
 Journal of Computer Science

 © 2024 Rand Marwan Khalil Ibrahim and Samer Zein. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Original Research Paper

Testing React Native Mobile Apps: Pruning GUI Model

Approach

1Rand Marwan Khalil Ibrahim and 2Samer Zein

1Department of Information Technology, Birzeit University, Birzeit, Palestinian Authority
2Department of Computer Science, Birzeit University, Birzeit, Palestinian Authority

Article history

Received: 09-09-2023

Revised: 20-11-2023

Accepted: 01-01-2024

Corresponding Author:

Rand Marwan Khalil Ibrahim

Department of Information

Technology, Birzeit University,
Birzeit, Palestinian Authority

Email: randibrahim94@gmail.com

Abstract: The mobile app market is still in continual growth. People

are migrating to smartphone mobile devices to accomplish their daily

activities while working, playing, and communicating with others.

From the developers' perspective, there exists a wide variety of

platforms, technologies, and architecture choices for developing and

testing mobile apps. However, because of the constant changes in

software applications and the great technological development,

developers are supposed to speed up the development process to

satisfy the customer's needs and provide robust applications within a

short period of time. Cross-platform mobile app development

technology, such as react Native, aims to overcome these difficulties,

where instead of building separate applications for each platform, a

single code base that can be run on multiple platforms is developed,

which accelerates the development process. Model-based testing is

one of the techniques that are used to test cross-platform applications

and identify and find defects and bugs. This study proposes a React

Native Abstract Syntax Tree pruning (RN-AST pruning) framework,

which aims to facilitate the mobile app testing process by pruning the

original GUI model of the application and reducing the number of test

cases by keeping only the test cases that cover the impacted regions

from internal code changes. The pruning process to keep the GUI

elements is applied to the abstract syntax tree, which is the result of

doing the static analysis on the last two versions of the source code.

After that the two pruned AST will be compared to keep only the

affected and updated GUI elements. The affected files will be listed

as paths to prevent any other file from being tested, consequently

reducing the number of test cases. According to our knowledge, no

comprehensive work was dedicated to use the static analysis approach

in keeping only the impacted GUI elements by the internal code

changes in cross-platform software, thus reducing the run test cases

and increasing productivity by accelerating the development life

cycle. Preliminary experimentation was done on our framework with

the help of six developers and test engineers in cross-platform

development. The experiment was carried out in a systematic process

with clear steps on a proof of concept mobile application. Results

show that the RN-AST Pruning framework is useful and provides test

engineers with affected files and paths that need to be tested, thus

reducing the test cases and minimizing the testing time and effort.

Moreover, it identifies exactly the changes that occurred in each file

and categorizes them into updates, placements, and deletions based

on the differences between the original version and the updated

version of the source code. The authors confirm that this study is

original and its contents are unpublished. Moreover, no specific grant

from any funding agency was received.

Keywords: React Native, GUI Model, Pruning, Testing Process

Rand Marwan Khalil Ibrahim and Samer Zein / Journal of Computer Science 2024, 20 (6): 594.601

DOI: 10.3844/jcssp.2024.594.601

595

Introduction

Nowadays, with the heavy reliance on technology

and due to technological development, mobile

application development is evolving rapidly and moving

quickly toward being mainstream. Mobile devices and

smartphones are becoming an integral part of our

modern life. Almost 60% of the population is accessing

the internet using their mobile devices, which increases

the need to support the ongoing development in this area.

Theoretically, this seems to be easy, however,

technically this is complex because of the rapid

development nature and imposed limitations for mobile

devices (Hartmann et al., 2011), especially since user

expectations about mobile applications are remarkably

high (Raj and Tolety, 2012).

In general, the diversity of mobile platforms makes the

mobile development process quite complex and

expensive, particularly with the need to build the

application for each mobile operating system. This raises

the necessity to have a cross-platform development to

contribute to solving this diversity problem.

Such applications give developers the ability to launch

software simultaneously on various platforms, making the

development process faster than before because as a

developer you need to deploy only a single script to run

against different platforms. Moreover, it offers the

opportunity to reach a wide range of audiences.

Furthermore, using cross-platform saves money and time,

where the time to market will be reduced, which increases

the application revenues. Despite the huge advantages,

using cross-platform technologies still has downsides and

limitations. The largest risk is the maturity of this

technology (Eisenman, 2015), as cross-platform

development is still relatively young. Moreover, some

features of iOS and Android still aren't supported and

different practices are still under process. Despite the

great adoption of cross-platform development and the

rapid evolvement in this field, particularly the react

Native framework, there is still a lack in the existence of

frameworks that assist in testing the graphical user

interfaces in mobile applications and provide the test

engineers with a subset of test cases to check and run

instead of testing the whole test cases. Accordingly,

there is a need to exploit model-based testing in building

a framework that can assist the test engineers in testing

the graphical user interfaces, which have become a

nearly ubiquitous means of interacting with software

systems (Memon, 2002). The framework is based on the

idea of pruning the entire model to guide and help the

test engineers in reaching the modified GUI parts of the

application impacted by the internal changes on the

source code.

RN-AST Pruning framework aims to detect the GUI

elements, find the GUI changes between the last two

versions of the source code, and build the list of paths to

be tested. Therefore, reduce the number of test cases that

ensure that the application satisfies the needs and

requirements. Results showed the effectiveness of the

framework in detecting the changes between the source

codes and classifying these changes to facilitate the

testing process.

The research addressed four questions. First, how to

detect the GUI elements and prune the GUI model?

Second, how to calculate and classify the code differences

and changes between the last two versions of the

application? Third, how to build the list of paths that

contain the changes file? Fourth, how effective is the

framework in detecting changes and results that satisfy the

test engineers?

To the best of our knowledge, no studies cover the

static analysis and GUI model pruning to facilitate the

testing. However, there are some existing searches on

model-based testing and GUI model pruning that are

relevant to our present study.

In their study Salihu et al. (2017) proposed a hybrid

technique to support the reverse engineering of the GUI

model of the mobile application. The basic idea of their

technique was to use both static and dynamic analysis;

the GUI Information was extracted using the static

analysis for the byte code of the application and then a

dynamic crawling was done to reverse engineering the

GUI model of the application. Their static analyzer took

the application APK as an input and started the analysis

process to end up with a Window Transition Graph

(WTG), which is made of nodes (GUI widgets) and

edges(Events). This graph then entered the dynamic

crawler to extract the GUI widgets and their related

events to produce the GUI state model as an output. They

aimed to clarify the GUI behavior using an effective and

high-quality model. They made a prototype called

AMOGA for their study that used the hybrid approach to

generate a model to describe the behavior of a mobile

application. This model can be used to generate test

cases to test that application.
Another study that discussed the importance of model-

based testing for mobile applications is the orbit tool

(Yang et al., 2023). This study is an automated GUI-

model generator for mobile applications. The proposed

work used static analysis on the mobile application source

code in order to extract the different events and actions

supported by each GUI widget. Then, these events were

exercised live using a dynamic crawler to identify the GUI

behavior of the application. Identifying the different

actions and events in the static analysis involved three

basic steps: (1) Identify where the action is registered or

instantiated, (2) Locate the GUI component on which the

event is fired, (3) Determine the component identifier to

help the dynamic analysis in recognizing the component

and firing the action.

Rand Marwan Khalil Ibrahim and Samer Zein / Journal of Computer Science 2024, 20 (6): 594.601

DOI: 10.3844/jcssp.2024.594.601

596

Tao and Gao (2016), discussed the rapid evolution of

mobile and wireless technology, which brought new

challenges and issues in the automatic mobile testing

process. One of the biggest issues is the lack of mobile test

scripting techniques and tools that can deal with the

diversity of mobile test environments and devices.

Therefore, they introduced a new tool based on GUI ripping

to facilitate the validation of numerous mobile applications.

They provided a large-scale automation solution by

incorporating different open-source technologies like

Appium and Selenium. Their approach can increase the test

coverage by allowing the parallel execution of test scripts

on multiple mobile devices running on different platforms.

Sebastian Bauersfeld ensures the importance of having

a robust and high-quality GUI due to the huge evolution

in tablets, and smartphones and the heavy reliance on

them to achieve our daily life activities. Testing these GUI

applications is still a challenge, whereas manual testing is

an expensive, limited, and time-consuming process

especially when doing regression tests. Therefore,

Sebastian proposed a new regression testing tool for GUI

applications which is called GUIDiff (Bauersfeld, 2013).

The basic idea behind GUIDiff is to run the two versions

of the application in parallel and report the differences

between the GUI states to the testers. Therefore, the GUI

state information should be captured in widget trees. After

that, the two versions of the same application are run side

by side to notice the differences between the states in the

widget tress. Doing so will compare the properties of the

same controls against each other.

Materials and Methods

Our approach is mainly based on generating a pruned

model to facilitate the testing process of React Native

applications by reducing the number of test cases required

to ensure that the application satisfies the customer's

needs. Figure 1 illustrates the proposed structure for the

RN-AST pruning framework. As seen, the framework is

composed of three parties communicating with each

other. The test engineer uses the front-end interface to

connect to the back-end side that sends data to the Mongo

database, which is considered the third party.

Fig. 1: Structure diagram of the framework

The back-end side represents and clarifies briefly the

different steps for our framework. First, Multer, which is

a node.js middle ware used to handle the process of

uploading the source code file from the test engineer side.

Second, Madge API generates the visual graph of the

dependencies of the uploaded source code. This API has

different features that facilitate the process of determining

the different dependencies between the different modules

in the application, finding circular dependencies, and

providing useful information. Then, the babel-parser was

chosen to parse the uploaded ECMAScript source code.

This parser is a JavaScript parser used in the Babel

compiler and it is heavily based on the Acorn JS parser.

The parser produced the Abstract Syntax Tree (AST),

which is a tree representation of the abstract syntactic

structure of the uploaded source code. After producing the

AST, it is time to prune this tree and keep only the GUI

elements and this is the responsibility of the pruning

algorithm. This algorithm will be applied to the produced

AST of the uploaded source, which is the original source

code and the updated version of that code. After pruning

the two ASTs, the comparison algorithm starts its job by

comparing the pruned ASTs to find the GUI elements that

differentiate between the two versions of the source code.

This algorithm classifies the change between the two

versions into three classifications:

 Update: That means the same elements but different

properties or values

 Placements: That identifies the newly inserted

elements in the updated version not in the original

version

 Deletions: That tags the deleted elements which are

found in the original source code, not in the

updated version

Finally, as indicated in step number 7, the paths that

contain the changed files are generated and returned to the

test engineer who will use them to reduce the testing time

and facilitate the testing process.

The below sub-sections describe and explain the different

algorithms and steps of our approach in more detail.

A Model for GUI

The test engineer is asked to upload the source code file

of the application, which is the starting point for React

Native applications. The Multer middleware adds the file

object to the request object. Then it comes the time to build

and model the structure of the application by building the

component diagram and the dependency graph.

In the RN-AST pruning framework, the Madge API

was used to generate the visual graph of our application

dependencies. Madge API takes the uploaded file,

produces the dependency graph based on the imports in

Rand Marwan Khalil Ibrahim and Samer Zein / Journal of Computer Science 2024, 20 (6): 594.601

DOI: 10.3844/jcssp.2024.594.601

597

the file, and then sends the content of the produced graph

as base64 encoding representation to the client side, which

on his part, shows the image of the dependency graph to

the test engineer.

Parse the Code, Detect the JSX Elements, and Prune

the AST

In general, code parsing is the process of breaking up

the code sentences or groups of words into separate

components based on the set of rules and grammars for

each programming language (Utkin et al., 2022), where

the output of parsing the source code is represented in a

tree-like object usually called the abstract syntax tree.

In our study, Babel JavaScript Parser was used to

produce the AST, do the source code transformations, and

extract the dependencies of the source code as an object.

Both source codes of the original code and the updated

code are being parsed using the Babel parser to produce

the original AST and the updated AST. These ASTs are

pruned to keep only the exported JSX elements for each

source code. These JSX elements are the elements that are

shown on the user interface of the application. Doing so

helps in finding the GUI changes between the two

versions of the code. The pseudo-code for the proposed

algorithm for pruning the AST of the source code answers

the first question and it can be described as shown below.

Algorithm 1: L AST pruning and detection algorithm

Input: The AST of the source code as array (produced by

babel parser)

Output: Pruned AST only with JSX elements shown on

the screen returned as array

Steps:

1) Get the Abstract Syntax Tree of the uploaded source

code from the Babel parser

2) Use babel-traverser to traverse the AST nodes and

especially the ExportDefaultDeclaration node to

check the type of default export

3) Get the first rendered GUI element on the screen based

on the used export default pattern:

a) When the export function is the default export after

the function declaration, then the algorithm gets the

name of the exported function and traverses all the

Function-Decalaration nodes until the name of the

function in the node matches the name of the

exported function. Then the first rendered node is

the first JSX element stored in the

ReturnStatement node in the body of the function

declaration node

b) When exporting a variable as default export after

the variable declaration, the steps of getting the first

rendered JSX element are as above steps. However,

instead of traversing the FunctionDeclaration

nodes, the algorithm traverses the

VariableDeclaration nodes, checks if the variable

name matches the export, and then gets the first

JSX element from the ReturnStatement node in

the body of the matched VariableDeclaration node

c) When exporting a class as default export after the

class declaration, the steps of getting the first

rendered JSX element are as above steps. However,

instead of traversing the FunctionDeclaration or

VariableDeclaration nodes, the algorithm traverses

the ClassDeclaration nodes, gets the different class

methods, and then gets the first JSX element from

the Return Statement node from the render

method

d) When exporting regular syntax function as default

export, the first JSX element would be from the

Return-Statement node from the body of the

FunctionDeclaration node

e) However, when exporting the arrow syntax

function as default export, the algorithm gets the

ReturnStatement node as the first JSX element

from the body of the arrow function

Comparing the JSX Elements Tree of the Original

and Updated Source Code

After producing the pruned ASTs of the original

source code and the updated version of the source code,

it’s time to answer the second question and compare these

two ASTs to find the set of differences and this is the aim

of this phase.

Below is the pseudo-code for the proposed algorithm

for comparing the two pruned ASTs. It is inspired by the

reconciliation algorithm in React that deals with figuring

out how to update the UI of the application effectively and

without any delays.

Algorithm 2: Diffing Algorithm

Input: The pruned AST of the original source code (old

AST) and the pruned AST of the updated source

code (new AST)

Output: The deletion elements array, the placement

elements array, and the updated elements array.

Steps :

 1: procedure COMPARETWOASTS (oldAST,

 newAST, update, placement, deletion)

 2: placement ← ∅; deletion ← ∅; update ← ∅

 3: if oldAST = ∅ && newAST = ∅ then

 4: return empty

 5: else if oldAST = ∅ then

 6: placement ← newAST

 7: else if newAST = ∅ then

 8: deletion ← of oldAST

 9: else

10: deletedIds = oldIds. filter (x = > !newIds)

includes(x));

Rand Marwan Khalil Ibrahim and Samer Zein / Journal of Computer Science 2024, 20 (6): 594.601

DOI: 10.3844/jcssp.2024.594.601

598

11: intersectionIds = newIds. filter (x => oldIds.

 includes(x));

12: placementIds = newIds.filter(x =>!oldIds.

 includes(x))

13: deletion← deletedId′sobject

 14: placement ← newId′sobject intId ∈

 ⟩nter sectionIds

15: oldObj = oldAST.find(x => x.props.id === i);

16: newObj = newAST. find(x => x.props.

 id === i);

17: sameType = newObj.name == oldObj.name

18: if sameType &&

(!lodash.isEqual(oldObj.props,newObj.p

newObj.value) then

19: update.push(oldObj);

20: end if

21: if newObj && !sameType then

22: placement. push(newObj)

23: end if

24: if oldObj && !sameType then

25: deletion.push(oldObj)

26: end if

27: repeat for children

Note that checking the id attributes enhances the

comparison algorithm performance and provides the test

engineers with clear results. Therefore, the algorithm

generates an id attribute for elements that have no id by

hashing the type of the element, and its index so ends with

an element with a unique id among its siblings.

Building the Different Paths of the Dependency Graph

Technically, a dependency graph is a collection of

entities called nodes; in our case, these nodes represent

the different files in our application. Generally, nodes

are connected by edges that manage the relationship

between them. Going through these nodes produces the

different paths of the dependency tree starting from the

first node, which is the root, and ending with leaves,

which are the nodes with no dependencies. In the RN-

AST Pruning framework, the idea of getting the different

paths of the dependency graph is based on traversing the

graph using the Depth-First-Search (DFS) technique.

The DFS algorithm starts at the root node and explores

as far as possible along each branch before backtracking

to the parent. In order to show the list of paths and the

different changes of each node in the path, we have

created a tree component, where each tree path

represents the sequence of nodes(files) to be tested by

the testers of the application. Each node has sub-nodes

that classify the changes into three types. On the front

side and to show the changes in the files as categories,

the framework used the react D3 Tree component to

represent hierarchical data.

Evaluation of RN-AST Pruning Framework

A user evaluation was conducted to evaluate the user

experience and acceptance and measure the

effectiveness of the framework in detecting and finding

the UI differences between the original and updated

source codes.

The evaluation was done on a React Native application

made for testing. This application is made of a list of

pages, each page consists of one or more core

components. These pages are treated as modules. Thus,

importing one module into another module produces the

dependency between these modules.

Participants

Basically, the evaluation of the proposed framework

was done with the help of six volunteers. Two of them

are experienced react Native testers and the others are

novice testers in react Native, but a comprehensive

tutorial was given to them in order to teach them the

basics and increase their knowledge of using and

programming with react Native. In general, participants

interact with the RN-AST pruning framework using a

web interface implemented using the react library.

Results and errors that were generated on the server

were sent to the client and displayed to them. The

output sent between the server and the client side was

implemented as a JSON object as many web

applications use this format for data transmission.

Experiment Procedure

Below are the steps that were followed to help in

evaluating the RN-AST pruning framework.

The participants were introduced to the framework by

reading an instructional tutorial document to reduce the

bias between the different participants, and to demonstrate

the main aim of this framework and the steps of using it

with an explanation of the framework's outputs.

Multiple online sessions were done with the

participants to introduce them to the tool using the

Zoom application.

On completion of the learning step, the participants

were asked to make some GUI changes to an application

under use, these changes included adding new elements

and deleting or updating existing elements.

The changes done by the participants were run to

ensure that there were no run-time issues

Their changes were cloned and copied to the

proposed framework.

RN-AST pruning framework starts its job by calling

the Madge API to build the dependency graph of the

original source code, produce the AST by parsing the

different versions of the source code using the babel

parser, prune the AST to keep only the GUI expressions,

and finally compare the pruned AST's to check if the file

Rand Marwan Khalil Ibrahim and Samer Zein / Journal of Computer Science 2024, 20 (6): 594.601

DOI: 10.3844/jcssp.2024.594.601

599

has changed before building the paths that contain the files

with changes.

Upon finishing the experiment showing the results to

the participants and making sure that the tool detects their

changes, a matching questionnaire was filled with each

participant.

The Questionnaire

In our study, the questionnaire method was used to

collect, obtain, and summarize useful information from

the participants about the proposed framework to support

and help the evaluation process.

The questionnaire used in this study was made with

the help of Google form and it followed the positive

design approach, which was introduced. It suggests

including items with positive and negative wordings to

reduce the response biases, help analyze the results

faster, and avoid accidental errors. The questionnaire has

three sections with a total of 16 questions, 9 questions

with 5 point Likert-scale ranging from strongly agree to

strongly disagree, 3 open-ended questions to capture

their opinions of using RN-AST pruning framework in

testing react Native applications, and the remaining

questions to capture their background and experience in

developing mobile applications.

Results and Discussion

The participants varied in terms of their highest

qualifications and in their experience in mobile development.

However, they were able to use the framework, make code

changes, and get the affected GUI elements and paths that

need to be tested due to the code changes between the

original and the updated version of the source code. This

ensures that RN-AST framework can effectively be used by

test engineers regardless of the experience level, the highest

qualifications, and making changes to the original source

code as illustrated in react Native skills.

Participants Experience

According to their experience in the mobile

development field, results as illustrated in Fig. 2 indicate

that only one of them is senior with more than 6 years in

this field, one of them has no experience and the other

participants are juniors with only 1-3 years experience.

According to their familiarity with React native, one

of them is not familiar with this framework and the other

has heard about it and has little experience in this field.

All testers were able to understand the usability of the

framework and add, delete, or update the application GUI

elements. Moreover, all of them were able to get the list

of affected elements and files that need to be tested to

cover the code changes.

Fig. 2: Mobile development experience

Fig. 3: Easy-to-use RN-AST pruning framework

Fig. 4: Easy to make changes on the original source code

Fig. 5: Provide the affected files

Usability and Efficiency

The second section of the questionnaire aims to

evaluate the usability of using the RN-AST Pruning

framework. As indicated in Fig. 3, participants varied in

determining the usability of the RN-AST Pruning

framework, half of them were neutral and the other half

found it easy to use.

In addition, two participants found it easy to make

code changes and the other was neutral in determining the

ease of making changes to the original source code as

illustrated in Fig. 4.

As for the efficiency of the RN-AST Pruning

framework, almost all participants agreed that the

proposed framework was able to provide them with the

affected files that need to be tested as shown in Fig. 5,

where 5 in Likert-scale means totally agree.

Rand Marwan Khalil Ibrahim and Samer Zein / Journal of Computer Science 2024, 20 (6): 594.601

DOI: 10.3844/jcssp.2024.594.601

600

Fig. 6: Satisfy with the results

The results provided by the RN-AST Pruning

framework as illustrated in Fig. 6 were satisfying for more

the half of the participants and the other participants were

neutral in determining their satisfaction with the

framework results.

Despite all, almost all participants believe that the idea

behind this framework is useful and worthy. After

collecting the results from the participants, below points

can be shown:

 All participants agreed that the RN-AST Pruning

framework provides them with the list of affected

files. However, two participants were not satisfied

with the way the results were shown and they found

it hard to understand

 The RN-AST Pruning framework idea is useful and

can help test engineers by reducing the time and effort

required to do the testing process by providing them

with the affected files and paths

From these two considerations the fourth research

question "How effective is the build framework in

detecting changes and results that satisfy the test

engineers?" can be answered positively to indicate the

efficiency of the RN-AST Pruning framework idea and

implementation.

Threats to Validity

Although we did our best to reduce threats to the

validity of the experiment, there are certain threats faced

while implementing the framework.

RN-AST Pruning framework has been tested and

evaluated by a small sample of React Native testers and

developers. However, in order to obtain more accurate

results, the RN-AST Pruning framework has to be tested

by a larger sample to cover a large area of GUI changes

and more react native components. In general, resource

constraints limit the ability to collect data at a reasonable

cost. In our study, time and money were two resource

limitations that directly influenced how much data could

be collected, as it was difficult to find React native

programmers and test engineers to help in testing our

framework for free and in a specific period of time.

Therefore, this can justify the small sample size in our

research. The resource constraints and limitations also

affect the covered components. RN-AST Pruning

framework only covered the core components in React

Native, but the increase in using mobile applications and

the diversity in application domains may possibly reveal

other components to be included in the framework.

Conclusion

In this study, the RN-AST Pruning framework was

introduced. The basic idea behind this framework is to

enhance the testing process and help test engineers by

reducing the number of test cases to run, therefore,

reducing the required time and effort needed to complete

the testing process. The framework works on pruning the

abstract syntax tree generated by code static analysis to

keep only the GUI elements. Then compare the pruned

AST of the original source code with the pruned AST of

the updated version of the source code. GUI changes are

categorized into updates, placements, and deletions. The

framework then builds the paths that contain the changed

files. Each path has a list of changed files or the files that

may affected due to the dependency with that file. Thus,

reducing the number of tested files and the number of test

cases to run. The framework was evaluated using a case

study evaluation conducted on a group of six developers

with different qualifications and experiences. Participants

used the RN-AST Pruning framework to detect their

changes on the proof-of-concept mobile application and

to list the affected files that need to be tested for them.

Results show that the framework was able to provide them

with the changes they have applied to the mobile

application code. Moreover, they praised the framework

and believe that it is useful in helping test engineers in

their testing process.

Due to the lack of time and to improve this study, some

next steps need to be conducted in the near future:

 Increase the number of covered components

 Support the conditional rendering

 Enhance the framework to a more user-friendly

interface

 Evaluate the framework with the help of a larger

sample of developers and testers

 Integrate our results with model-based GUI test

case generation tools to get more accurate and

systematic results

Acknowledgment

I would like to thank my supervisor Dr. Samer Zein

for his expertise, which helped in completing this study

successfully. Thanks also go to the volunteers for their

dedication and commitment which was critical in

achieving our research goals.

Rand Marwan Khalil Ibrahim and Samer Zein / Journal of Computer Science 2024, 20 (6): 594.601

DOI: 10.3844/jcssp.2024.594.601

601

Funding Information

The authors confirmed that there is no funding agency

exists in this study.

Author’s Contributions

Rand Marwan Khalil Ibrahim: The study

background and related work, methodology, programming,

implementation, data collection, and experiments.

Samer Zein: Research Idea, reviewed the manuscript,

audit identification, and audit tracking.

Ethics

This manuscript is original and contains unpublished

material. The authors conducted their research ethically,

following the ethical principles and guidelines of their

field and institution.

References

Bauersfeld, S. (2013, March). GUIdiff--A Regression

Testing Tool for Graphical User Interfaces. In 2013

IEEE Sixth International Conference on Software

Testing, Verification and Validation (pp. 499-500).

IEEE. https://doi.org/10.1109/icst.2013.84

Eisenman, B. (2015). Learning react native: Building

native mobile apps with JavaScript. "O'Reilly Media,

Inc". ISBN-10: 1491929073.

Hartmann, G., Stead, G., & DeGani, A. (2011). Cross-

platform mobile development. Mobile Learning

Environment, Cambridge, 16(9), 158-171.

Memon, A. M. (2002). GUI testing: Pitfalls and process.

Computer, 35(08), 87-88.

https://doi.org/10.1109/MC.2002.1023795

Raj, C. R., & Tolety, S. B. (2012, December). A study on

approaches to build cross-platform mobile

applications and criteria to select appropriate

approach. In 2012 Annual IEEE India Conference

(INDICON) (pp. 625-629). IEEE.

https://doi.org/10.1109/indcon.2012.6420693

Salihu, I. A., Ibrahim, R., & Mustapha, A. (2017). A

hybrid approach for reverse engineering GUI model

from android apps for automated testing. Journal of

Telecommunication, Electronic and Computer

Engineering (JTEC), 9(3-3), 45-49.

https://jtec.utem.edu.my/jtec/article/view/2870

Tao, C., & Gao, J. (2016). On Building Test Automation

System for Mobile Applications Using GUI Ripping.

In SEKE (pp. 480-485).

https://www.ksiresearch.org/seke/seke16paper/seke1

6paper_168.pdf

Utkin, I., Spirin, E., Bogomolov, E., & Bryksin, T. (2022).

Evaluating the Impact of Source Code Parsers on

ML4SE Models. arXiv preprint arXiv:2206.08713.

https://doi.org/10.48550/arXiv.2206.08713

Yang, W., Prasad, M. R., & Xie, T. (2013, March). A

grey-box approach for automated GUI-model

generation of mobile applications. In International

Conference on Fundamental Approaches to Software

Engineering (pp. 250-265). Berlin, Heidelberg:

Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-37057-1_19

https://www.doi.org/10.1109/icst.2013.84
https://doi.org/10.1109/MC.2002.1023795
https://www.doi.org/10.1109/indcon.2012.6420693
https://doi.org/10.48550/arXiv.2206.08713

