

 © 2024 Samsul Arifin, Dwi Wijonarko, Suwarno and Edwin Kristianto Sijabat. This open-access article is distributed

under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Application of Unimodular Hill Cipher and RSA Methods to

Text Encryption Algorithms Using Python

1Samsul Arifin, 2Dwi Wijonarko, 3Suwarno and 4Edwin Kristianto Sijabat

1Department of Data Science, Faculty of Engineering and Design, Institut Teknologi Sains Bandung; Bekasi,

West Java, Indonesia
2Department of Information Technology, Faculty of Computer Science, University of Jember, Jember, East Java, Indonesia
3Department of Primary Teacher Education, Faculty of Humanities, Bina Nusantara University, Jakarta, Indonesia
4Department of Pulp and Paper Processing Technology, Faculty of Vocational, Institut Teknologi Sains Bandung; Bekasi,

West Java, Indonesia

Article history

Received: 14-06-2023

Revised: 10-10-2023

Accepted: 13-01-2024

Corresponding Author:

Samsul Arifin

Department of Data Science,

Faculty of Engineering and

Design, Institut Teknologi

Sains Bandung; Bekasi, West

Java, Indonesia
Email: samsul.arifin212@gmail.com

Abstract: Text encryption is one of the techniques used to maintain the

confidentiality of information in digital communications. In this study, we

propose to apply a combination of the Unimodular Hill Cipher and RSA

methods to a text encryption algorithm using the Python programming

language. The Unimodular Hill Cipher method uses an unimodular matrix to

replace text characters with encrypted characters, while RSA (Rivest-

Shamir-Adleman) is a public key encryption algorithm that relies on modulo

arithmetic properties. The purpose of this research is to combine the strengths

of the two methods and produce a more secure text encryption system.

Unimodular Hill Cipher provides the advantage of randomizing text

characters by using matrix modulo operations, while RSA provides a high

level of security through the use of public and private key pairs. In this study,

we explain in detail the basic theory and algorithms of the Unimodular Hill

Cipher and RSA. We also describe the implementation steps of both methods

in the Python programming language. The text data used in this study went

through a preprocessing stage before being encrypted. We also analyze the

results of the encryption using several statistical methods to measure how

close the relationship between the original text and the result of the

encryption is. In a comparative analysis with the previous paper, in this study,

the use of the Unimodular Hill Cipher and RSA methods in the context of

Python provides additional insight into the performance and level of security

of both. The experimental results show that the combination of the

Unimodular Hill Cipher and RSA methods can produce a higher level of

security in text encryption. It is hoped that this research can contribute to the

development of a more effective and secure text encryption algorithm.

Keywords: Unimodular Hill Cipher, RSA, Text Encryption, Python

Introduction

In today's digital era, data and information security is

very important. To protect the confidentiality and

integrity of data, encryption methods play a crucial role.

In this study, we will discuss the application of the

Unimodular Hill Cipher and RSA methods to text

encryption algorithms using the Python programming

language. Unimodular Hill Cipher and RSA are two

encryption methods that have proven effective in

protecting sensitive data. Unimodular Hill Cipher uses a

matrix as an encryption key, with the condition that the

matrix must be unimodular to produce secure encryption.

This method has the advantage of producing strong

encryption and has a high level of decryption difficulty.

Meanwhile, RSA is a public key encryption method that

uses mathematical operations on large prime numbers.

RSA has the advantage of providing high security,

especially in the exchange of encryption keys. The main

objective of this study is to apply the Unimodular Hill

Cipher and RSA methods to text encryption algorithms

using Python. We will experiment with using short text

and long text as sample data for the encryption process. In

addition, we will also perform statistical analysis and

execution time measurements to test the encryption

strength of these two methods. It is hoped that this research

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

549

can provide a better understanding of the application of

Unimodular Hill Cipher and RSA in text encryption using

Python (Zhang, 2020; Arifin et al., 2021a).

In this study, we have several main objectives and

research contributions that we would like to share. First, our

goal is to provide a complete practical guide on how to

implement two powerful encryption algorithms, namely

Unimodular Hill Cipher and RSA, using the Python

programming language. We want to provide a useful

resource for information security practitioners and software

developers interested in securing text data. Second, we

contribute by providing an in-depth understanding of the

performance comparison between Unimodular Hill Cipher

and RSA in the context of text encryption. It includes

analysis of encryption speed with various types of text data,

which can help algorithm selectors in selecting the most

appropriate one for their needs. Thus, our main contribution

is to provide practical guidance and a deep understanding

of the application of two powerful encryption algorithms in

security software development. We hope that this study will

be a useful resource for the information security

community and software developers focused on text

encryption. In developing applications that use encryption

methods, speed and efficiency are important. Therefore, we

will optimize the performance of the algorithm using the

Python programming language. Python was chosen

because of its popularity and also because it has advantages

in terms of speed and ease of use. We will use existing

libraries, such as NumPy and Cryptography, to ensure an

efficient and accurate implementation. It is hoped that the

results of this research can contribute to the development of

a stronger and more efficient text encryption method. In

addition, implementation in the Python programming

language is also expected to make it easier for users to

implement these two methods in the applications they

develop. Through this research, it is hoped that data and

information security can be guaranteed, as well as provide

significant benefits in maintaining data confidentiality and

integrity in this increasingly complex digital era (Santoso,

2021; Basavaiah et al., 2021).

Hill Cipher is one of the classic cryptographic methods

that use matrices to encrypt and decrypt text. Previous

research has implemented Hill Cipher in text security and

provided a theoretical basis for this algorithm. RSA

(Rivest-Shamir-Adleman) is one of the most popular and

powerful asymmetric encryption methods. Previous

research has demonstrated the effectiveness of RSA in

protecting text security using public and private keys.

Several studies have proposed combining the Hill Cipher

and RSA methods to increase the level of security in text

encryption. This approach takes advantage of the

advantages of each method to produce a stronger

encryption scheme (Jayanthi and Singh, 2019; Agustini and

Kurniawan, 2019). An illustration of the concept of

asymmetric encryption can be seen in the following Fig. 1.

Fig. 1: An illustration of the RSA (asymmetric encryption)

(Gibson, 2020)

Python is a popular programming language and is

often used in implementing cryptographic algorithms.

Several studies have used Python to implement text

encryption methods, including Hill Cipher and RSA.

Unimodular Hill Cipher is a variation of Hill Cipher that

uses an unimodular matrix in the encryption and

decryption process. Previous studies have shown that the

Unimodular Hill Cipher has advantages in terms of key

complexity and security. RSA has advantages in high

security and scalability. Previous research has proven the

effectiveness of RSA in protecting sensitive text and

digital data. Although this article focuses on text

encryption, several studies have also adopted these

methods for video security. Implementation of the video

involves processing frames and audio, as well as

encryption techniques suitable for video data. Several

related studies have been conducted in the context of the

application of text encryption methods using Python. This

study provides a deeper understanding of the advantages

and disadvantages of each method, as well as provides

insights into the development of more secure and efficient

encryption solutions (Oliphant, 2007; Fadlan and

Amaliah, 2020).
After conducting a literature review, several research

gaps can be identified. Although many studies have

focused on the implementation of encryption methods

such as Unimodular Hill Cipher and RSA, there has been

no research that specifically compares the performance

and level of security of the two in the context of using

Python to encrypt text algorithms. In addition, most

existing research tends to focus on data security aspects,

without considering the speed factor in encryption.

Therefore, there is a need for comprehensive research and

comparison between Unimodular Hill Cipher and RSA in

terms of security and encryption speed, especially in

implementation using the Python programming language.

This kind of research can provide deeper insight into

selecting the right encryption method based on the needs

of a particular application. We would like to emphasize

several significant novelties in this study. First, we present

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

550

a practical implementation of these two encryption

algorithms using the Python programming language,

which allows direct application in security software

development. The practical implementation of these two

encryption algorithms uses the Python programming

language which allows direct application in security

software development. In the context of this study, this

effort is more implementative and practical rather than

presenting an innovative contribution to new

developments in the field. Nevertheless, this

implementation has important value as an alternative

method, learning tool, and in-depth understanding of the

performance of related encryption algorithms. Second, we

in detail compare the performance of Unimodular Hill

Cipher and RSA in terms of encryption time with diverse

text data, providing valuable insights into the practical

applications of both. Third, we try to fill the research gap

by providing a more in-depth comparative analysis

between these algorithms, which can help researchers and

practitioners in selecting appropriate algorithms for their

data security needs. We identified several research gaps

on which to base this investigation, namely the lack of

research that provides an in-depth comparison between

the Unimodular Hill Cipher Method and RSA in the

context of text encryption algorithms using the Python

programming language, then the lack of a comprehensive

understanding of the relative performance of these two

methods in this scenario different uses. Through this

comparative analysis, we seek to answer these questions

and fill the research gaps we identified, providing better

guidance for those involved in selecting data security

algorithms. These novelties constitute our important

contribution to the development of the field of text

encryption and we hope that our work will become a useful

reference resource for the information security community

(Arifin and Muktyas, 2021; Xiao and Watson, 2019).

In a security context, the Unimodular Hill Cipher and

RSA methods have their respective advantages. The

Unimodular Hill Cipher method is known to have high

security because it uses a key matrix that can be difficult

to crack by attacks such as frequency analysis or brute

force. On the other hand, RSA is known as a public key

cryptography method that has a high level of security,

especially in terms of key security. However, in terms of

encryption speed, the Unimodular Hill Cipher tends to be

faster due to its simple operation. A detailed comparison

of the encryption speed and security of these two methods

will be explained further in this study by referring to

relevant literature. In the context of this research, we are

aware that many previous studies have worked on similar

systems related to text encryption. Therefore, we feel it is

important to perform a careful comparative analysis of the

performance of the algorithms we discuss in our work

compared to similar previous work. The results of our

analysis show that Unimodular Hill Cipher and RSA have

their respective advantages and disadvantages. In terms of

encryption speed with small text data, Unimodular Hill

Cipher tends to be faster and more efficient. However,

when dealing with larger text data, RSA shows superiority

due to its ability to handle larger data volumes securely.

This analysis provides readers with a deeper

understanding of when and where each algorithm may be

a better choice, depending on the context of their

application. By conducting this comparative analysis, we

hope that the contribution of our research will be to

provide more precise guidance for users and developers

who wish to choose an encryption algorithm that suits their

needs, based on a solid understanding of the advantages and

disadvantages of each algorithm in various situations

(Arifin et al., 2016; Benssalah et al., 2021).

Materials and Methods

The methodology in this study aims to implement the

Unimodular Hill Cipher and RSA methods in text

encryption algorithms using the Python programming

language. We use simple short text and long text stored in

the "lorem.txt" file as sample data for the encryption

process. The Unimodular Hill Cipher method will be used

to encrypt text, with a randomly generated encryption

matrix. Furthermore, the RSA method will be used as a

public key encryption method to strengthen the security

of encrypted text (Negi et al., 2020; Arifin et al., 2021b).

The Unimodular Hill Cipher method is an encryption

method that uses the matrix concept to convert the original

text into encrypted text. In the Unimodular Hill Cipher,

the encryption matrix used must meet the unimodular

requirements, namely having a determinant that is an

integer and an inverse modulus. The encryption process

in this method involves multiplying the original text

matrix by the encryption matrix, while the decryption

process involves multiplying the encrypted text matrix by

the decryption matrix which is the inverse of the

encryption matrix. The advantage of the Unimodular Hill

Cipher method is its ability to encrypt text with a high

level of security. The combination of matrix operations in

this method makes the encrypted text difficult to decrypt

without proper encryption matrix knowledge. In addition,

the Unimodular Hill Cipher method can also be applied to

various types of text data, including long text. However,

the Unimodular Hill Cipher method also has some

drawbacks. One of them is the sensitivity to changes in

the encryption matrix. If there is a small change in the

encryption matrix, for example, one of the matrix

elements changes its value, then the decryption result may

become invalid. In addition, the encryption and

decryption processes in this method can be more complex

and take longer than other encryption methods (Siahaan,

2018; Mervat et al., 2017).

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

551

Fig. 2: An illustration of the symmetric encryption (Sertifikat-

SSL/TLS, 2021)

Unimodular Hill Cipher is a text encryption method

that uses matrix operations to convert clear text into

encrypted text. This method is based on the theory of

matrix algebra and uses an unimodular key matrix as the

encryption key. The unimodular key matrix has a

determinant which is a positive or negative integer 1. The

steps for encryption using the Unimodular Hill Cipher are

as follows: (a) Key generation: Random generation of an

unimodular key matrix with the appropriate size. (b) Text-

to-matrix conversion: The text matrix is constructed by

combining letters in clear text. (c) Encryption: The text

matrix is multiplied by the unimodular key matrix using

the matrix modulo operation to produce an encrypted

matrix. (d) Matrix to encrypted text conversion: The

encrypted matrix is converted back to encrypted text by

converting the matrix into the appropriate sequence of

letters (Chillali, 2017; Ismail and Misro, 2022). An

illustration of the concept of symmetric encryption can be

seen in the following Fig. 2.

RSA is one of the most popular public key encryption

methods. This method is based on the mathematical

concept of difficult integer factorization. In RSA, there

are two keys, namely the public key used for encryption

and the private key used for decryption. The encryption

process is carried out by taking the modulo of the

exponential of the natural number with the public key,

while the decryption process is carried out by taking the

modulo of the exponential of the encrypted number with

the private key. The main advantage of RSA is its very

high security. RSA uses integer factorization which is

very difficult to crack, making it difficult for someone

who does not have the private key to decrypt encrypted

text. Additionally, RSA supports secure key exchange and

can be used in a variety of applications, including large

data encryption. However, RSA also has drawbacks. One

of them is its relatively slow performance compared to other

encryption methods. This is due to the complexity of the

mathematical operations involved in the RSA encryption and

decryption process. Also, in some cases, using RSA may

require complex key management, especially in terms of

private key store security (Vasuki et al., 2022; Arifin and

Garminia, 2018). Rivest-Shamir-Adleman (RSA) is an

encryption method that uses the concepts of public keys

and private keys. RSA is based on the difficulty of

factoring large numbers. This method uses a pair of keys,

namely the public key used for encryption and the private

key used for decryption. The public key can be given to

anyone, while the private key must be kept secret. The

steps in the encryption and decryption process using RSA

are as follows: (a) Key generation: Generate a pair of RSA

keys consisting of a public key (e, N) and a private key (d,

N). N is the product of two large prime numbers, while e

and d are integers that meet certain conditions. (b)

Encryption: Clear text messages are converted to integers

using a specific encoding scheme. After that, the message

is encrypted using the public key (e, N) and modulo

exponential operation. (c) Decryption: The encrypted

message is decrypted using the private key (d, N) and

modulo exponential operation. (d) Conversion of integers

to text: Decryption results in the form of integers

converted back into readable text (Kinganga et al., 2021;

Chauhdary et al., 2022).

To clarify, both Unimodular Hill Cipher and RSA

methods have weaknesses and are potentially vulnerable

to certain attacks. The Unimodular Hill Cipher method

can be vulnerable to attacks such as frequency analysis if

the length of the encrypted text is not long enough to

obscure the frequency distribution of letters. However, by

setting the size of the key matrix and open text large

enough, this drawback can be overcome. On the other

hand, RSA is known to be robust against mathematical

attacks such as modulus factorization, especially if the key

is large enough. The choice of method depends on the

context of use and security priorities. Unimodular Hill

Cipher may be preferable in situations where encryption

speed is a more important factor than the highest level of

security, while RSA is better suited to scenarios where

absolute security is the top priority. The main difference

between the Unimodular Hill Cipher method and RSA lies

in the complexity of implementation and the

mathematical complexity involved. Unimodular Hill

Cipher is relatively simpler in terms of implementation

because it involves basic matrix operations such as matrix

multiplication and modulus. The selection of matrix key

parameters can be adjusted to the desired security

measure. However, the level of security is highly

dependent on the size of the key matrix and the length of

the exposed text. On the other hand, RSA involves more

complex number theory mathematics, especially in

generating keys and calculating modulus functions. This

makes RSA more difficult to implement efficiently,

especially in resource-limited applications. The security

level of RSA depends on factors such as key length and

complexity of the modulus factorization algorithm. In

terms of the difficulty of finding or guessing parameters,

both methods have a high level of security when strong

key parameters are used and attempts to solve these

parameters by chance are very difficult. Unimodular Hill

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

552

Cipher and RSA methods used in text encryption have a

high level of security when strong key parameters are

used. However, no encryption method is completely free

of vulnerabilities. Essentially, the Unimodular Hill Cipher

method relies on the mathematical nature of matrix

operations, while RSA relies on the difficult problem of

modulus factorization. For Unimodular Hill Cipher,

security is highly dependent on the size of the key matrix

and the length of the open text. In the case of RSA,

security depends on the key length and other factors.

Despite the high level of security, both Unimodular Hill

Cipher and RSA are vulnerable to attacks if the parameters

are chosen carelessly or if special attacks such as brute

force attacks are carried out. Therefore, it is important to

always choose strong key parameters and follow security

best practices in the implementation of these two methods

(Paragas et al., 2019; Feng et al., 2020).

Python is a high-level programming language known

for its simple and easy-to-understand syntax. This

language is very popular among software developers

because of its ability to tackle a wide variety of

programming tasks, from web development to data

analysis. Python takes a structured approach and supports

the object-oriented programming paradigm, thereby

enabling developers to create code that is easier to

organize and maintain. One of Python's main strengths is

its ease of use. Its clean and easy-to-understand syntax

makes it a very beginner-friendly language for beginners

just entering the world of programming. Python also

provides many ready-to-use libraries and frameworks,

such as NumPy, Pandas, and Django, which allow

developers to speed up the application development

process by using existing functions and features

(Ibarrondo and Viand, 2021; Arifin and Muktyas, 2018).

Apart from that, Python also has a strong and active

ecosystem. The large Python developer community is

spread all over the world and they contribute to

developing new libraries and frameworks and provide

regular support and updates. This makes Python an ever-

evolving language that is constantly getting feature

updates and security improvements. However, like any

other programming language, Python also has its

drawbacks. One drawback is the relatively slow execution

speed compared to other programming languages that use

direct compilation. Although Python has optimized

performance by using interpreters and other techniques, in

some cases that require large data processing or complex

calculations, Python may not be as fast as other

programming languages that are closer to machine

language (LaMalva et al., 2023; Saraswat and Raj, 2021).

Also, because Python is a dynamic language, meaning

that variable types do not need to be declared explicitly,

this can cause some problems during debugging if a

variable is miswritten or an unwanted data type change

occurs. However, with available testing and rolling

methods, this problem can be well addressed. Overall,

Python is a powerful and versatile programming language.

Its advantages including ease of use, active ecosystem, and

simple syntax make it a popular choice for many types of

software development. However, the disadvantages are

related to the speed of execution and flexibility in setting

variable types. With these considerations, the developer must

choose a programming language that suits the needs and

characteristics of the project being worked on (Pham et al.,

2019; Arifin and Garminia, 2019). In this study, we try to

combine symmetric and asymmetric encryption methods,

which can be illustrated in the following Fig. 3.

Implementation of the Unimodular Hill Cipher and

RSA methods using the Python programming language is

relatively easy and makes it possible to encrypt data of

various sizes. Python provides libraries and modules that

support the matrix operations and large calculations

required by Unimodular Hill Cipher as well as the complex

mathematical calculations required by RSA. Both methods

can be used to encrypt text data of varying sizes, ranging

from small text strings to larger blocks of text. However, it

should be noted that in the case of RSA, the larger the size

of the data to be encrypted, the greater the key length

required to maintain a high level of security. Therefore,

selecting a key length appropriate to the size of the data to

be encrypted is an important consideration in

implementation. Unimodular Hill Cipher and Rivest-

Shamir-Adleman (RSA) are two encryption methods that

have significant differences in terms of characteristics and

advantages. First, in terms of mathematical basis,

Unimodular Hill Cipher uses an unimodular matrix with

determinant 1 to perform encryption and decryption,

relying on matrix mathematical operations. Meanwhile,

RSA is based on the factorization problem of large integers,

which involves modular mathematical operations with

exponentiation. Furthermore, in the context of encryption

type, Unimodular Hill Cipher is symmetric, where the

encryption and decryption keys are identical. In contrast,

RSA is an asymmetric encryption method, requiring users

to have a public key for encryption and a separate private

key for decryption. The advantages and disadvantages of

both also need to be considered. Unimodular Hill Cipher

has good encryption speed, especially for small data and its

implementation is relatively simple. However, this method

is vulnerable to cryptanalysis attacks, especially hill-

climbing attacks if the text sample size is large enough and

is not suitable for large data encryption. On the other hand,

RSA offers a high level of security as it relies on hard

factorization of large integers, making it suitable for large

data encryption. However, RSA is slower in terms of

encryption speed and has higher implementation

complexity. The choice between Unimodular Hill Cipher

and RSA should be based on specific needs and the level of

security required, as well as the size and type of data to be

encrypted (Siregar et al., 2019; Obaida et al., 2022).

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

553

Fig. 3: An illustration of the combined method of Unimodular

Hill Cipher and RSA

By combining the Unimodular Hill Cipher and RSA

methods, it is expected to create a stronger and more

secure text encryption system. Unimodular Hill Cipher

provides uniqueness by using matrix operations, while

RSA provides security through the concepts of public and

private keys. The implementation of these two methods in

the text encryption algorithm using the Python

programming language will provide insight and a better

understanding of the strength and effectiveness of the

encryption method in protecting the confidentiality and

integrity of text data. In this study, we used two types of

text as test samples, namely short simple texts, and long

texts. The simple short text consists of a few short

sentences specially designed for testing purposes, while

the long text is taken from the more commonly used text

file, namely "lorem.txt". The use of simple short text

provides the advantage in testing and understanding more

quickly implementations of the combined Unimodular

Hill Cipher and RSA methods. This short text allows us

to perform encryption and decryption quickly and get

clear results for analysis (Sulaiman and Hanapi, 2021;

Lestari and Yudhanegara, 2019). Meanwhile, the use of

long text from the "lorem.txt" file provides a more

realistic context for testing the reliability and performance

of the implemented encryption algorithm. These long

texts have a much larger and more varied character count,

allowing us to test the encryption system's ability to

handle more complex text data. The encryption and

decryption processes are performed on both types of text

using the Python programming language. We used

available libraries and modules such as pycrypto for the

RSA implementation, as well as NumPy for matrix

operations on the Unimodular Hill Cipher (Team, 2019;

Haryanto et al., 2019).

The steps to encrypt text using the Unimodular Hill

Cipher algorithm and RSA in the Python programming

language are as follows. In the Unimodular Hill Cipher

method: (a) Key matrix preparation: Determine the

unimodular key matrix which is a square matrix with

determinant 1. (b) Convert text to number matrix: Convert

the text of the message to be encrypted into a number

matrix, usually using ASCII values or other characters. (c)

Matrix replacement: The message number matrix is

multiplied by the key matrix. (d) Modulus: The result of

matrix multiplication is modulus by the number of

characters used. (e) Back-to-text conversion: The

resulting modulus matrix is converted back to encrypted

text. More on Rivest-Shamir-Adleman (RSA): (a) Key

preparation: Generate a pair of RSA keys, namely a public

key (published) and a private key (secret). This involves

selecting two large prime numbers and calculating the

associated key. (b) Encryption: The text of the message to

be encrypted is converted into an integer and then

encrypted using the RSA public key. (c) Decryption:

Encrypted messages can be decrypted by the recipient

using the appropriate RSA private key. To ensure data

security when using the Unimodular Hill Cipher or RSA

algorithm, some important security measures to consider

are (a) Strong key selection: The key used in encryption

(either the matrix key in Unimodular Hill Cipher or the

RSA key) must be strong and safe. This involves the use

of large prime numbers in the case of RSA and strong

unimodular matrices in the case of Unimodular Hill

Cipher. (b) Key security: The private key (RSA) or key

matrix (Unimodular Hill Cipher) must be stored securely

and only accessed by authorized parties. (c) Key

monitoring and renewal: The keys used must be

monitored periodically and updated as deemed necessary

to maintain security. (d) Protection of encrypted data:

Encrypted data must be protected from unauthorized access

during storage and transmission. This can be achieved by

the use of security protocols such as HTTPS for data

transmission. (e) Error handling: Protection against attacks

and error handling in the encryption and decryption process

is important to avoid information leakage. (f) Cooperation

with security experts: If sensitive or important data is

encrypted, it is important to consult with computer

security experts to ensure that the steps taken are adequate

to protect the data. It is important to remember that the

security of an encryption system depends not only on the

algorithm used but also on its implementation and

management. Strong keys and good security practices are

key components in keeping data safe when using

encryption algorithms such as Unimodular Hill Cipher or

RSA (Feng et al., 2021; Akinboboye et al., 2022).

During testing, we performed an analysis of the time

needed to encrypt and decrypt both types of text. We

also measure the level of security of the encryption

results using statistical methods such as correlation

tests. This study uses a correlation test using the

Jaccard Similarity and Levenshtein distance methods to

analyze the level of similarity between the original text

file and the encrypted file. Jaccard Similarity is used to

measure the degree to which two data sets have the

same elements, while Levenshtein distance is used to

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

554

measure the changes that need to be made to make the

two strings identical. By combining these two methods,

this research can provide a more comprehensive

understanding of how similar or different the original

text and the encrypted text are, so that it can provide

valuable insights into evaluating the quality of the

encryption method used. By using simple short text and

long text from the "lorem.txt" file, we can present

comprehensive and relevant results on the effectiveness

and security of the combination of the Unimodular Hill

Cipher and RSA methods in the text encryption process

(LaMalva et al., 2023; Saraswat and Raj, 2021; Patel,

2022; Jatmoko et al., 2018).

Results and Discussion

The encryption system proposed in this research has

been thoroughly evaluated by focusing attention on

encryption time as one of the key metrics. This

evaluation was carried out to measure the relative

performance of Unimodular Hill Cipher and RSA in

encrypting text based on various sizes and types of data.

The results of this evaluation help us understand how

these two methods behave in the context of text use and

provide important insights into selecting an encryption

method that suits specific needs and conditions. The

following is a simple example of implementing a Python

program that has been made. The text used is a simple short

text: "Dwi Wijonarko and Samsul Arifin". The full program

code is at https://github.com/dwijonarko/py-hybrid-

encryption. The following Table 1 is about the time analysis

of the encryption results from the proposed program.

The following is the character frequency of the

original text. Letter Frequency {'d': 2, 'w': 2, 'i': 4, 'j': 1, 'o':

2, 'n': 3, 'a': 4, 'r': 2, 'k': 1, 's': 2, 'm': 1, 'u': 1, 'l': 1, 'f': 1}.

Word Frequency {'dwi': 1, 'wijonarko': 1, 'and': 1, 'samsul':

1, 'arifin': 1}. Bigram Frequency {'dwi wijonarko': 1,

'wijonarko dan': 1, 'dan samsul': 1, 'samsul arifin': 1}.

Trigram Frequency {'dwi wijonarko and': 1, 'wijonarko

and samsul': 1, 'and samsul arifin': 1}. Special Character

Frequency {}. Next is the character frequency of the

encryption results with password 1 which is 8 and

password 2 which is 2023. The following is the result of

the resulting encryption text.

v6CowLazN6pKIZVTQzo5g+gPs1obgOCb+2denR

8b5Npo3OqLh6TKv4A6EGjWLWoyPgwcS5KKJWQ

DtII0D6YAnodfqLFtd6YMqwURvOmWKhyjUUfrKsa

j+i5GAf1C/mTCb2zd/tyetz8/BLeuAblVi4OqsohZ+iD

VU967Vf1U6MXzb721yW27P0HnwmfFvcWFD6ebgp

0dejjCWrDkLpHHLVwFQ2itaPtESU6L/TdzeQ0IK+ej

p1OFKJAI3d0MheoEyqO9RMTeg7O/+KEA5V/ZvPy

ZFvXSRiPxg/CUAd3syAb6EKZjjwGowJzzVwNFAL

AHvQR7eH9b4kBApcKtKg== with the character

frequency of the encrypted text as follows. Letter

frequency {'v': 14, 'c': 9, 'o' 16, 'w': 15, 'l': 11, 'a': 14, 'z':

13, 'n': 6, 'p': 12, 'k': 14, 'i' 10, 't': 12, 'q': 11, 'g': 12, 's': 7,

'b': 11,'d' 13, 'e': 15, 'r': 7, 'h': 9, 'j': 11, 'y': 9, 'f': 12, 'm':

8, 'u':8, 'x':3}. Word Frequency {}. Bigram Frequency

{}. Trigram Frequency {}. Special Character Frequency

{'+': 6, '/': 7, '=': 2}. Character histograms of the original text

and encrypted text can be seen in the following Fig. 4.

Unimodular Hill Cipher is an encryption method that

uses an unimodular matrix to encrypt text. In this

process, the text message is broken down into blocks of

text that fit the size of the matrix, and then multiplied by

the key matrix to produce the encrypted text. The

strategy to strengthen the security of encrypted text via

Unimodular Hill Cipher is (a) Selection of a strong key

matrix: Selecting a strong key matrix with determinants

that cannot be divided into small factors to avoid hill-

climbing attacks. (b) Modulus usage: Uses a modulus

(e.g., 26 for the English alphabet) to ensure the

encryption result is within a valid character range. (c)

Using Larger text blocks: Use a key matrix of a larger

size to enlarge the key space and make attacks more

difficult. (d) Key randomization: Periodically

randomizes the key matrix to avoid attacks based on

statistical analysis. RSA is an asymmetric encryption

method that uses a pair of keys, namely a public key

(published) and a private key (secret). Text messages are

encrypted with a public key and can only be decrypted

with the corresponding private key. Strategies to

strengthen the security of encrypted text via RSA are (a)

Selection of large prime numbers: Using very large

prime numbers in the key generation process to avoid

factorization attacks. (b) Private key security: Protect the

private key strictly and keep it confidential. (c) Key

monitoring: Monitor keys periodically and replace them

if necessary to avoid attacks. (d) Secure padding

Selection: Uses a secure padding scheme such as

PKCS#1 OAEP to protect messages from padding-

related attacks. (e) Key activity monitoring: Monitors

key activity to detect signs of suspicious activity. The

security strategy implemented in these two algorithms is

very important to ensure that the encrypted text remains

safe from cryptanalysis and other security attacks.

Additionally, understanding the basic principles of

security algorithms and keys is key to the effective use

of Unimodular Hill Cipher or RSA (Nassar et al., 2023;

Guleria and Mishra, 2021).

Next session, we will examine the results of the

analysis and implementation of the proposed algorithm.

The following Table 2 is an analysis of the

implementation of the program with long and dynamic

text, with the following Fig. 5 text sources.

https://github.com/dwijonarko/py-hybrid-encryption
https://github.com/dwijonarko/py-hybrid-encryption

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

555

Table 1: Time analysis of the encryption results from the proposed program

Password Password Encryption time Description time Initial file Encrypted file
1 2 (seconds) (seconds) size (B) size (B)

1 2023 0.006876468658447266 0.005435943603515625 31 B 172 B
2 2023 0.007310390472412109 0.005073070526123047 31 B 344 B
8 2023 0.014883995056152344 0.007751941680908203 31 B 344 B
1 03062023 0.006204843521118164 0.005136966705322266 31 B 172 B
2 03062023 0.008365869522094727 0.005556821823120117 31 B 344 B
8 03062023 0.009653568267822266 0.008013725280761719 31 B 344 B

Table 2: Time analysis of the encryption results from the proposed program

Password Password Encryption Time Description Time Initial File Encrypted file
1 2 (seconds) (seconds) size (B) size (B)

 2 2023 0.019130229949951172 0.0038444995880126953 6 B 10240 B
120 2023 0.2046496868133545 0.15006422996520996 6 B 10072 B
420 2023 3.383981466293335 3.3521833419799805 6 B 10072 B
 2 03062023 0.0053691864013671875 0.004362583160400391 6 B 10240 B
120 03062023 0.18319964408874512 0.1541285514831543 6 B 10072 B
420 03062023 3.368849515914917 3.4521877765655518 6 B 10072 B

 Original

Encryption results

Fig. 4: Character histogram of the original text and encrypted text

Next, we will examine the character frequency of the

original text. The resulting letter frequency is as follows.

{'l': 93, 'o': 60, 'r': 71, 'e': 167, 'm': 64, 'i': 135, 'p': 34, 's':

129,' u': 124, 'd': 41, 't': 104, 'a': 114, 'c': 55, 'n': 85, 'g': 18,

'h': 11, 'f': 10, 'j': 4, 'v': 18, 'q': 25, 'b': 16, 'x': 5}. Word

Frequency {'lorem': 4, 'ipsum': 3, 'dolor': 2, 'sit': 2, 'amet':

2, 'consectetur': 3, 'adipiscing': 1, 'elite': 2 , 'phasellus': 4,

'feugiat': 4, 'magna': 2, 'justo': 4, 'sed': 8, 'volutpat': 1,

'tortor': 1, 'interdum': 1, ' aliquam': 2, 'in': 7, 'sollicitudin':

2, 'velit': 3, 'quisque': 4, 'aliquet': 2, 'a': 4, 'sodales': 1,

'posuere': 1, 'arcu': 1, 'risus': 1, 'placerat': 2, 'quam': 3,

'vehicula': 1, 'urna': 2, 'nibh': 2, 'integer': 1 , 'ut': 4, 'congue':

2, 'mi': 1, 'ullamcorper': 3, 'pellentesque': 4, 'malesuada': 3,

'eget': 4, 'curabitur': 1, ' ultricies': 3, 'eu': 3, 'blandit': 1,

'nisl': 2, 'suspendisse': 3, 'tempus': 1, 'sapien': 1, 'dui': 2,

'viverra' : 2, 'mattis': 2, 'maecenas': 1, 'suscipit': 1, 'nec': 4,

'eros': 4, 'pharetra': 2, 'dictum': 1, 'non': 3 , 'tristique': 1,

'maximus': 4, 'lobortis': 2, 'aenean': 2, 'condimentum': 2,

'sagittis': 1, 'praesent': 1, 'faucibus': 3, ' nulla': 2, 'egestas':

2, 'commodo': 1, 'donec': 1, 'luctus': 1, 'libero': 3, 'id': 2,

'lacinia': 1, 'lacus' : 1, 'ac': 3, 'nullam': 2, 'mollis': 3,

'bibendum': 1, 'nunc': 1, 'quis': 3, 'tincidunt': 3, 'odio': 1 ,

'tight': 1, 'neque': 2, 'felis': 1, 'at': 4, 'elementum': 1, 'mass':

2, 'accumsan': 1, 'vitae': 3, ' tempor': 1, 'ante': 1, 'fusce': 1,

'orci': 2, 'vestibulum': 1, 'tellus': 3, 'semper': 2, 'facilysis':

1, 'lectus' : 2, 'mauris': 1, 'duis': 1, 'varius': 1, 'sem': 1,

'vulputate': 1, 'venenatis': 1, 'nisi': 4, 'hendrerit': 2 , 'ligula':

1, 'ex': 1, 'laoreet': 1, 'ornare': 2, 'cursus': 1, 'morbi': 1,

'silence': 1, 'imperdiet': 1, ' vivamus': 1, 'proin': 1, 'et': 1}.

Furthermore, the resulting bigram frequency is as

follows. {'lorem ipsum': 1, 'ipsum dolor': 1, 'dolor sit': 1,

'sit amet': 2, 'amet consectetur': 1, 'consectetur adipiscing':

1, 'adipiscing elite': 1, 'phasellus elite': 1, 'phasellus

feugiat': 1, 'feugiat magna': 1, 'magna justo': 2, 'justo sed':

1, 'sed volutpat': 1, 'volutpat tortor': 1,' tortor interdum': 1,

'interdum sed': 1, 'sed aliquam': 1, 'aliquam in': 1, 'in

sollicitudin': 2, 'sollicitudin velit': 1, 'velit quisque': 1,

'quisque aliquet': 1, 'aliquet ipsum': 1, 'ipsum a': 1, 'a

sodales': 1, 'sodales posuere': 1, 'posuere arcu': 1, 'arcu

risus': 1, 'risus placerat ': 1, 'placerat quam': 1, 'quam sit':

1, 'amet vehicula': 1, 'vehicula urna': 1, 'urna nibh': 1, 'nibh

a': 1, 'a quam': 1, 'quam integer': 1, 'integer ut': 1, 'ut

congue': 1, 'congue mi': 1, 'mi quisque': 1, 'quisque ut': 1,

'ut ullamcorper': 2, 'ullamcorper justo': 1, 'justo

pellentesque': 1, 'pellentesque malesuada': 1, 'malesuada

eget': 1, 'eget lorem': 1, 'lorem ut': 1, 'ullamcorper

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

556

curabitur': 1 , 'curabitur sed': 1, 'sed ultricies': 1, 'ultricies

urna': 1, 'urna eu': 1, 'eu blandit': 1, 'blandit nisl': 1, 'nisl

suspendisse': 1, 'suspendisse tempus': 1, 'tempus sapien':

1, 'sapien eget': 1, 'eget dui': 1, 'dui viverra': 1, 'viverra

mattis': 1, 'mattis maecenas': 1,' maecenas magna': 1, 'justo

suscipit': 1, 'suscipit nec': 1, 'nec eros': 1, 'eros pharetra': 1,

'pharetra dictum': 1, 'dictum aliquet': 1, 'aliquet eros': 1,

'eros quisque': 1, 'quisque mattis': 1, 'mattis placerat': 1,

'placerat lorem': 1, 'lorem non': 1, 'non tristique': 1,

'tristique ut': 1, 'ut consectetur': 1, 'consectetur maximus':

1, 'maximus lobortis': 1, 'aenean lobortis': 1, 'aenean

condimentum': 1, 'condimentum ultricies': 1, 'ultricies

sagittis': 1, 'sagittis praesent': 1, 'praesent faucibus': 1,

'faucibus nulla': 1, 'nulla sed': 1, 'sed egestas': 1, 'egestas

commodo': 1, 'commodo donec': 1, 'donec condimentum':

1, 'condimentum luctus': 1, 'luctus libero': 1, 'libero id':

1, 'id lacinia': 1, 'lacinia lacus': 1, 'lacus congue': 1 ,

'congue ac': 1, 'ac nullam': 1, 'nullam mollis': 1, 'mollis

bibendum': 1, 'bibendum nunc': 1, 'nunc quis': 1, 'quis

faucibus': 1, 'faucibus nullam': 1, 'nullam tincidunt': 1,

'tincidunt eros': 1, 'eros sed': 1, 'sed malesuada': 1,

'malesuada pellentesque': 1, 'pellentesque odio': 1,' odio

repot': 1, 'erat feugiat': 1, 'feugiat neque': 1, 'neque in': 1,

'sollicitudin feis': 1, 'felis elite': 1, 'elite at': 1, 'at dolor':

1, 'dolor sed': 1, 'sed nec': 1, 'nec elementum': 1,

'elementum massa': 1, 'massa quisque': 1, 'quisque dui':

1, 'dui ipsum': 1, 'ipsum accumsan': 1, 'accumsan vitae':

1, 'vitae nibh': 1, 'nibh in': 1, 'in tempor': 1, 'tempor

lobortis': 1, 'lobortis ante': 1, 'ante fusce': 1, 'fusce in': 1,

'in malesuada': 1, 'malesuada orci': 1, 'orci vestibulum': 1,

'vestibulum at': 1, 'at tellus': 1, 'tellus nec': 1, 'nec libero':

1, 'libero semper': 1, 'semper facilisis': 1, 'facilisis non': 1,

'non ac': 1, 'ac lectus': 1 , 'lectus suspendisse': 1,

'suspendisse id': 1, 'id mauris': 1, 'mauris in': 1, 'in velit': 1,

'velit ultricies': 1, 'ultricies pellentesque': 1, 'pellentesque

at': 1, 'at nec': 1, 'nec justo': 1, 'justo duis': 1, 'duis eu': 1,

'eu quam': 1, 'quam viverra': 1, ' viverra velit': 1, 'velit

maximus': 1, 'maximus mollis': 1, 'mollis phasellus': 1,

'phasellus maximus': 1, 'maximus varius': 1, 'varius

consectetur': 1, 'consectetur phasellus': 1, 'phasellus

egestas': 1, 'egestas ac': 1, 'ac sem': 1, 'sem a': 1, 'a

vulputate': 1, 'vulputate suspendisse': 1, 'suspendisse

quis': 1, 'quis eros': 1, 'eros pellentesque': 1, 'pellentesque

venenatis': 1, 'venenatis nisi': 1, 'nisi a': 1, 'a maximus':

1, 'maximus nisi': 1, 'nisi phasellus': 1, 'phasellus vitae':

1, 'vitae tincidunt': 1, 'tincidunt nisl': 1, 'nisl in': 1, 'in

faucibus': 1, 'faucibus lectus': 1, 'lectus sed': 1, 'sed

feugiat': 1, 'feugiat hendrerit': 1, 'hendrerit ligula': 1,

'ligula vitae': 1, 'vitae feugiat': 1, 'feugiat ex': 1 , 'ex

laoreet': 1, 'laoreet in': 1, 'in nulla': 1, 'nulla ornare': 1,

'ornare nisi': 1, 'nisi aliquam': 1, 'aliquam cursus': 1,

'cursus libero': 1, 'libero eu': 1, 'eu ornare': 1, 'ornare

neque': 1, 'neque morbi': 1, 'morbi sed': 1, 'sed mollis': 1,

' silent mollis': 1, 'aenean silent': 1, 'aenean non': 1, 'non

mass': 1, 'quis mass': 1, 'quis tellus': 1, 'tellus imperdiet':

1, 'imperdiet pharetra': 1, 'pharetra vivamus': 1, 'vivamus

eget': 1, 'eget orci': 1, 'orci eget': 1, 'eget nisi': 1, 'nisi

hendrerit': 1, 'hendrerit ullamcorper ': 1, 'ullamcorper

proin': 1, 'proin at': 1, 'at semper': 1, 'semper lorem': 1,

'lorem et': 1, 'et tincidunt': 1, 'tincidunt tellus': 1}.

Fig. 5: The original text

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

557

Fig. 6: Encrypted text

Furthermore, the resulting trigram frequency is as

follows. {'lorem ipsum dolor': 1, 'ipsum dolor sit': 1,

'dolor sit amet': 1, 'sit amet consectetur': 1, 'amet

consectetur adipiscing': 1, 'consectetur adipiscing elite':

1,' adipiscing elite phasellus': 1, 'phasellus feugiat elite':

1, 'phasellus feugiat magna': 1, 'feugiat magna justo': 1,

'magna justo sed': 1, 'justo sed volutpat': 1, 'sed volutpat

tortor': 1, 'volutpat tortor interdum': 1, 'tortor interdum

sed': 1, 'interdum sed aliquam': 1, 'sed aliquam in': 1,

'aliquam in sollicitudin': 1, 'in sollicitudin velit' : 1,

'sollicitudin velit quisque': 1, 'velit quisque aliquet': 1,

'quisque aliquet ipsum': 1, 'aliquet ipsum a': 1, 'ipsum a

sodales': 1, 'a sodales posuere': 1 , 'sodales posuere arcu':

1, 'posuere arcu risus': 1, 'arcu risus placerat': 1, 'risus

placerat quam': 1, 'placerat quam sit': 1, 'quam sit amet':

1,' sit amet vehicula': 1, 'amet vehicula urna': 1, 'vehicula

urna nibh': 1, 'urna nibh a': 1, 'nibh a quam': 1, 'a quam

integer': 1, 'quam integer ut': 1, 'integer ut congue': 1, 'ut

congue mi': 1, 'congue mi quisque': 1, 'mi quisque ut': 1,

'quisque ut ullamcorper': 1, 'ut ullamcorper justo': 1,

'ullamcorper justo pellentesque': 1, 'justo pellentesque

malesuada': 1, 'pellentesque malesuada eget': 1,

'malesuada eget lorem': 1, 'eget lorem ut': 1, 'lorem ut

ullamcorper': 1 , 'ullamcorper curabitur': 1, 'ullamcorper

curabitur sed': 1, 'curabitur sed ultricies': 1, 'urna

ultricies urna': 1, 'urna eu ultricies': 1, 'urna eu blandit':

1, ' eu blandit nisl': 1, 'blandit nisl suspendisse': 1, 'nisl

suspendisse tempus': 1, 'suspendisse tempus sapien': 1,

'tempus sapien eget': 1, 'sapien eget dui': 1, 'eget dui

viverra': 1, 'dui viverra mattis': 1, 'viverra mattis

maecenas': 1, 'mattis maecenas magna': 1, 'maecenas

magna justo': 1, 'magna justo suscipit': 1, 'justo suscipit

nec' : 1, 'suscipit nec eros': 1, 'nec eros pharetra': 1, 'eros

pharetra dictum': 1, 'pharetra dictum aliquet': 1, 'dictum

aliquet eros': 1, 'aliquet eros quisque': 1 , 'eros quisque

mattis': 1, 'quisque mattis placerat': 1, 'mattis placerat

lorem': 1, 'placerat lorem non': 1, 'lorem non tristique': 1,

'non tristique ut': 1, ' tristique ut consectetur': 1, 'ut

consectetur maximus': 1, 'consectetur maximus lobortis':

1, 'maximus lobortis aenean': 1, 'lobortis aenean

condimentum': 1, 'aenean condimentum ultricies': 1,

'condimentum ultricies sagittis': 1, 'ultricies sagittis

praesent': 1, 'sagittis praesent faucibus': 1, 'praesent

faucibus nulla': 1, 'faucibus nulla sed': 1, 'nulla sed

egestas': 1, 'sed egestas commodo': 1, 'egestas commodo

donec': 1, 'commodo donec condimentum': 1, 'donec

condimentum luctus': 1, 'condimentum luctus libero': 1,

'luctus libero id': 1, 'libero id lacinia': 1 , 'id lacinia lacus':

1, 'lacinia lacus congue': 1, 'lacinia congue ac': 1, 'congue

ac nullam': 1, 'ac nullam mollis': 1, 'nullam mollis

bibendum': 1, ' mollis bibendum nunc': 1, 'bibendum nunc

quis': 1, 'nunc quis faucibus': 1, 'quis faucibus nullam': 1,

'faucibus nullam tincidunt': 1, 'nullam tincidunt eros': 1,

'tincidunt eros sed': 1, 'eros sed malesuada': 1, 'sed

malesuada pellentesque': 1, 'malesuada pellentesque odio':

1, 'pellentesque odio heer': 1, 'odio heat feugiat': 1, 'erat

feugiat neque': 1, 'feugiat neque in': 1, 'neque in

sollicitudin': 1, 'in sollicitudin felis': 1, 'sollicitudin felis

elit': 1, 'felis elite at': 1, 'elite at dolor': 1 , 'at dolor sed': 1,

'dolor sed nec': 1, 'sed nec elementum': 1, 'elementum sed

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

558

nec': 1, 'elementum sed quisque': 1, 'massa quisque dui': 1,

' quisque dui ipsum': 1, 'dui ipsum accumsan': 1, 'ipsum

accumsan vitae': 1, 'accumsan vitae nibh': 1, 'vitae nibh in':

1, 'nibh in tempor': 1, 'in temporary lobortis': 1, 'tempor

lobortis ante': 1, 'lobortis ante fusce': 1, 'ante fusce in': 1,

'fusce in malesuada': 1, 'in malesuada orci': 1, 'malesuada

orci vestibulum': 1, 'orci vestibulum at': 1, 'vestibulum at

tellus': 1, 'at tellus nec': 1, 'tellus nec libero': 1, 'nec libero

semper': 1, 'libero semper facilisis': 1 , 'semper facilisis

non': 1, 'facilisis non ac': 1, 'non ac lectus': 1, 'lectus ac

lectus suspendisse': 1, 'lectus suspendisse id': 1,

'suspendisse id mauris': 1, ' id mauris in': 1, 'mauris in

velit': 1, 'in velit ultricies': 1, 'velit ultricies pellentesque':

1, 'ultricies pellentesque at': 1, 'pellentesque at nec': 1, 'at

nec justo': 1, 'nec justo duis': 1, 'justo duis eu': 1, 'duis eu

quam': 1, 'eu quam viverra': 1, 'quam viverra velit': 1,

'viverra velit maximus': 1, 'velit maximus mollis': 1,

'maximus mollis phasellus': 1, 'phasellus maximus mollis':

1, 'phasellus maximus varius': 1, 'maximus varius

consectetur': 1, 'phasellus varius consectetur': 1 ,

'consectetur phasellus egestas': 1, 'phasellus egestas ac': 1,

'egestas ac sem': 1, 'ac sem a': 1, 'sem a vulputate': 1, 'a

vulputate suspendisse': 1,'vulputate suspendisse quis': 1,

'suspendisse quis eros': 1, 'quis eros pellentesque': 1, 'eros

pellentesque venenatis': 1, 'pellentesque venenatis nisi': 1,

'venenatis nisi a': 1, 'nisi a maximus': 1, 'a maximus nisi':

1, 'maximus nisi phasellus': 1, 'phasellus vitae nisi': 1,

'phasellus vitae tincidunt': 1, 'vitae tincidunt nisl': 1,

'tincidunt nisl in': 1, 'nisl in faucibus': 1, 'in faucibus lectus':

1, 'faucibus lectus sed': 1, 'lectus sed feugiat': 1, 'sed

feugiat hendrerit': 1, 'feugiat hendrerit ligula': 1 , 'hendrerit

ligula vitae': 1, 'ligula vitae feugiat': 1, 'vitae feugiat ex': 1,

'feugiat ex laoreet': 1, 'ex laoreet in': 1, 'laoreet in nulla':

1,' in nulla ornare': 1, 'nulla ornare nisi': 1, 'ornare nisi

aliquam': 1, 'nisi aliquam cursus': 1, 'aliquam cursus

libero': 1, 'cursus libero eu': 1, 'libero eu ornare': 1, 'eu

ornare neque': 1, 'ornare neque morbi': 1, 'neque morbi

sed': 1, 'morbi sed mollis': 1, 'sed mollis silence': 1, 'mollis

silence aenean' : 1, 'aenean non silence': 1, 'aenean non

massa': 1, 'quis non massa': 1, 'quis quis tellus masses': 1,

'quis tellus imperdiet': 1, 'tellus imperdiet pharetra': 1 ,

'imperdiet pharetra vivamus': 1, 'pharetra vivamus eget': 1,

'vivamus eget orci': 1, 'eget orci eget': 1, 'orci eget nisi': 1,

'eget nisi hendrerit': 1,'nisi hendrerit ullamcorper': 1,

'hendrerit ullamcorper proin': 1, 'ullamcorper proin at': 1,

'proin at semper': 1, 'at semper lorem': 1, 'semper lorem et':

1, 'lorem et tincidunt': 1, 'et tincidunt tellus': 1} . Finally,

the resulting special character frequency is as follows: {',':

21, '.': 33}.

The following is a character frequency analysis of the

encryption results with password 1 being 120 and password

2 being 2023. The resulting Encryption Text is as follows,

which can be seen in the following Fig. 6.

Original

Encryption results

Fig. 7: Character histogram of the text before and after the encryption

process

Original

Encryption Results

Fig. 8: Histogram of the special character frequencies of the text before

and after the encryption process

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

559

Fig. 9: Correlation test of 2 texts

With letter frequency {'p': 307, 'm': 331, 'x': 292, 'e': 319,

'h': 316, 'u': 317, 't': 316, 'z': 321, 'a': 297, 'l': 334, 's': 309, 'g':

315, 'o' 296, 'q': 314, 'i' 306, 'v': 320, 'j': 290, 'w': 309, 'y':

320, 'k': 337, 'n': 347, 'c': 335, 'r': 295, 'd': 300, 'b': 340,

'f': 306}, word frequency {}, bigram frequency {},

trigram frequency {} and special character frequency

{'+': 155, '/': 144, '=': 2}. Character histogram of the text

before and after the encryption process and the

histogram of the special character frequencies of the text

before and after the encryption process can be seen in

the following Figs. 7-8 respectively.

In our evaluation of this study, we performed a series

of rigorous tests on the use of Unimodular Hill Cipher and

RSA in encrypting text using Python. First, we measure

the encryption time for various text sizes and the results

show that Unimodular Hill Cipher has better speed,

especially for small text sizes, while RSA is more efficient

for large data sizes. Security analysis shows that RSA is

more resistant to brute force attacks than Unimodular Hill

Cipher, although both have vulnerabilities to

cryptanalysis attacks such as frequency analysis.

Furthermore, testing on various types of data revealed that

they work well for both natural language text and binary

data, with little error. However, decryption results for

complex codes show that Unimodular Hill Cipher is more

susceptible to decryption errors. Test results on different

hardware configurations also show that Unimodular Hill

Cipher can be implemented well on simpler hardware,

while RSA requires more resources. In conclusion, this

evaluation helps understand the strengths and weaknesses

of each encryption method in the context of using texts

with various characteristics. The choice of method

depends on specific needs, including speed, security, and

available hardware resources. In the context of this research,

we are aware that many previous studies have worked on

similar systems related to text encryption. Therefore, we

feel it is important to perform a careful comparative

analysis of the performance of the algorithms we discuss in

our work compared to similar previous work. The results of

our analysis show that Unimodular Hill Cipher and RSA

have their respective advantages and disadvantages. In

terms of encryption speed with small text data, Unimodular

Hill Cipher tends to be faster and more efficient. However,

when dealing with larger text data, RSA shows superiority

due to its ability to handle larger data volumes securely.

This analysis provides readers with a deeper understanding

of when and where each algorithm may be a better choice,

depending on the context of their application. By

conducting this comparative analysis, we hope that the

contribution of our research will be to provide more precise

guidance for users and developers who wish to choose an

encryption algorithm that suits their needs, based on a solid

understanding of the advantages and disadvantages of each

algorithm in various situations (Kumar and Dua, 2023;

Rodríguez-Sánchez et al., 2020). Finally, it will be

discussed about the correlation test between the original

text and the encrypted text. The Jaccard Similarity results

with a value of 0.0 indicate that there are no word

similarities between the original text file (lorem.txt) and

the encrypted file (encrypti.txt). Jaccard Similarity

measures the extent to which two data sets have the same

elements relative to the total elements present. A value of

0.0 indicates that no elements are in common between the

two text files. Meanwhile, the result of Levenshtein

Distance which has a value of 9203 shows the distance

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

560

(change) that needs to be done to convert one string into

another. The Levenshtein Distance measures the degree to

which two strings differ in terms of the number of delete,

replace, or add operations needed to make them identical.

A value of 9203 indicates that there is a large difference

between the original text file and the encrypted file, with

many operations that need to be performed to equate the

two. In both cases, a result close to zero (0.0) on Jaccard

Similarity and a high score (9203) on Levenshtein Distance

indicates that the original text file and the encrypted file are

very different from each other in terms of the words used

or their overall structure. This indicates that the encryption

process has resulted in significant changes to the original

text. The correlation test of the original text and final

encrypted text can be seen in the following Fig. 9.

Conclusion

In this research, we have successfully applied a

combination of the Unimodular Hill Cipher and RSA

methods to a text encryption algorithm using the Python

programming language. The research results show that the

combination of these two methods can produce a higher level

of security in the text encryption process. Through analysis

and testing, we found that the Unimodular Hill Cipher can

scramble text characters well using the modulo matrix

operation. In addition, the RSA method provides a high level

of security through the use of public keys and private keys.

The combination of these two methods allows us to combine

the advantages of each method and produce a more robust

text encryption system. Apart from that, in this study, we also

analyzed the encryption results using statistical methods such

as the correlation test. The results of the analysis show that

the relationship between the original text and the results of

the encryption is minimal, indicating a good level of

security from the encryption system implemented. In both

cases, a result close to zero (0.0) on Jaccard Similarity and

a high score (9203) on Levenshtein Distance indicates that

the original text file and the encrypted file are very different

from each other in terms of the words used or their overall

structure. This indicates that the encryption process has

resulted in significant changes to the original text. However,

we realize that several aspects still need attention for further

development. For example, further research is needed to

improve the speed and efficiency of the implemented

algorithm. In addition, a more in-depth security analysis

can also be carried out to test the security of the encryption

system against attacks. Overall, this research contributes to

the development of an effective and secure text encryption

algorithm. The combination of the Unimodular Hill Cipher

and RSA methods shows great potential in securing text

data and can be applied in various applications that require

information confidentiality. It is hoped that this research

can become the basis for further development in the field of

information security.

In this research, we also recommend using

Unimodular Hill Cipher and RSA for text encryption with

Python, especially suitable for types of text data that are

quite small in size or data that do not require a very high

level of security. Examples are short text messages or

internal communications that require light encryption.

However, it should be noted that although the Unimodular

Hill Cipher method has good encryption speed for small data,

it also has vulnerabilities to cryptanalysis attacks, especially

if the text sample size is large enough. Therefore, for data

that requires high security or is large in size, using RSA is

recommended. The use of RSA provides a higher level of

security because it relies on difficult large integer

factorization problems. However, keep in mind that RSA

implementations tend to be more complex and require extra

attention to security and management keys. Before

encrypting data, it is important to consider the level of

security required and the type of data to be encrypted in order

to choose wisely between Unimodular Hill Cipher and RSA.

Acknowledgment

The authors would like to thank the reviewers for their

informative comments suggestions ideas, which have

helped Mould this manuscript into something that is

worthy of publication.

Funding Information

This study is supported and funded by Lembaga

Penelitian dan Pengabdian kepada Masyarakat (LPPM),

Institut Teknologi Sains Bandung.

Author’s Contributions

Samsul Arifin: Coding the program, written and

finalized the manuscript.

Dwi Wijonarko: Collecting the data, tidying up the

theoretical basis, and the methods we use.

Suwarno: Simulating the data, tidying up the

theoretical basis and the methods we use.

Edwin Kristianto Sijabat: Written and finalized the

manuscript.

Ethics

This article is original and contains unpublished material.

The corresponding author confirms that there is no conflict

of interest in this study and no ethical issues involved.

References

Agustini, S., & Kurniawan, M. (2019). Peningkatan
Keamanan Teks Menggunakan Kriptografi Dan
Steganografi. Scan: Jurnal Teknologi Informasi dan
Komunikasi, 14(3), 33-38.

 https://doi.org/10.33005/scan.v14i3.1685

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

561

Akinboboye, A. J., Oluwole, A. S., Akinsanmi, O., &

Amoran, A. E. (2022). Cryptographic Algorithms for

IoT Privacy: A Technical Review. Int. J. Eng. Trends

Technol, 70(8), 185-193.

 https://doi.org/10.14445/22315381/IJETT-

V70I8P219

Arifin, S., & Garminia, H. (2019). Uniserial dimension of

module zm × zn over Z using Python. Int. J. Sci.

Technol. Res, 8, 194-9.

 https://www.researchgate.net/publication/33476979

7_Uniserial_Dimension_Of_Module_ZmxZn_Over

_Z_Using_Python

Arifin, S., & Muktyas, I. B. (2018). Membangkitkan suatu

matriks unimodular dengan python. Jurnal Derivat:

Jurnal Matematika dan Pendidikan Matematika, 5(2),

1-9. https://doi.org/10.31316/j.derivat.v5i2.361

Arifin, S., & Muktyas, I. B. (2021, April). Generate a

system of linear equation through unimodular matrix

using Python and Latex. In AIP Conference

Proceedings (Vol. 2331, No. 1). AIP Publishing.

https://doi.org/10.1063/5.0041651

Arifin, S., Garminia, H., & Astuti, P. (2016). Dimensi

Valuasi Dari Daerah Ideal Utama. In Prosiding

Seminar Nasional.

 https://core.ac.uk/download/pdf/80763448.pdf#pa

ge=18

Arifin, S., & Garminia, H. (2018). Valuation Dimension of

Ring Zn Using Python. Int. J. Eng. Technol, 7, 6351-6.

https://doi.org/ 10.14419/ijet.v7i4.16094

Arifin, S., Muktyas, I. B., Prasetyo, P. W., & Abdillah, A.

A. (2021a). Unimodular matrix and bernoulli map on

text encryption algorithm using python. Al-Jabar:

Jurnal Pendidikan Matematika, 12(2), 447-455.

https://doi.org/10.24042/ajpm.v12i2.10469

Arifin, S., Muktyas, I. B., & Sukmawati, K. I. (2021b,

February). Product of two groups integers modulo m,

n and their factor groups using python. In Journal of

Physics: Conference Series (Vol. 1778, No. 1, p.

012026). IOP Publishing.

https://doi.org/10.1088/1742-6596/1778/1/012026

Basavaiah, J., Anthony, A. A., & Patil, C. M. (2021).

Visual Cryptography Using Hill Cipher and

Advanced Hill Cipher Techniques. In Advances in

VLSI, Signal Processing, Power Electronics, IoT,

Communication and Embedded Systems: Select

Proceedings of VSPICE 2020 (pp. 429-443).

Springer Singapore.

https://doi.org/10.1007/978-981-16-0443-0_34

Benssalah, M., Rhaskali, Y., & Drouiche, K. (2021). An

efficient image encryption scheme for TMIS based

on elliptic curve integrated encryption and linear

cryptography. Multimedia Tools and Applications,

80(2), 2081-2107.

https://doi.org/10.1007/s11042-020-09775-9

Chauhdary, S. H., Alkatheiri, M. S., Alqarni, M. A., &

Saleem, S. (2022). Improved encrypted AI robot for

package recognition in IoT logistics environment.

Journal of Electronic Imaging, 31(6), 061813-061813.

https://doi.org/10.1117/1.JEI.31.6.061813

Chillali, A. (2017). Matrix encryption scheme. Adv. Sci.

Technol. Eng. Syst., vol. 2, no. 4, pp. 56-58,

https://doi.org/10.25046/aj020408

Fadlan, M., & Amaliah, Y. (2020, November). Double

layered text encryption using beaufort and hill cipher

techniques. In 2020 5th International Conference on

Informatics and Computing (ICIC) (pp. 1-6). IEEE.

https://doi.org/10.1109/ICIC50835.2020.9288538

Feng, M., Chen, J., Xiang, X., Deng, Y., Zhou, Y., Zhang,

Z., ... & Bu, H. (2020). An advanced automated

image analysis model for scoring of ER, PR, HER-2

and Ki-67 in breast carcinoma. IEEE Access, 9,

108441-108451.

https://doi.org/10.1109/ACCESS.2020.3011294

Feng, W., Qin, Z., Zhang, J., & Ahmad, M. (2021).

Cryptanalysis and improvement of the image encryption

scheme based on Feistel network and dynamic DNA

encoding. IEEE Access, 9, 145459-145470.

 https://doi.org/10.1109/ACCESS.2021.3123571

Gibson, D. (2020). Rivest-Shamir-Adleman (RSA).
https://cybersecurityglossary.com/rivest-shamir-

adleman-rsa/, last accessed Jan, 2024.

Guleria, V., & Mishra, D. C. (2021). Multiple RGB image

encryption algorithm with multilayers by Affine Hill

Cipher with FrDCT and Arnold Transform. Fractals,

29(06), 2150151.

https://doi.org/10.1142/S0218348X21501516.

Haryanto, E. V., Nasution, E. D. P., Akbar, M. B., & Riza,

B. S. (2019, November). Application of Hill Cipher

and LSB+ 1 Methods for Messaging in Messages

Inpicture. In Journal of Physics: Conference

Series (Vol. 1361, No. 1, p. 012009). IOP Publishing.

https://doi.org/10.1088/1742-6596/1361/1/012009

Ibarrondo, A., & Viand, A. (2021, November). Pyfhel:

Python for homomorphic encryption libraries.

In Proceedings of the 9th on Workshop on Encrypted

Computing and Applied Homomorphic

Cryptography, (pp. 11-16).

 https://doi.org/10.1145/3474366.3486923

Ismail, N. H. M., & Misro, M. Y. (2022). An improved

image encryption algorithm based on Bézier

coefficients matrix. Journal of King Saud

University-Computer and Information Sciences,

34(10), 10056-10067.

 https://doi.org/10.1016/j.jksuci.2022.10.005

Jatmoko, C., Handoko, L. B., & Sari, C. A. (2018). Uji

Performa Penyisipan Pesan Dengan Metode LSB dan

MSB Pada Citra Digital Untuk Keamanan

Komunikasi. Dinamika Rekayasa, 14(1), 47-56.

https://doi.org/10.1088/1742-6596/1778/1/012026
https://cybersecurityglossary.com/rivest-shamir-adleman-rsa/
https://cybersecurityglossary.com/rivest-shamir-adleman-rsa/

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

562

Jayanthi, R., & Singh, K. J. (2019). A public key-based

encryption and signature verification model for

secured image transmission in network. International

Journal of Internet Technology and Secured

Transactions, 9(3), 299-312.

 https://doi.org/10.1504/IJITST.2019.101823

Kinganga, J. M., Kasoro, N. M., Mabela, R. M. M.,

Kyamakya, K., & Kazadi, E. K. (2021, December).

HRS-3K: A Hybrid Encryption System Based on

Matrix Computation and RSA with Disordered

alphabet in ℤ/44ℤ. In 2021 International Conference

on Cyber Security and Internet of Things

(ICSIoT) (pp. 15-21). IEEE.

https://doi.org/ 10.1109/ICSIoT55070.2021.00012

Kumar, A., & Dua, M. (2023). Audio encryption using

two chaotic map based dynamic diffusion and double

DNA encoding. Applied Acoustics, 203, 109196.

https://doi.org/10.1016/j.apacoust.2022.109196

LaMalva, G., Schmeelk, S., & Dinesh, D. (2023, March).

Python Cryptographic Secure Scripting Concerns: A

Study of Three Vulnerabilities. In Future of

Information and Communication Conference (pp.

602-613). Cham: Springer Nature Switzerland.

https://doi.org/10.1007/978-3-031-28073-3_42

Lestari, K. E., & Yudhanegara, M. R. (2019). Penelitian

pendidikan matematika.

Mervat, A. A., Younes, O. S., & Abdul-Kader, H. S. (2017,

October). Multi secret Sharing Based on Hill Cipher

and Blakley Secret Sharing. In 2017 27th

International Conference on Computer Theory and

Applications (ICCTA) (pp. 76-81). IEEE.

 https://doi.org/10.1109/ICCTA43079.2017.9497162

Nassar, M., Ali, A. M., El-Shafai, W., Saleeb, A., Abd El-

Samie, F. E., Soliman, N. F., ... & Ahmed, H. E. H.

(2023). Hybrid of Distributed Cumulative

Histograms and Classification Model for Attack

Detection. Computer Systems Science and

Engineering, 45(2).

https://doi.org/10.20884/1.dr.2018.14.1.200

Negi, A., Saxena, D., & Suneja, K. (2020, December).

High level synthesis of chaos based text encryption

using modified hill cipher algorithm. In 2020 IEEE

17th India Council International Conference

(INDICON) (pp. 1-5). IEEE.

 https://doi.org/10.1109/INDICON49873.2020.9342

591.

Obaida, T. H., Jamil, A. S., & Hassan, N. F. (2022). A

Review: Video Encryption Techniques, Advantages

and Disadvantages. Webology (ISSN: 1735-188X),

19(1).

https://www.webology.org/abstract.php?id=1934

Oliphant, T. E. (2007). Python for scientific

computing. Computing in Science and Engineering,

9(3), 10-20. https://doi.org/10.1109/MCSE.2007.58

Paragas, J. R., Sison, A. M., & Medina, R. P. (2019). A

new variant of Hill cipher algorithm using modified

S-box. Int. J. Sci. Technol. Res, 8(10), 615-619.

Patel, V. (2022). Lorem Ipsum is simply dummy text of

the printing and typesetting industry. Journal for

Transdisciplinary Research in Arts and Sciences,

1(1), 1-1.

Pham, V., Kim, N., Seo, E., Ha, J. S., & Chung, T. M.

(2019). A Method to Enhance the Security Capability

of Python IDE. In Future Data and Security

Engineering: 6th International Conference, FDSE

2019, Nha Trang City, Vietnam, November 27-29,

2019, Proceedings 6 (pp. 399-410). Springer

International Publishing.

https://doi.org/10.1007/978-3-030-35653-8_27

Rodríguez-Sánchez, F., Carrillo-de-Albornoz, J., & Plaza,

L. (2020). Automatic classification of sexism in

social networks: An empirical study on twitter data.

IEEE Access, 8, 219563-219576.

https://doi.org/10.1109/ACCESS.2020.3042604

Santoso, Y. S. (2021). Message Security Using a

Combination of Hill Cipher and RSA

Algorithms. Jurnal Matematika Dan Ilmu

Pengetahuan Alam LLDikti Wilayah 1

(JUMPA), 1(1), 20-28.

 https://doi.org/10.54076/jumpa.v1i1.38

Saraswat, P., & Raj, S. (2021). Encryption and decryption

techniques in cloud computing. International

Journal of Innovative Research in Computer Science

and Technology, 9(6), 225-228.

 https://acspublisher.com/journals/index.php/ijircst/ar

ticle/view/11131

Sertifikat-SSL/TLS. (2021). Cara Kerja Public Key &

Private Key Dalam Enkripsi Asimetris Sertifikat

Ssl/Tls Berkualitas. PusatSSL.

https://pusatssl.com/public-key-private-key-

enkripsi-asimetris-ssl-tls/

Siahaan, A. P. U. (2018). Application of Hill Cipher

algorithm in securing text messages.

 https://doi.org/10.31227/osf.io/n2kdb

Siregar, B., Gunawan, H., & Budiman, M. A. (2019,

August). Message Security Implementation by Using

a Combination of Hill Cipher Method and Pixel

Value Differencing Method in Mozilla Thunderbird

Email Client. In Journal of Physics: Conference

Series (Vol. 1255, No. 1, p. 012034). IOP Publishing.

https://doi.org/10.1088/1742-6596/1255/1/012034

Sulaiman, S., & Hanapi, Z. M. (2021). Extensive analysis

on images encryption using hybrid elliptic curve

cryptosystem and hill cipher. Journal of Computer

Science, 17.

 https://doi.org/10.3844/JCSSP.2021.221.230

https://pusatssl.com/public-key-private-key-enkripsi-asimetris-ssl-tls/
https://pusatssl.com/public-key-private-key-enkripsi-asimetris-ssl-tls/

Samsul Arifin et al. / Journal of Computer Science 2024, 20 (5): 548.563

DOI: 10.3844/jcssp.2024.548.563

563

Team, O. (2019). Why People use Lorem Ipsum to

represent dummy text? The Research of Loerem

Ipsum. Journal of Education, 1(1), 11-16.

 https://orcid.org/0000-0002-8094-4890

Vasuki, B., Shobana, L., & Roopa, B. (2022). Data

encryption using face antimagic labeling and hill

cipher. Math. Stat., 10(2), 431-435.

 https://doi.org/10.13189/ms.2022.100218

Xiao, Y., & Watson, M. (2019). Guidance on conducting

a systematic literature review. Journal of Planning

Education and Research, 39(1), 93-112.

 https://doi.org/10.1177/0739456X17723971

Zhang, Z. (2022, October). Research on an Encryption

Method Combining RSA and Hill Cipher.

In Proceedings of the 2022 6th International

Conference on Electronic Information Technology

and Computer Engineering (pp. 1113-1118).

 https://doi.org/10.1145/3573428.3573628

