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Abstract: Diagnosing Non-Hodgkin Lymphoma (NHL) is difficult and often 

requires specialised training and expertise as well as extensive 

morphological investigation and, in certain cases, costly 

immunohistological and genetic techniques. Computational approaches 

enabling morphological-based decision making are necessary for bridging 

the existing gaps. Histopathological images can be accurately classified 

using deep learning approaches, however data on NHL subtyping is 

limited. However, there is a lack of data about the categorization of lymph 

nodes affected by Non-Hodgkin Lymphoma. Here in this study, initially 

image preprocessing was done using the maximal Kalman filter which 

helps in removing the noise, data augmentation was done to improve the 

dataset, then the lymph nodal area was segmented using the sequential 

fuzzy YOLACT algorithm. Finally we trained and optimized an 

Convolutional Lymphnet model to classify and grade tumor level from 

tumor-free reference lymph nodes using the grey wolf optimized model by 

selecting the fitness parameters and optimize it for identifying the patient 

risk score. The overall experimentation was carried out under python 

framework. The findings demonstrate that the recommended strategy 

works better than the state-of-the-art techniques by having excellent 

detection and risk score prediction accuracy. 
 

Keywords: Non-Hodgkin Lymphoma, Maximal Kalman Filter, Data 

Augmentation, Sequential Fuzzy YOLACT, Optimized Convolutional 

Lymphnet Model 
 

Introduction 

Lymphocytes cause lymphatic system 

cancer...lymphoma. This hematologic malignancy ranks 

third among paediatric malignancies (Ruschenburg et al., 

1999). Lymphoma is divided into Hodgkin and non-

Hodgkin types. In the US, 10% of newly diagnosed 

lymphomas are Reed-Sternberg cell-positive Hodgkin's 

Lymphoma (HL) (Orlov et al., 2010). Early adulthood and 

55+ years are when Hodgkin's lymphoma is most common 

(Zorman et al., 2011). The 2020 global cancer study found 

0.4% of new cases and 0.2% of new fatalities were 

Hepatocellular Carcinoma (HC) (Yan et al., 2015). NHL is 

diagnosed more commonly than HL. This malignancy 

caused 2.8% of new cancer occurrences and 2.6% of new 

cancer deaths globally in 2020 (Yan et al., 2015). 

Lymphoma, like solid tumours, is phased to help 

assess prognosis and therapy. The Ann Arbour stage 

method is popular. at 1971, the Committee on Hodgkin's 

Disease Staging Classification at Ann Arbour, Michigan, 

devised the Ann Arbour method to classify Hodgkin 

lymphoma. Non-Hodgkin lymphoma was included to the 

research (Lisson et al., 2022; Brancati et al., 2019). 

According to nodal involvement, the Ann Arbour 

classification method divides lymphoma patients into four 

stages I-IV. Based on localised extra lymphatic movement 

in extra nodal areas, spleen involvement and B symptoms 

like fever, night sweats and weight loss, the primary 

stages can be divided into 24 substages. 

Staging matters in lymphoma therapy. Hodgkin's 

disease treatment varies with stage, including different 

drugs, dosages and rounds of chemotherapy, occasionally 

with radiation (Tambe et al., 2019). Non-Hodgkin 

lymphoma is treated with chemotherapy and targeted 

therapy. Stage of sickness and risk variables determine 

therapy (El Achi et al., 2019). Research is underway on 
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stem cell transplantation and immunotherapy, among 

other innovative treatments. The disease's course must be 

accurately categorised to execute different therapy 

methods (Somaratne et al., 2019; Wen et al., 2020). 

Age, sex, lymphoma type (Hodgkin or Non-Hodgkin), 

location (nodal or extra nodal) and others are prognostic 

(Brancati et al., 2019). These factors give considerable 

prognostic information, but the Ann Arbour approach 

cannot utilise them. Cox regression and survival trees 

have been used to develop statistical models to add to 

the Ann Arbour system. However, the current models 

were not designed for cancer staging, hence they cannot 

fulfil staging standards. Practical implementations 

sometimes fail to meet the Cox models' proportionate 

risks assumption. As opposed to staging systems like the 

Ann Arbour technique, Cox models do not automatically 

classify patients into risk groups. Cutoffs and quantiles 

have divided patients in previous research. There are no 

defined criteria for classifying patients and the number 

of groupings is restricted to low-, intermediate and high-

risk categories. Survival trees do not create enough 

groups. Previous study has demonstrated that tree 

models are inaccurate. So, Cox and survival tree models 

are not suitable for lymphoma staging for risk score 

prediction (Krizhevsky et al., 2012; Simonyan and 

Zisserman, 2014; He et al., 2016; Haque and Neubert, 

2020; Tosta et al., 2017). 

In recent times, significant progress has been seen in 

the domain of machine learning and deep learning 

algorithms, which have shown their efficacy in several 

solid tumor classifications. This article introduces an 

optimized model of the Convolutional Lymph net, which 

serves as a predictive tool for predicting outcomes in 

patients with Non-Hodgkin Lymphoma.  

The work's contributions to its goals are as follows:  

 

1. Maximal Kalman filter normalization was 

recommended for processing the raw data 

2. The lymph node segmentation was done using the 

sequential fuzzy YOLACT. Here in which the fuzzy 

rules are incorporated in the YOLACAT mechanism 

3. The optimized convolutional lymph net model, which 

uses GW optimization as its basis, is used to address 

the NHL risk score prediction issue. The proposed 

solution exhibits a high degree of adaptability and 

enhanced reliability 

 

Since the invention of digital computers, several 

academic disciplines have been able to rapidly advance 

their use of sophisticated computational tools. 

Combining spectral analysis with the weighted 

neighbour distance method. The model's 99% accuracy 

was obtained using just 30 images of lymphoma. The 

results of recent studies employing deep learning have 

been promising. Brancati et al. (2019) used the ResNet27 

model to categorise three forms of Non-Hodgkin 

lymphoma (NH). A 27-layer residual convolutional neural 

network was used to perform the study.  

Publicly accessible datasets of digital histology 

images were used for the performance assessment and the 

findings from many deep neural networks, including 

UNet and ResNet, were compared and contrasted. The 

results of the experiments show an improvement of 5.06% 

in the F-score for the detection job and an improvement 

of 1.09% in the accuracy measure for the classification 

test. A fully automated system based on Deep Neural 

Networks was first shown by Tambe et al. (2019) The 

lymphoma diagnosis model developed by El Achi et al. 

(2019) is based on a Convolutional Neural Network 

(CNN) algorithm trained using Deep Learning methods. 

Diffuse large B-cell lymphoma, Burkitt lymphoma, small 

lymphocytic lymphoma and benign instances were all 

included during the development of the model. Using a 

test set of 240 images, it was determined that the 

diagnostic accuracy of the test results was excellent, 

reaching 95%, (Somaratne et al., 2019) presented a deep 

learning framework that makes use of transfer learning 

and fine-tuning approaches. When compared to the 

model's initial predictions for the same set of testing 

photos, the proposed technique shows a considerable 

improvement in prediction accuracy, improving it from an 

initial value of 12-52%. They used transfer learning with 

the RestNet50 pretrained model to diagnose seven 

subtypes of lymphoma with 91.6% (Wen et al., 2020) 

accuracy, which is higher than previous research. The 

kinds were chosen because of the difficulties in detecting 

them and the fact that they proceed asymptomatically. 

More work is needed to help in the diagnosis of lymphomas 

such composite follicular and mantle cell, which are rare 

and poorly understood yet may save many lives. 

Problem Statement 

In accordance with prior research efforts, we used 

deep learning techniques coupled with optimization 

methods to effectively categorize lymphoma subtypes for 

the purpose of diagnosis, yielding a commendable 

accuracy rate of 99.6%. The selection of types was based 

on their characteristic of asymptomatic growth and the 

challenges associated with their identification. In some 

situations, the diagnosis and categorization of lymphomas 

might present significant complexity owing to 

uncertainties surrounding the assessment of 

morphological and immune-phenotypical characteristics, 

as well as the biological continuum. Since many 

lymphomas, including composite follicular, NHL and 

mantle cell, are not well-defined, there is a pressing need 

for more research into their identification and diagnosis in 

order to save the lives of many people. 
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Materials 

Data from the Medical University of Gdask was used 

to compile the Lymphoma Image Dataset (LID), which 

was then archived in the ZMDL-GUMED. The dataset 

comprises of 323 pictures of 224-by-224-pixel, which is the 

This dataset is available at https://mostwiedzy.pl/en/open-

research-data/diffuse-non-hodgkin's-lymphoma-male-60-

tissue-image-2210630020351581,2210630020351581-4.  

This tissue sample was collected from Medical 

University Gdask and is housed at ZMDL-GUMED; the 

picture is a histological examination of the hematopoietic 

and reticuloendothelial SYSTEMS. Panoramic 250 

3DHistech slide scanner (20x magnification) used to 

capture example picture, which was then converted to 

DICOM format. 

Here's the rundown on the patient, the sample and the 

diagnosis: 

Patient 
 

 Age: 60 

 Clinical description: Splenomegaly 

 Gender: Male 
 

Diagnosis 
 
 Classification: ICD-10_10-20 

 Classification code: Chapter II - Neoplasms 

 Diagnosis: Diffuse non-Hodgkin's lymphoma 

 

Result of the histopathological examination: High 

grade B cell lymphoma. Tumor immunophenotype: 

CD20(+), CD3(-), CD79(+), bcl2(30%+), bcl6(40%+), 

cmyc(30%+), MUM1(focallt+), CD10(focally+), CD5(-), 

CD23(-), ALK1(-), CD30(-), CD15(-), CD138(-), 

EBER(-), CK AE1/3(-). Ki67- 90%. 

Sample 

 

 Material: FFPE 

 Collecting method: Surgical specimen 

 Topography: Hematopoietic and reticuloendothelial 

systems 

 Organ: Hematopoietic and reticuloendothelial 

systems 

 Tissue: Spleen 

 Type of staining: Positive/IHC 

 Staining: Not applicable 

 Antibody: CD 30 

 

Methods 

The schematic representation of the suggested 

methodology was illustrated in Fig. 1. Figure 1 depicts the 

suggested diagnostic system for this investigation. 

 
 
Fig. 1: Schematic representation of the suggested methodology 

 

Technology 

 
 Equipment: Panoramic 250 3DHistech 

 Lens: 20x 

 

Organization 

 

 Source: Medical University Gdańsk” 

 

Pre-processing 

Maximal Kalman filter may help reduce the noise which 

has a major impact on image quality because of inaccuracy 

and error pattern. Therefore, a noisy picture model is 

provided by, to characterise the noise-reduction effect: 

 

𝑃𝑆(𝑏, 𝑎) = 𝐼𝑆(𝑏, 𝑎) − 𝐼𝑃(𝑏, 𝑎) 𝑏 ∈ [1, 𝐵] 𝑎 ∈ [1, 𝐴]  (1) 

 

Ideal two-dimensional image without any interference 

is denoted by the notation Ip(b, a). On the other hand, the 

picture that has been corrupted by mistakes is represented 

by Is(rb, a). Last but not least, Ps(b, a) indicates how 

mistake correction affected the original picture. A and B 

are two independent variables that measure the same 

thing: The number of range sampling points and the 

number of pixel frames. The "r" and "a" variables denote 

the range and error points, respectively and their 

respective pixel coordinates. Considering Ip(b, a), Is(b, a) 

and Ps(b, a) as two-dimensional matrices is possible.  

The error range is often corrected when the 

photograph is being focused, thus there is usually very 

little variation. This study assumes that the severity of the 

mistake is constant in the range direction to keep things 

https://mostwiedzy.pl/en/open-research-data/diffuse-non-hodgkin's-lymphoma-male-60-tissue-image-2210630020351581,2210630020351581-4
https://mostwiedzy.pl/en/open-research-data/diffuse-non-hodgkin's-lymphoma-male-60-tissue-image-2210630020351581,2210630020351581-4
https://mostwiedzy.pl/en/open-research-data/diffuse-non-hodgkin's-lymphoma-male-60-tissue-image-2210630020351581,2210630020351581-4
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nice and simple while yet being as generic as possible. 

Accordingly, Eq. (1) may be recast for any particular 

frame as: 

 

𝐼𝑆(𝑏) = 𝐼𝑃(𝑏) + 𝑃𝑆 𝑏 ∈ [1, 𝐵] (2) 

 

There is an erroneous part of Ip(b) that persists while 

Ps is present. Ip(b) represents the noise is introduced into 

the equation, the estimation of intensity is transformed 

into the estimation of the direct current component. As a 

result, a unique method is proposed for calculating noise 

error by using the maximum Kalman filtering method. Is 

for a linear system, the desired state value is represented 

by the symbol PS, which stands for the system's output. 

The stochastic difference equation shown below is 

often used to estimate the error value in the context of a 

discrete process: 

 

𝑥𝑙 = 𝐴𝑥𝑙−1 + 𝜔𝑙−1  (3) 

 

In this equation, x represents the linear state of Ps, A is 

the linear data transition matrix and is the processed noise. 

Observation equation is then defined as: 

 

𝑧𝑙 = 𝐻𝑥𝑙 + 𝑣𝑙  (4) 

 

Given these parameters, we may define z as the 

observed Ps, state, H as the observation gain matrix and v 

as the observation noise. 

It is often considered that they are unrelated to one 

another and have a white Gaussian distribution: 

 
𝑝(𝜔) ∼ 𝑁(0,𝑄), 𝑝(𝑣) ∼ 𝑁(0,ℜ)

  (5) 

 

where, Q in the probability density function stands for the 

variance p(.) of the system, whereas R stands for the 

variance of the observations. 

Taking into account the data in (2), the amount that 

needs approximation is Ps. Parameter A in Eq. (3) is set to 

1 since Os is a constant and stays in the same place at all 

times. Equation (4), the observation noise is denoted by 

the variable I0(b), b  [1, B] where, b is in the range [1, B]. 

This estimate uses the pixel value of the distorted image 

as the measurement value of the system, yielding no 

further information. This means that in Eq. (4), H must 

have a value of 1. The covariance of the system may be 

expressed both as a prior estimate and a posterior estimate 

using the above model: 

 
𝑃𝑙

−  = 𝐸[(𝑥𝑙 − �̀�𝑙
−)(𝑥𝑙 − �̀�𝑙

−)𝑇]

𝑃𝑙  = 𝐸[(𝑥𝑙 − �̀�𝑙)(𝑥𝑙 − �̀�𝑙)
𝑇]

  (6) 

where, �̀�𝑙
−and �̀�𝑙  are the kth represents the difference between 

the original and most recent predictions of the system's 

condition is referred to as the "posterior estimate." 

Following is a derivation of both the time update 

equations and the state update equations for the maximum 

Kalman filter. Update equation: 
 

𝐾𝑙 =
𝑃𝑙

−

𝑃𝑙
−+ℜ

, �̀�𝑙 = �̀�𝑙
− + 𝐾𝑙(𝑧𝑙 − �̀�𝑙

−) (7) 

𝑃𝑘 = (𝐼 − 𝐾𝑙)𝑃𝑙
−  

 
Statistical model: 

 
𝑙𝑙
− = �̀�𝑙−1, 𝑃𝑙

− = 𝑃𝑙−1 + 𝑄  (8) 
 
where, Kl is the unity matrix (I) plays a role in determining 

the blending factor that minimises the covariance of a 

posteriori error, which is in turn determined by the 

covariances of the process noise (Q) and the observation 

noise (R). 

When used iteratively, the maximum Kalman filter 

proves to be an accurate tool for estimating the 

magnitude of error across all columns. The estimated 

error in each column may then be subtracted to achieve 

error suppression. 

Augmentation 

When augmenting image data with varying height and 

width dimensions, the technique of cropping may be used 

as a beneficial step, whereby a significant portion of each 

picture is removed. In this demonstration, we will 

illustrate a method for doing random cropping of images. 

The selection of cropped coordinates (Hk, zk) is influenced 

by the original dimensions of the picture and these 

coordinates are selected based on the placement of the 

border (x, i): 
  
𝐻 = 𝑟𝑜𝑢𝑛𝑑 (𝐻′𝐼𝐻), 𝐼 = 𝑟𝑜𝑢𝑛𝑑(𝐻′𝐼𝑧) ,

𝐻′ ∼ 𝐵𝑒𝑡𝑎 (𝛽, 𝛽), 𝐼′ ∼ 𝐵𝑒𝑡𝑎(𝛽, 𝛽) 
  (9) 

 

where,   (0, ) represents the parameter which is a 

variable in a mathematical or statistical model. The 

function round (⋅) denotes the rounding method. The 

mechanical determination of cropping dimensions occurs 

subsequent to the identification of the boundary location 

(w, h) is known. (XL, IL) of the images k, i.e., X1 = X3= X, 

X2 = X4 = Ix - X, h1 = h2 = h and I3 = I = IH - h. alternatively, 

sizing the crop tool to fit the images (wk, hk), We choose 

the order by chance. (Yk, Zk) shows the cutoff edges as: 
 
𝐻l  ∼ 𝒰(0, 𝐼𝐻 − 𝑋l),

𝑍𝑙  ∼ 𝒰(0, 𝐼𝑧 − 𝐼𝑙)
  (10) 

 
Then the images can be cropped. 

Segmentation 

By splitting the process of segmentation of instances 

into two smaller subtasks that are done in parallel, You 
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Only Look At CoefficienTs (YOLACT) is able to address 

the lymph node regions. A linear fuzzy combination, is 

performed using the prototype masks and mask 

coefficients generated by the parallel branches.  

Step 1: Rule Establishment 

To establish its rules, YOLACT use a Fuzzy mechanism: 
 

Rule 1: 𝐼𝑓 𝑈1is 𝐵𝑗 and 𝑈2 is 𝑍𝑗, then 
 

 Rules 𝑗 = 𝑠𝑈𝑗 + 𝑡𝑗𝑈𝑗+1 + 𝑢𝑗  

 
Rule 2: If 𝑈1 is 𝐵𝑗+1 and 𝑈2 is 𝑍𝑗+1, then 

 Rules 𝑗+1 = 𝑠𝑗+1𝑈𝑗 + 𝑡𝑗+1𝑈𝑗+1 + 𝑢𝑗+1 
 
where, the sets Bi, Zi, Bi+1 and Zi+1 are all fuzzy ones. The 

many feature values collected so far are denoted by Ui and 

Ui+1. Training is expected to cause changes to the 

parameters si, ti, ui, si+1, ti+1 and ui+1. The necessary 

parameters are fine-tuned using the interference technique 

for improved results.  

Step 2: Lymph Node Based Feature Extraction 

To get the fuzzy entropy property, the following 

formula is utilized: 

 

𝑓 = ∑  𝑁−1
𝑖𝑗=0 𝑄𝑖𝑗(−ln 𝑄𝑖𝑗)  (11) 

 

Mean, Variance, Skewness, Kurtosis and Moment are 

the five texture characteristics that may be calculated from 

the determined gradient matrices. Gradient features are 

produced when the his of a gradient matrix has been 

created. For gradient values in the range (-255, 255), this 

histogram is computed. Here is how the gradient 

(Kurtosis) characteristic looks like: 

 

𝑓 = ∑  𝑠𝑣
 His (𝑣+255)(𝑣−𝜇)4

 Total number of pixels 
  (12) 

 

Step 3: ROI Extraction  

The Sv is expected to go the direction with the 

smallest f-value, ROI. To restate: The fuzzy rule for s-

associations is: 
 

𝐷(𝑁𝛽 , 𝑆𝜈) = {
1, 𝑖𝑓 𝑄(𝑁𝛽 , 𝑆𝜈) = 𝑚𝑖𝑛{𝑄(𝑁𝛽 , 𝑆𝜈) ≠ 0}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 
}  (13) 

 

The IoU is defined as the fraction of a region that is 

shared by the ground-truth and the forecasted regions. The 

Intersection over Union metric quantifies the degree of 

similarity between the obtained segmentation outcomes 

and the reference ground truth. The Intersection over 

Union (IoU) is a scalar ranging between 0 and 1, where a 

higher value signifies a higher level of accuracy in 

segmentation. The Intersection over Union metric was 

determined in the following manner: 

𝐼𝑜𝑈 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
  (14) 

 

To combine the ROI estimates, a sigmoid-shaped 

nonlinear combination is required: 

 

𝑀 = 𝜎(𝑄𝐶𝑈) (15) 

 

Here, M is the segmentation result of the segmentation 

method, Q is the ground truth and P C is the number of 

pixels in the corresponding set. 

Here, u represents the number of predicted ROI 

regions after undergoing non-maximum suppression. 

Upon completion of the aforementioned processes, the 

network generates the ultimate segmentation outcome. 

NHL Prediction 

The purpose of this research is to optimise a complex 

lymph net using the grey wolf algorithm for NHL prediction. 

Following is a definition of the objective function: 

 

acc = 𝐶𝐿𝑁 (𝐼𝑝⃗⃗  ⃗, �⃗⃗� , 𝑇𝑑𝑖)  (16) 

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑎𝑐𝑐
𝐻𝑝⃗⃗⃗⃗⃗⃗ ∈ℝ𝑘

 𝐶𝐿𝑁 (𝐼𝑝⃗⃗  ⃗, �⃗⃗� , 𝑇𝑑𝑖) where < 𝑖max  

 

Inputs are represented by 𝐼𝑝⃗⃗  ⃗, �⃗⃗� , 𝑇𝑑𝑖 . 𝐻𝑝⃗⃗⃗⃗  ⃗ and the 

resulting mathematical equation illustrates the functional 

connection of the LN architecture. The k-dimensional 

hyperparameter vector is represented by 𝐻𝑝⃗⃗ ⃗⃗ ⃗⃗   . The weight 

of a Connected-Loop Network (CLN) is denoted by the 

vector �⃗⃗� . Tdi is an arbitrary selection from the whole set 

of training data. The above function is intended to provide 

a measure of the model's precision. The purpose of the 

function represented by Eq. (16) is to optimise the CLN's 

hyper-parameters in order to achieve the highest possible 

accuracy. The number of times CLN tries to get the hyper-

parameters just right may be controlled by the user using 

the imax option. The time needed to optimise increases 

when imax rises over a certain threshold. To make the 

model as cost-effective as possible, the user must 

intentionally choose the value of imax.  

After the CLN architecture has been established, four 

separate steps parameter encoding, population 

initialization, fitness evaluation and next-generation 

population construction are taken to optimise the 

network's hyper-parameters using GWO. In the context of 

the GWO approach, communication is established 

between the exploitation and exploration processes. This 

communication occurs within two distinct groups of grey 

wolves, each operating independently. The grouping hunt 

strategy is employed, utilising four specific types of grey 

wolves that have been designed for efficient utilisation in 

the optimisation process. In contrast, the exploratory 

approach characterised by chaotic grouping involves 

deploying several scouts to conduct examinations in a 

comprehensive way.  
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The GWO algorithm is provided as shown below: 
 
Algorithm 1: Grey wolf optimization process 

“Input: Segmented output 

Output: Optimized value 

Step1: The parameters are initialized, 

 UCD signifies the Upper limit lower limit  

  Search agents_num τs_ag) = 30; 

  Max_iteration maxiter = 100;  

Lower band lb = min (ucd);  

Upper band ub = max (ucd)  

Dimensions db = size (ub, 2)  

Step 2: Alpha, beta and delta positions are being initialized 

 Alpha_pos αpos = zeros (1, db)  

  beta_pos βpos = zeros (1, db) 

  delta_pos γpos = zeros (1, db)  

 position posdata = rand (τs_ag), 1)* ( ub - lb) +lb  

Step 3: objective function is estimated   

 while 1< maxiter 

  for i = 1: size (posdata, 1) 

  flag4ub = posdata (I, :) > ub 

 flag4lb = posdata (I, :) <lb 

  posdata (I, :) = posdata (i, :) * (flag4ub+  

 flag4lb) + ub* flag4ub + lb* flag4lb 

db = size (PI, 2)  

 Kp = PI (db, posdata)  

 Ki = size (PI, 2) 
 

 𝑜𝑏𝑗𝑓𝑛 = −20 ∗ 𝑒𝑥𝑝(−2 ∗ √∑𝑃𝐼2)/2 

−𝑒𝑥𝑝(∑𝑐𝑜𝑠 (2𝜋 ∗ 𝑃𝐼) /𝑑𝑏) + 20𝑒𝑥𝑝 

 
Step 4: alpha, beta and delta positions are updated,  

 If objfun < αpos 

  αpos =objfun 

αpos = posdata (I,:) 

End  

If objfun < αpos && objfun < βpos 

 βpos = objfun 

End 

If objfun < αpos && objfun > βpos && objfun < γpos 

Sn = objfun 

End  

 end  

end” 
 

The Convolutional Neural Network's (Fig. 2(a)) 

hyperparameters are encoded as a vector of k parameters 

during the parameter encoding step. The Convolution 

layer's (CV) Kernel size (Ks), the Number of kernels 

(Nk), the Pooling layer's (Ps) kernel size and the Dropout 

rate (Dr) are all examples of hyperparameters. The 

parameters are randomised within the allowed range. 

When the ith parameter vector is exactly described as in 

Eq. (17), we say that it acts as an agent: 
 
𝐼𝑃⃗⃗⃗⃗ 𝑖 = {𝑄𝑖1, 𝑄𝑖2, 𝑄𝑖3, … . 𝑄𝑖𝑘}  (17) 

 
(a) 

 

 
(b) Sample input 

 
Fig. 2: (a) Suggested network architecture; (b) The sample 

histopathological input was illustrated 
 

Including three convolution layers, three dropout 

layers and three pooling layers results in a total of twelve 

hyper-parameters that make up the parameter vector.  

After the CLN hyper-parameters have been encoded, 

an initial population Sn of n agents will be randomly 

generated: 
 

𝑆𝑛 = {𝐼𝑄⃗⃗⃗⃗ 1, 𝐼𝑄⃗⃗⃗⃗ 2, 𝐼𝑄⃗⃗⃗⃗ 3 … . . . 𝐼𝑄⃗⃗⃗⃗ 𝑛}  (18) 
 

Equations 17-18 are used to generate the Grey Wolf 

Optimizer (GWO) coefficient vectors 𝐴  and 𝐶 . Changing 

the values of the random parameters A and C allows the 

candidate solution to display hyperspheres of different 

radii. According to Eq. (19), when 𝑋 𝛼 , 𝑋 𝛽 , 𝑋 ∂ move, the 

rest of the agents' locations are updated accordingly. After 

these hyperparameters have been fine-tuned, we can 

create optimal CLN models. Categorical risk score has the 

following meaning: 
 
𝑅𝑆 = −∑𝑖=1

𝑁  𝑦𝑖 ⋅ 𝑙𝑜𝑔 �̂�𝑖 , 𝑅𝑆 = −∑𝑖=1
𝑁  𝑦𝑖 ⋅ 𝑙𝑜𝑔 �̂�𝑖  (19)  

 

N here stands for the total number of categories. Model-

predicted value for the ith class is denoted by �̂�𝑖, whereas yi 

stands for the corresponding risk-objective value. 

Performance Analysis 

The pytorch framework was used to train the 

experiment in an environment consisting of an Intel (R) 
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Xeon (R) Gold 5220 CPU and a GeForce RTX 2080 Ti 

GPU. Python is the language used for programming. This 

study uses 374 TIF-formatted photos from an open-source 

experimental data set made available on an official public 

website. The sample histopathological input was 

illustrated in Fig. 2(b). 

The disease prediction output for the sample images 

are illustrated from the Fig. 3. As of from the Fig. 4 the 

images in which ROI are segmented and the diseased 

lymph nodes are identified and the NHL can be classified 

precisely by using the suggested classifier. 

The score of a risk is determined by the specified 

values of chance and effect. The integration of probability 

and effect thresholds culminates in the formation of a risk 

matrix, which serves as a visual representation of the 

potential scores that a risk may attain. Depends upon the 

depressive symptoms severity level was determined and 

risk level was pointed. 

The square of the error is calculated in a manner 

similar to that of the variance. The MSE is calculated by 

square rooting the difference between the observed value 

and the anticipated value. Add up the squares of all the 

observations and then divide by the total number of 

observations. Figure 5 shows that, in comparison to 

predicting illness nodes, the prediction error was lower. 

Based on the facts shown in Fig. 6 the disparity 

between the validation accuracy and the training accuracy 

may be attributed to the model's prior exposure to the 

training data, which results in a higher level of familiarity. 

Conversely, the validation data comprises novel data 

points that are unknown to the model. The precise 

determination of perspectives may be accomplished by 

using the classifier that is suggested, in Fig. 6. 

Figure 7, it is possible to visually discriminate between 

groups consisting of people with and without problems. 

Multiple metrics, such as accuracy, sensitivity, 

specificity, precision and the f1 measure, were used to 

evaluate the classification algorithms. Therefore, the 

criteria specified by the confusion matrix are used to 

evaluate the show. With respect to the current situation, 

when a prediction correctly identifies the existence of 

liver disease in a patient, this is called a True Positive 

(TP). A False Positive (FP) is an incorrect diagnosis that 

wrongly suggests that a patient has liver disease. A True 

Negative (TN) is a successful prediction result in which a 

patient is appropriately diagnosed as having no liver 

disease. To anticipate incorrectly that a patient does not 

have liver disease is an example of a False Negative (FN). 

Quantifying the gap between sound-to-patient capacity 

ratio relies heavily on the accuracy of the prediction model. 

Correctly identifying positive, negative, false 

positive and false negative cases is how classification 

accuracy is evaluated: 
 

Accuracy =
( TP + 𝑇𝑁)

−
( TP + FP + TN + 𝐹𝑁)

 

  (20) 

 
 
Fig. 3: Simulated output 

 

 
 
Fig. 4: Risk score 

 

 
 

Fig. 5: MSE calculation 

 

The percentage of patients correctly recognized as 

having liver disease is reported by the sensitivity test. The 

positive results of the test are highlighted throughout the 

text. It's also known as the True Positive Rate (TPR) or 

Recall rate: 

 

 Recall =
 True Positive 

( True Positive + False Negative) 
  (21) 

  

  

Positive lymph node        Predicated positive image Positive lymph mode   Predicated positive image 

Positive lymph node        Predicated positive image Positive lymph mode   Predicated positive image 

 
Train 

Validation 
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Fig. 6: Accuracy Vs loss 

 

 

 

Fig. 7: Target classification 

 

Particularity entails the manifestation of adverse 

outcomes associated with the condition. It provides an 

assessment of the prevalence of the condition among 

the patients. It is often referred to as the True Negative 

Rate (TNR). 

Precision is the rate of success in recognizing real 

positive situations; it is also known as the positive 

predictive value. The metric gives a measure of how often 

classifier algorithms provide accurate predictions of 

favorable outcomes: 

 Precision =
 True Positive 

( True Positive + False Positive) 
  (22) 

 

The F1 metric quantifies the precision of a model by 

considering a combination of accuracy and recall. The 

metric provides the ratio of both False Positives (FP) and 

False Negatives (FN) generated by a model: 

 

𝐹1 =
2∗( Recall ∗ Precisiion )

( Recall + Precision )
  (23) 

 

Multiple metrics, such as accuracy, sensitivity, 

specificity, precision and the F1 measure, were used to 

evaluate the classification algorithms. With respect to the 

current situation, when a prediction correctly identifies 

the existence of disease risk score in a patient, this is 

called a True Positive (TP). A False Positive (FP) is an 

incorrect diagnosis that wrongly suggests that a patient 

has high risk score. A True Negative (TN) is a successful 

prediction result in which a patient is appropriately 

diagnosed as having no disease with less risk score. To 

anticipate incorrectly that a patient does not have disease 

is an example of a False Negative (FN). 

Results and Discussion 

The results shown in Fig. 8 demonstrate the effectiveness 

of the proposed technique, as seen by the high levels of 

accuracy (99.6%), precision (97%), recall (94%) and 

F-score (92%). These metrics indicate the methodology's 

efficiency in achieving satisfactory outcomes.  

Figure 9 the suggested methodology express satisfied 

performance. Figure 10 shows the results of an analysis 

of NHL disease using the proposed categorization 

system. Here, the effectiveness of the Process will be 

reflected in a little deviation from both the ground truth 

and the initial forecast.  

The ROC curve in two dimensions is seen in Fig. 11. 

Positive rates are shown on the x-axis, while the actual 

rates are shown on the y-axis. The threshold ranges from 

0-1 (upper right to lower left). Graphs depict the results of 

each criterion classification. The classifier's accuracy is 

99% if its AUC is 99.9% or higher. 

Hence as of from the result obtained from the Table 1 

the suggested methodology express satisfied outcomes 

over NHL risk score prediction when compared to other 

existing mechanism in use”. 

 

Table 1: Summary of existing methodologies about NHL disease prediction (Lisson et al., 2022) 

Deep learning models Accuracy Precision Sensitivity/Recall F1-Score AUC 

Own 3D Net [25] 0.700±0.02 0.710±0.02 0.70±0.020 0.690±0.010 0.70±0.04 

3D DenseNet [25] 0.590±0.05 0.640±0.07 0.59±0.050 0.570±0.060 0.58±0.13 

SEResNet50 [25] 0.620±0.04 0.650±0.07 0.62±0.050 0.600±0.040 0.62±0.06 

Proposed 99.600 97 94 92 99.90 
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Fig. 8: Performance analysis of the suggested methodology 
 

 
 

 
 

 
 
Fig. 9: Proposed methodology performance ratio analysis 

 
 
Fig. 10: Epoch Vs. IoU 

 

 
 
Fig. 11: ROC evaluation 
 

Conclusion 

NHL is a serious health problem and preventing it, 

treating it early and diagnosing it correctly are all more 

important than merely trying to discover a cure. 

According to the review of prior work, various attempts 

have been made to use deep learning algorithms for 

NHL risk prediction which helps to give efficient 

treatment for the patients. Nonetheless, a major 

obstacle remains the discovery of relevant lymph nodes 

that may successfully identify and grade disease at an 

early stage. This research presents a novel and 

improved model for grading of NHL disease. The 

proposed model had behaviour similar to a traditional 

neural network leading to an impressively high 

accuracy score of 99.6% when classifying illnesses and 

grading the risk score. Upcoming studies will 

concentrate on implementing ensemble based 

methodology to aid in the diagnosis of NHL disease. 

Efforts will also be made to remove superfluous 

features from existing feature sets in an attempt to 

improve the accuracy of detection strategies. Our 
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model may become more accurate at distinguishing 

between those with high risk score and those with low 

risk score. The main limitation of this study is the 

dataset in which the proper information was not 

obtained. In future the medications recommendations 

based on the risk score was highly focused.  
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