

 https://doi.org/10.48550/arXiv.1710.10686

Lezhenin, I., Bogach, N., & Pyshkin, E. (2019,

September). Urban sound classification using long

short-term memory neural network. In 2019

Federated Conference on Computer Science and

Information Systems (FedCSIS) (pp. 57-60). IEEE.
https://doi.org/10.15439/2019F185

Luo, W., Li, Y., Urtasun, R., & Zemel, R. (2016).

Understanding the effective receptive field in deep

convolutional neural networks. Advances in Neural

Information Processing Systems, 29.

https://proceedings.neurips.cc/paper/2016/hash/c806

7ad1937f728f51288b3eb986afaa-Abstract.html

Lydia, A., & Francis, S. (2019). Adagrad-an optimizer for

stochastic gradient descent. Int. J. Inf. Comput.

Sci, 6(5), 566-568.

 https://www.scirp.org/(S(czeh2tfqw2orz553k1w0r45))/

reference/referencespapers.aspx?referenceid=2912025

Mydlarz, C., Salamon, J., & Bello, J. P. (2017). The

implementation of low-cost urban acoustic monitoring

devices. Applied Acoustics, 117, 207-218.

https://doi.org/10.1016/j.apacoust.2016.06.010

Manu Pratap Singh and Pratibha Rashmi / Journal of Computer Science 2024, 20 (1): 69.87

DOI: 10.3844/jcssp.2024.69.87

87

Nair, V., & Hinton, G. E. (2009). 3D object recognition

with deep belief nets. Advances in Neural

Information Processing Systems, 22.

 https://citeseerx.ist.psu.edu/viewdoc/download;jsess

ionid=118367363EA44B29C43721319DD43787?d

oi=10.1.1.167.3450&rep=rep1&type=pdf

Nemirovski, A., Juditsky, A., Lan, G., & Shapiro, A.

(2009). Robust stochastic approximation approach to

stochastic programming. SIAM Journal on

Optimization, 19(4), 1574-1609.

 https://doi.org/10.1137/070704277

Phan, H., Hertel, L., Maass, M., Mazur, R., & Mertins,

A. (2015, September). Representing nonspeech

audio signals through speech classification

models. ISCA.

https://doi.org/10.1145/2647868.2655045

Piczak, K. J. (2015a, October). ESC: Dataset for

environmental sound classification. In Proceedings

of the 23rd ACM International Conference on

Multimedia (pp. 1015-1018).

https://doi.org/10.1145/2733373.2806390

Piczak, K. J. (2015b, September). Environmental sound

classification with convolutional neural networks.

In 2015 IEEE 25th International Workshop on

Machine Learning for Signal Processing

(MLSP) (pp. 1-6). IEEE.
https://doi.org/10.1109/MLSP.2015.7324337

Pons, J., & Serra, X. (2019, May). Randomly weighted

cnns for (music) audio classification. In ICASSP

2019-2019 IEEE International Conference On

Acoustics, Speech and Signal Processing

(ICASSP) (pp. 336-340). IEEE.
https://doi.org/10.1109/ICASSP.2019.8682912

Radhakrishnan, R., Divakaran, A., & Smaragdis, A.

(2005, October). Audio analysis for surveillance

applications. In IEEE Workshop on Applications of

Signal Processing to Audio and Acoustics,

2005. (pp. 158-161). IEEE.

https://doi.org/10.1109/ASPAA.2005.1540194

Ravanelli, M., & Bengio, Y. (2018, December). Speaker

recognition from raw waveform with sincnet. In 2018

IEEE Spoken Language Technology Workshop

(SLT) (pp. 1021-1028). IEEE.
https://doi.org/10.1109/SLT.2018.8639585

Rolon-Mérette, D., Ross, M., Rolon-Mérette, T., &

Church, K. (2016). Introduction to Anaconda and

Python: Installation and setup. Quant. Methods

Psychol, 16(5), S3-S11.

 https://doi.org/10.20982/tqmp.16.5.S003

Ruan, X., Liu, Y., Li, B., Yuan, C., & Hu, W. (2021,

May). DPFPS: Dynamic and progressive filter

pruning for compressing convolutional neural

networks from scratch. In Proceedings of the AAAI

Conference on Artificial Intelligence (Vol. 35, No. 3,

pp. 2495-2503).
 https://doi.org/10.1609/aaai.v35i3.16351

Salamon, J., & Bello, J. P. (2017). Deep convolutional

neural networks and data augmentation for

environmental sound classification. IEEE Signal

Processing Letters, 24(3), 279-283.

 https://doi.org/10.1109/LSP.2017.2657381

Salamon, J., Jacoby, C., & Bello, J. P. (2014, November).

A dataset and taxonomy for urban sound research.

In Proceedings of the 22nd ACM international

conference on Multimedia (pp. 1041-1044).

https://doi.org/10.1145/2647868.2655045

Simonyan, K., & Zisserman, A. (2014). Very deep

convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

https://doi.org/10.48550/arXiv.1409.1556

Srisuk, S., Boonkong, A., Arunyagool, D., & Ongkittikul,

S. (2018, March). Handcraft and learned feature

extraction techniques for robust face recognition: A

review. In 2018 International Electrical Engineering

Congress (iEECON) (pp. 1-4). IEEE.

 https://doi.org/10.1109/IEECON.2018.8712272

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever,

I., & Salakhutdinov, R. (2014). Dropout: A simple

way to prevent neural networks from

overfitting. The Journal of Machine Learning

Research, 15(1), 1929-1958.

https://jmlr.org/papers/v15/srivastava14a.html

Wang, J., Li, C., Xiong, Z., & Shan, Z. (2014). Survey of

data-centric smart city. Journal of Computer

Research and Development, 51(2), 239-259.

https://doi.org/10.7544/issn1000-

1239.2014.20131586

Zhang, X., Zou, Y., & Shi, W. (2017, August). Dilated

convolution neural network with LeakyReLU for

environmental sound classification. In 2017 22nd

international conference on digital signal processing

(DSP) (pp. 1-5). IEEE.

https://doi.org/10.1109/ICDSP.2017.8096153

Zhu, Z., Engel, J. H., & Hannun, A. (2016). Learning

multiscale features directly from waveforms. arXiv

preprint arXiv:1603.09509.

 https://doi.org/10.21437/Interspeech.2016-256

https://doi.org/10.1609/aaai.v35i3.16351

