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Abstract: The novel logarithmic transformation of Local Binary Pattern 

(LT-LBP) for texture feature extraction is used with Deep Learning (DL) 

models. The Computational complexity in the DL models asymptotically 

increases with the data sesssst and the depth of the layers in Convolutional 

Neural Networks (CNN). Pre-processing the images before training the DL 

model holds a strong impact on the operation speed and throughput. The 

proposed work encompasses LT-LBP for spatial texture feature extraction 

and is combined with the DL models. LT-LBP reduces the computation while 

extracting the texture information from the medical images. The 

computational cost for the model has been reduced in this study. The 

experiments were done with various DL models such as inception V3, Dense 

Net, Mobile Net, Efficient Net (B0-B7) VGG16, and RESNET50, and the 

results were analyzed. The features were extracted using LT-LBP and given 

as input to the DL models for classification. The retrospective study was done 

with 118 COVID-19 X-ray images collected from Chengalpattu Medical 

College Hospital, Chennai, and the remaining 8,224 images were taken from 

Kaggle. The combination of LT-LBP with RESNET50 shows better 

performance when compared to other models with an accuracy of 87%. The 

Area Under the Curve (AUC) for the proposed model is 88, 83 and 86% for 

COVID, non-COVID, and pneumonia classifications. 
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Introduction 

 Medical images are frequently used to identify and 

treat anomalies caused by various disorders of different 

body parts. Images are widely used to pinpoint numerous 

abnormalities and scans and X-rays are mainly used in 

diagnosing. Recent advances in imaging technology have 

made it possible for researchers to collect an extensive 

database of digital medical images. The electromagnetic 

spectrum includes radiation. Particle radiation contains 

positrons and neutrons, infrared, ultraviolet, X-rays, and 

gamma rays. 2000 shades of grey and contemporary CT 

scan machines may have as many as 4000 shades. It is 

beyond the power of human vision to differentiate 

between such a broad spectrum of gray-scale colors and 

the process of extracting textures from scanned images 

would have been essential for learning the model. Since 

the flow of diagnosis is a continuous procedure, 

addressing infections during X-ray and CT scanning for 

diagnosis is a time-consuming process. 

The Local Binary Pattern (LBP) by Ojala et al. (1996) 

was used as an adequate feature extractor and was 

especially used for medical images. Since the images used 

are monochrome, LBP was chosen for texture 

identification because of its computational simplicity and 

high discriminative power and is a successful technique 

for producing high-level characteristics. Middle-level and 

low-level attributes were extracted to increase the 

classification accuracy and the feature's capacity for 

representation. Convolutional Neural Networks (CNN) 

operate on two-dimensional visual data, preserving the 

spatial relationships of the learned model. To reduce the 

computation logarithmic transformation of the Local 

Binary Pattern (LT-LBP) proposed by us, Lakshmi et al. 

(2021) extracted texture feature vectors from medical 

images. The development of highly discriminative and 

computationally effective local texture descriptors based 

on LBP has significantly improved the use of texture 

approaches in a wide range of challenges and applications 

in recent years Pietikäinen and Zhao (2015). In various 

disciplines, the method of LBP was widely applied to 
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image analysis and pattern recognition processes Kar and 

Banerjee (2021). The neonatal facial images for 

classifying various pain levels starting with the features of 

the face were used with LBP and its variants by Nanni et al. 

(2010). Modern diagnosis and the potential applications 

of edge extraction technologies require edge-based 

processing and analysis of medical images. Edge-aware 

filtering and improved Local Binary Patterns (EF-ALBP) 

were proposed by Qiao et al. (2022).  

 Mean distance LBP was proposed by Bedi and 

Sunkaria (2021). for texture retrieval from liver 

ultrasound images. The higher complexity and 

ambiguity of medical images were compared to ordinary 

image recognition. LBP was used for texture feature 

extraction from ultrasound and brain Magnetic 

Resonance Images (MRI) images by Zeebaree et al. 

(2019); Kaplan et al. (2020); Abbas et al. (2021). Images 

were processed and analyzed using various DL 

techniques, for image segmentation, image registration, 

and classification. To provide the predicted values and 

categorize the data, the pre-trained model is used in 

conjunction with data augmentation. In this study, we 

introduced a modified LBP algorithm that was applied 

to CT images to extract features and applied in ML 

classification algorithms such as Support Vector 

Machine (SVM) and Logistic Regression (LR). The gaps 

identified from the previous works are as follows. 

The Computational cost is directly proportional to the 

depth of the layers and also in the preprocessing phase as 

the size of the dataset. 

To address this, we tried a new method called LT-LBP 

for feature map generation and fed it to the DL model. The 

LT-LBP is the extended version of LBP. Since LBP has 

been used as the best image descriptor, feature extraction 

has been done by the transformed version of LBP with 

reduced computation. 

 

The contributions in this study are: 

 

 Inferring mathematical parameters from the distribution 

of pixels, the proposed methodology attempts to reduce 

the computing cost associated with the dataset by using 

LT-LBP (Lakshmi et al., 2021)  

 The study has been extended with DL models to 

evaluate the performance 

 The images have been divided into four quadrants 

and the texture feature has been extracted to avoid 

information loss 

 

Related Work 

A deep CNN was used to categorize the COVID X-

rays by Abbas et al. (2021). Irregularities were handled by 

the class decomposition technique by Chen et al. (2021). 

The feature extraction used a Histogram of Oriented 

Gradients (HOG) and applied the CNN model for 

COVID-19 X-ray classification. Sweeping hyper-

parameters through an experiment were replaced with the 

Bayesian optimization approach. The method increases 

recognition effectiveness by locating optimal network 

hyper-parameters and training options for CNN Loey et al. 

(2022). The attention mechanism with Efficient Net by 

Luz et al. (2021) yields better classification.  

A modified version of the ResNet50 model has 

taken advantage of transfer learning and was given as a 

modified RESNET by Elpeltagy and Sallam (2021). 

The semi-supervised model could discriminate the 

target region from other anomalous locations using 

only a small amount of labeled data. In addition, the 

transfer learning technique is a practical choice for 

working with protected health information. Applying 

the previously trained models to previously 

undiscovered items is a zero-shot learning problem. 

Previous research on zero-shot learning for image 

classification has focused on medical image 

segmentation (Van Ginneken et al., 2001). Recent 

developments in deep learning have improved image 

classification and forecasting. Machine Learning (ML) 

and Deep Learning (DL) models possess both benefits 

and drawbacks. Table 1. shows a detailed survey of the 

DL models used in X-Ray classification. 

 
Table 1: Related works based on COVID-19 X-ray/CT image 

  classification with DL models 

   Accuracy 

Author Model Dataset (%) 

Ozturk et al. Dark 127 X-rays 98.8 

(2020) COVID 

 Net 

Asif et al. Coro Net 284-COVID, 89.0 

(2020)  310 -Normal,  95.0 

  330-Bacterial, 

  327 - Pneumonia 

Born et al. POCOVID 654-COVID, 89.0 

(2020) -Net 227-Bacterial, 

  172-Normal 

Chen et al. LUSS 31 (120,200) 87.0 

(2021) 

Mahmud et al. CovX Net 305-COVID, 90.0 

(2020)  1493-Non-COVID,  
  2780-Pneumonia, 

  1583-Normal  

Qayyum et al. Depth-wise 435 X-Rays 87.4 

(2021) CNN 

Muhammad et al. ResNet-50 5000 X-rays 89.0 

(2022)    

Ardakani et al. ResNet101, 1020 CT images 99.5 

(2020) Inception     

Kulkarni et al. DENSENE 663 X-rays 90.6 

(2021) T121   
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Materials and Methods 

LBP uses local texture patterns to describe an 

image. By utilizing the patterns, it has been 

demonstrated that the present methods can improve the 

LBP as its variants. The main contribution of this study 

is towards LT-LBP with reduced computational cost. 

Research works are being continued to create 

appropriate frameworks for a variety of tasks, feature 

extraction, classification, and feature selection, along 

with the primary goal of enhancing the performance of 

automated systems for image annotation. Studies have 

adopted recent improvements in DL to interpret chest 

X-rays to boost efficiency and alleviate pressure on 

radiologists. X-ray imaging is a widely accepted 

medical procedure for examining abnormalities.  

Pre-Processing 

Infrared imaging systems suffer significantly from 

stripe noise effects in terms of image quality. Most of the 

frameworks like de-striping methods proposed in recent 

years. These techniques often fall into three categories: 

Prior-based, statistics-based, and deep techniques as 

described in (Yazdekhasty et al., 2021). Quantum noise 

has a negative impact on the images captured at low 

radiation doses. In some circumstances, such as 

fluoroscopy, the image intensifier picks up only a small 

portion of the signal, which causes a grainy appearance on 

the screen or in the pictures (Mistry et al., 2014). Owing 

to the pattern of the structure superimposed on random 

signal anomalies, fine images have a low contrast 

resolution of their details. 

Noise Removal 

Gaussian smoothing has been used to remove the 

noise from the images. In medical images, the sensor 

has noise due to temperature and illumination. 

Additionally, the electronic circuits connected to it add 

their own noise (Guan et al., 2019). Gaussian 

smoothing was used in this instance for noise removal 

to remove the noise from the X-ray images. A Gaussian 

filter was used with the Gaussian function as shown in 

Eq. 1. The noise removal is done by a 2D Gaussian 

filter and given in Eq. 1: 
 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2
𝑒 (

𝑥2+𝑦2

2𝜎2
)  (1) 

 
where, σ is the standard deviation. The average value of the 

surrounding or neighboring pixels was substituted for the 

noisy pixel in the image by Kumar and Nachamai (2017). 

Feature Extraction Using LT-LBP 

Texture refers to the surface of the specified feature 

in an image and it is certainly one of the key elements 

used in the identification of patterns and image 

processing. The eight elements form a Texture Unit 

(TU) and each of these elements can have one of three 

possible values (0, 1, or 2) that are drawn from 

neighboring pixels of 3×3. The total number of texture 

units that can describe spatial three-level patterns in a 

3×3 neighboring pixel is 38 = 6561 by Wang and He 

(1990). The two-level derivation of the approach is 

used for describing LBP in a texture, it offers an 

effective method. Instead of 6561 potential texture 

units, there are only 28 = 256 in the two-level version 

(Ojala et al., 1996) Fig. 2 shows the neighboring pixel 

for the threshold used in LBP. 

LBP was more effectively used as a local image 

descriptor than the other pre-processing texture extraction 

techniques. The LBP is transformed into LT-LBP by 

inferring the mathematical properties of basic logarithm 

and exponentiation in (Lakshmi et al., 2021). The binary 

number was converted into its equivalent decimal 

number. The conversion was performed using an 

exponential computation. The exponential computation 

was reduced to a linear computation using a logarithmic 

transformation. Figure 3 shows the LBP calculations for a 

single pixel in an image and Fig. 4 depicts the same 

calculation using LT-LBP for a single pixel. 

 

 
 
Fig. 1: Flow diagram of the model 
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Fig. 2: Neighboring pixels from the image for LT-LBP 

 

 
 
Fig. 3: LBP calculation for a single pixel in an image 
 

 
 
Fig. 4: LT-LBP calculation for a single pixel 
 

 
 
Fig. 5: The variants of LBP used in medical images 

The center pixel value was considered as the 

threshold and the neighboring pixels were converted into 

binary values based on Eqs. 2-3. Based on local binary 

patterns and non-parametric differentiation of sample 

and prototype distributions, this technique efficiently 

classifies grey scale and rotation-invariant textures at many 

resolutions. The approach is based on the understanding that 

some LBPs known as "uniform" are essential components of 

local picture texture and their histogram of occurrence as 

very potent texture characteristics. 

LBP is one of the best visual descriptors used in 

computer vision for image classification. Because of the 

invariance of LBP to scale and rotation, it has been 

employed as the finest visual descriptor in pre-processing. 

The center symmetric local derivative patterns of the 

combined first and second orders demonstrate a method 

called the Center Symmetric-Local Binary Pattern (CS-LBP) 

in Heikkila and Pietikainen (2006). The comparison of 

intensity space and illumination changes leads to less 

robust than edge responses. The Local Symmetric 

Directional Pattern (LSDP), a local feature descriptor for 

face recognition, effectively compresses facial textures 

into a small code by taking advantage of the gradient 

space structure of facial textures in Najmabadi and 

Moallem (2022). LBP was obtained using Eqs. 2-3: 
 

𝐿𝐵𝑃(𝑔(𝑥)) = ∑ 𝑠(𝑔𝑐 − 𝑔𝑝)2
𝑝𝑝−1

𝑝=0
  (2) 

 

where, gc represents the center pixel value and gp denotes the 

neighboring pixel value, the function S is represented as: 

 

1 ( 0)
( )

0

if x
s x

otherwise

  
  

 

  (3) 

 
The calculation using LBP for a single pixel from an 

image is shown in Fig. 2. 

Grey Level Co-occurrence Matrix (GLCM) and 

texture-based feature extraction are used as preprocessing 

for image classification. The pixel-based image 

processing technique used to estimate the value of its 

features is GLCM Garg and Dhiman (2021). However, the 

LBP descriptor is used in texture analysis of images in 

cases of illumination change because of its clarity in 

computation and resistance to such variations. The 

Illumination and ubiquitous nature in scales of length 

and rotation LBP (IRSLBP) descriptor achieved scale 

invariance by considering the circular neighbor set of 

each center pixel in addition to its regular neighbors. 

Additionally, the IRSLBP uses a local difference sign 

magnitude transform to separate the sign and magnitude 

components of the difference vector.  

The pre-processing of MRI and CT images has an 

impact on the labels with the subsequent processing of 

these images. The enhancement in the CAD system 

requires improvement in the feature map generation. 
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It is essential to improve the image quality by eliminating 

the following from the brain MRI and CT images like skull 

segments; and skull and ribcage elements from the thorax 

and abdomen CT images (Pérez-García et al., 2021). 

Table 2 and Fig. 5 narrates the various methods of LBP 

used in medical image analysis recently. 

The texture both natural and synthetic was quantitatively 

loaded with distributions of various local texture patterns 

that display abstract asymmetrical distributions. 

 The generation of rotation-invariant LBP variations is 

straightforward (Han et al. 2021; Zhao et al. 2011). The 

proposed model includes logarithmic functionalization of 

the conventional LBP technique from Eqs. (4-6) resulting 

in LT-LBP. According to the logarithmic and exponential 

rule, for every real number b, x and n: 

 

logn

xx b b n     (4) 

 
Table 2: LBP and its variants in medical image analysis 

Author Images Method 

Kaplan et al. (2020) MRI-brain tumor NLBP, LBP 

Bedi and Sunkaria (2021) Liver ultrasound Mean distance LBP 

Erfankhah et al. (2019) Histopathology LBP 

Tuncer et al. (2020) COVID X-ray LBP 

Chowdhary and Acharjya Mammogram, LBP 

(2020) CT, MRI 

Garg and Dhiman (2021) CORAL dataset Texture fused 

  LBP  

Salih and Duffy (2022) Dental image Local ternary 

  pattern 

Hassaballah et al. (2019) Ear images Averaged 

  LBP (ALBP) 

Burrello et al. (2019) Brain images LBP 

 (iEEG) 

Pantazi et al. (2019) Leaf images LBP 

 
Table 3: Proposed algorithm for LT-LBP 

No: Proposed Algorithm for LT-LBP in pre-processing 

 images 

Input: Images after noise removal 

output: Feature vector from image textures using LT-LBP 

  1 let N be the number of images 

  2 let h, w be the height and width of the image 

  3 let gc be the center pixel 

  4 let gp be the neighboring pixels 

  5 for k in N 

  6      for i, j in height and width 

  7             for p in the range of neighboring pixels 

  8            If (gc − gp > 0) 

  9                    gp = 1 

10  

                               else 

11                    gp = 0 

12 gc = s(x) = ∑(gc - gp)*p 

13 Repeat step 6 for every pixel in the image 

14 Repeat step 5 for every image 

The LBP from Eq. 2 is transformed into LT-LBP by us 

in Eq. 5, by using the fundamental logarithmic 

characteristics from Eq. 4: 
 

𝐿𝑇 − 𝐿𝐵𝑃(𝑔(𝑥)) = ∑ 𝑆(𝑔𝑐 − 𝑔𝑝)𝑝
𝑝−1
𝑝=0  (5) 

 

where, gc represents the center pixel value and gp denotes the 

neighboring pixel value and S is given by Eqs. 6: 
 

1 ( 0)
( )

0

if x
s x

otherwise

  
 

 
 (6) 

 
Equations 5-6 The result was calculated linearly as 

displayed to prevent the exponential computation and 

minimize the computational cost. The logarithmic 

properties were fulfilled and the textures were preserved. 

The exponential calculation was transformed into the 

linear computation. The LT-LBP calculation for a single 

pixel is shown in Fig. 4. By definition, exponents are 

logarithms and vice versa. Natural and binary logarithms 

carry similar properties. Figure 4 shows the LT-LBP 

method for feature map generation from Eqs. 5-6. The 

pseudocode for LT-LBP is shown in Table 3. 

The LBP variants include the localized binary pattern 

created by holding the pixels relative to their median 

values throughout a 33 neighborhood. The Median 

Binary Pattern (MBP) technique was used for classifying 

textures with the center pixel included in the filtering 

process. Directional statistical data, in particular, the 

mean and standard deviation of the local absolute 

differences were obtained and enhanced the performance 

of Classification in LBP (Hafiane et al., 2008). 

Additionally, for more reliable directional statistical 

characteristics, the local difference is adaptively curtailed 

using least-squares estimation in Adaptive LBP (ALBP). 

Deep Learning Models  

The Convolution Neural Network (CNN) with feature 

map generation is shown in Fig. 6. The feature map is 

produced by the dot product of the kernel filter applied to 

the image in the convolution layer and the pixel intensity 

values of the images. Equation 10 refers to the 

convolution of the input image and the kernel filter: 
 

        , * , , * ,
i j

o m n l k m n l m i n j k i j     (10) 

 
where, k is the weight which is the kernel applied to the 

image I and m, n are the rows and columns of the result 

matrix generated and O is the output feature map. The 

convolution is followed by pooling and this layer is used 

to reduce the dimension of the feature map. The impact of 

noisy features is lessened by average pooling. However, 

because it gives equal weight to each component in the 

pooling region, background regions may predominate in 

the pool consequently, the power of discrimination may 

be diminished by representation (Nirthika et al., 2022).  
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Fig. 6: Convolutional neural network for feature map generation 

 Yu et al. (2018) 
 

Average pooling may be more appropriate in the 

circumstances, like the separation of abnormalities from 

normal when the abnormality is widespread. The 

proposed method is implemented with average pooling 

and can be obtained from Eq. 11: 
 
𝑂𝑎𝑣𝑔(𝑥) = 1/𝑁∑ |𝑥𝑖

𝑁
𝑖=1 | (11) 

 

The selection of average pooling was to prevent 

information loss from the X-ray images. Equation 11 

represents the calculation of average pooling. Rank-based 

average pooling was used by Wang and He (1990). Eight-

layer average pooling CNN was proposed by Kakarla et al. 

(2021) to address three class classifications for brain MRI. 

Max pooling is the commonly used pooling method in 

CNN and can be calculated using Eq. 12: 
 
𝑂𝑚𝑎𝑥(𝑥) = max⁡(𝑥𝑖)𝑖=1

𝑁  (12) 

 

The Rectified Linear Unit (ReLU) after the pooling layer 

in each convolution block is used as a non-linear activation 

function to reduce the generated output from Eq. 13: 
 

𝑅𝑒𝐿𝑈 = {
0⁡𝑖𝑓⁡(𝑥 < 0)
1⁡𝑖𝑓⁡(𝑥 ≥ 0)

 (13) 

 
A scaling function called Soft max converts numbers 

or logits into probabilities. Equation 14 provides the 

softmax function for multi-classification, which is used 

for the output layer: 
 

𝑍(𝑥𝑖) =
𝑒𝑥𝑖

∑𝑒
𝑥𝑗

 (14) 

 
For binary classification, the sigmoid function is 

adopted and is given by Eq. 15: 
 

𝑍(𝑥𝑖) =
1

1+𝑒−𝑥𝑖
 (15) 

 
where, Z is the activation function for the output layer. 

VGG16 

A fine-tuned VGG16 model was used and worked 

with three sets of data, getting an accuracy of 79.8% for 

the binary classification of COVID and non-COVID. A 

deep CNN was introduced by Born et al. (2020) for 

COVID X-Ray classification and classification accuracy 

of 90.21% Simonyan and Zisserman (2014). Proposed a 

very deep convolutional neural network for massive 

images by the Visual Geometry Group (VGG). 

Inception V3 

The inception V3 model is used for feature extraction 
by Joshi et al. (2020). The inception V3 model comprises 
43 layers and has a lower error rate. Gaur et al. (2021) 
investigated EfficientNetB0, VGG16, and inception V3 
using Chest X-ray images. To identify pulmonary images 
and ultimately produce a workable and realistic computer-
aided diagnostic model, the inception V3 was adopted by 
Wang et al. (2017). The dataset with 2437 training 
images, 660 test images and 200 validation images makes 
up the dataset. For the classification, deep learning 
architectures RESNET-101 and inception V3 have been 
used. When the results obtained are examined, the 
ResNet-101 architecture yields an accuracy rate of 
84.09%, while the inception V3 architecture yields an 
accuracy rate of 87.42% by Demir et al. (2019). 

Dense Net 

Pertained weights are used for transfer learning as well, 

which helps the network to learn and perform better. The 

model used by Chauhan et al. (2021) was trained with 10 

epochs. Modified Densenet201 was given by Hasan et al. 

(2021) using COVID-19 CT images. For the classification 

of pathological images, an Atrous Dense Net (ADN), a 

deep learning network, was proposed by Li et al. (2019) 

combining the atrous convolutions and dense blocks, the 

proposed ADN achieves multiscale feature extraction. 

The output of the Dense Layer receives the input features 

from all the previous layers. If l represents the layer and 

the output in Dense Net was obtained from Eq. 16: 
 
𝑂𝑙 = 𝐻𝑙[𝑂0,𝑂1,𝑂2……𝑂𝑙−1] (16) 
 

Mobile Net 

Mobile NetV2 was used in the study of skin cancer 
image detection and classification on Android devices. 
In accordance with the results of the study, the best 
learning rate and epoch parameters were found to be 
0.0001 for object detection and 15,000 epochs for 
classification Wibowo et al. (2020). Fine-tuned 
MobileNetV2 was proposed by Kaya and Gürsoy (2023) 
for COVID X-Ray classification. 

Efficient Net 

A nested network of pre-activated residual blocks, 

Atrous Spatial Pyramid Pooling (ASPP) blocks, and 

Attention Gates (AGs) make up Nested Efficient Net 

(NENet), which uses EfficientNetB4 as an encoder was 

developed by Siddique et al. (2022). EfficientNetB0 was 

fine-tuned and proposed for brain MRI classification by 

Shah et al. (2022). 
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Fig. 7: Basic architecture of RESNET model (He et al., 2016) 

 

 
 
Fig. 8: Residual block (He et al., 2016) 

 

RESNET50 

He et al. (2016) proposed a deep residual network for 

image classification. RESNET50 with transfer learning 

technique was applied for breast cancer diagnosis using 

histopathological images by Al-Haija and Adebanjo 

(2020). Deep CNN can be trained more effectively with 

residual learning methods. From the input, a set of filters 

with trainable weights creates feature maps using the 

convolution operation. RESNET uses basic first-order 

algorithms for training and has shortcut connections 

across layers. RESNET skip connections mitigate the 

problem of vanishing gradients in deep neural networks 

by enabling the gradient to flow along an additional 

shortcut channel. These connections also aid by allowing 

the model to learn identity functions, ensuring that the 

higher layer performs at least as well as the lower layer. 

The RESNET50 architecture is shown in Fig. 7. 

An increase in the number of layers increases the 

learning performance and accuracy. The output in each layer 

was combined with the residual function from Eq. 17 

adopted from He et al. (2016): 

𝑂𝑘 = 𝑂𝑘 ∑ 𝐹(𝑥𝑖𝑊𝑖
𝐾−1
𝑖=𝑘 ) (17) 

 

where, K denotes the depth and k is any shallower unit. 

The outputs from the previous layer were added to the 

outputs of stacked layers via the skip connections between 

layers shown in Fig. 8. The element-wise addition was 

conducted F(x) + x after identity mapping of x. 

On the CIFAR-10 dataset, the RESNET has tested the 

network with 100 and 1000 layers. The 152-layer 

ImageNet dataset has fewer parameters than the VGG16 

network (Simonyan and Zisserman, 2014). is another 

well-liked Deep CNN architecture. At the ImageNet 

Large Scale Visual Recognition Challenge (ILSVRC) 

2015 classification competition, an ensemble of deep 

residual networks placed first with a 3.57% error rate on 

the image net. 

Impact of Deep Learning Models on Medical Images 

The challenge of feature selection is resolved by deep 

learning algorithms, which can automatically extract 

essential characteristics from unprocessed input data. The 

development of artificial neural networks and 

comprehensive investigation of deep learning 

methodologies resulted in promising possible outcomes in 

medical imaging. Deep learning algorithms have the 

ability to help with early disease detection, which is 

essential for medical processes that involve the early 

identification, monitoring, diagnosis, and evaluation of 

different medical disorders. In medical imaging, deep 

learning algorithms have been applied to categorize, 

detect, and segment medical pictures based on various 

clinical applications, including digital histopathology 

images, X-ray images, computed tomography images, and 

mammography images. This research work focuses on the 

DL model which is specially used for medical image 

segmentation and classification. So the experiment was 

carried out by the trained DL models. 

Experimental Analysis 

Dataset 

One of the most important tasks in image recognition 
and computer vision research is locating suitable datasets. 
The main drawback of the DL model in medical image 
analysis is that sufficient medical images for training sets 
were not available. The proposed model was evaluated 
with 8342 X-ray images and 118 X-ray images were 

collected from Chengalpattu Medical College Hospital, 
Chennai, India. These images were a part of the real-time 
training dataset and were used to validate the findings. 
The remaining 8224 chest X-ray images were taken from 
the COVID, non-COVID, and Pneumonia datasets from 
Kaggle. 848 COVID images, 4394 non-COVID X-ray 

images, and 3100 images of X-rays with Pneumonitis 
were included in the classification. There were 848 
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samples in total, 118 of them were real-time data. Here 
the class imbalance is one of the primary factors, which 
had an impact on training the dataset and accuracy metric. 
The raw image collection was organized and prepared for 
training the DL models. Data preparation and cleaning 
were essential parts of the DL process. 

Experimental Setup 

The experiment was done in an Asus Zen book with 

intel (R) core (TM) i7-10510U CPU @1.80 GHz. The 

implementation was done in the Python TensorFlow 

framework. A total of 8,342 images were given to the 

model for training and validation. Initially, the raw images 

collected were undergone with processing like data 

cleaning and resizing. Then the images are given for noise 

removal as shown in Fig. 1. As (Guan et al., 2019) said, 

the noise due to illumination and the circuit temperature 

would have been removed by Gaussian smoothing. Then 

the dataset was fed in texture feature map generation using 

LT-LBP. Texture extraction was adopted from (Wang et al., 

2019; Ojala et al., 1996). This LBP was converted into LT-

LBP by Lakshmi et al. (2021) from Eqs. (4-6). The feature 

map generated from LT-LBP is fed as input to the DL 

models such as inception V3, Dense Net, Mobile Net, 

Efficient Net (B0-B7), VGG16, and RESNET50. The 

proposed model was developed and examined with the 

DL models as mentioned. The hyperparameters with 

optimizers such as Adam and Stochastic Gradient Descent 

(SGD) have been applied. Adam optimizer from Eq. 18 

with a learning rate of 0.001 gave better results: 

 

𝑚𝑛 = 𝐸[𝐴𝑛] (18) 

 

where, m is the moment of the certain variable, A is any 

variable and E is the expected value of the n variable.  

Vani and Rao (2019) provided the analysis of various 

optimizers and the Adam optimizer resulted in better 

accuracy. The validation split ratio was taken as 80: 20. 

The batch size is 32. The batch size determines the 

number of samples to train the network. Data 

augmentation involves adding new data points from the 

given data, which was typically used to increase the 

number of training images. Based on the data 

augmentation approach, the images were split into four 

quadrants to increase the amount of data for training and 

validation. The metrics used for comparison are accuracy, 

precision, and recall. The inception V3, Dense Net, Mobile 

Net, Efficient Net (B0-B7), VGG16, and RESNET50 were 

used along with LT-LBP and the results are compared. For 

LT-LBP + RESNET50 the accuracy is 87%. The results are 

shown in Table 3. The experiment was continued with 

binary and multi-classification for analyzing the 

performance of LT-LBP for both binary (COVID/Non-

COVID) and multi-classification with COVID, Non-

COVID, and Pneumonia. RESNET50, with LT-LBP as 

feature map generation, results in better performance. 

Categorical cross entropy and Binary cross entropy are 

applied in the model for multi and binary classification. 

Normalization was done on the data before it was 

provided as input to the convolutional layer. Each model 

was experimented with 50 epochs. The accuracy is 

calculated by Eq. 19: 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃⁡+⁡𝑇𝑁)

(𝑇𝑃⁡+⁡𝑇𝑁⁡+⁡𝐹𝑃⁡+⁡𝐹𝑁)
 (19) 

 

where, TP is True Positive and TN is True Negative, FP 

is False Positive and FN is False Negative. The precision 

was derived from Eq. 20 and measures how precisely the 

model identified a sample as positive: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃⁡+⁡𝐹𝑃)
 (20) 

 

The recall was determined as the proportion of 

positive samples that were correctly identified as positive 

to all positive samples. The recall measures how well the 

model can identify positive samples. The more positive 

samples are identified, the larger the recall, and was 

calculated from Eq. 21. Table 4 and Fig. 9 show the 

accuracy, precision, and recall for the evaluated deep 

learning models such as Dense Net, Inception, Mobile 

Net, Efficient Net(B0-B6) and VGG16 with LT-LBP:  

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃⁡+⁡𝐹𝑁)
 (21) 

 

For further analysis, the RESNET50 model was 

chosen and LT-LBP was used for the feature vector. LT-

LBP was continued with the provided hyper-parameters, 

as it demonstrates the impact of the pre-processing 

method and showed that the accuracy of the proposed 

methodology has increased as given in Table 5. 

 

 
 
Fig. 9: Experimental results of DL models combined with LT-LBP 



Pankaja Lakshmi P. and Sivagami M. / Journal of Computer Science 2024, 20 (1): 106.120 

DOI: 10.3844/jcssp.2024.106.120 

 

114 

Table 4: Results from deep learning models with LT-LBP 

    Val Val Val 

Models Accuracy (%) precision (%) Recall (%) accuracy (%) precision (%) recall (%) 

LT-LBP + 78 76 71 64 65 63 

Inception V3 

LT-LBP + 78 78 78 65 62 66 

Dense Net 

LT-LBP + 71 70 65 65 60 64 

Mobile Net 

LT-LBP + 78 81 76 76 81 74 

Efficient netB0 

LT-LBP + 81 81 81 77 81 80 

Efficient 

netB1 

LT-LBP + VGG16 78 78 76 79 81 77 
 
Table 5: Accuracy comparison for binary classification 

Model  Class  Accuracy % 

RESNET50 Binary 78 

LT-LBP + RESNET50 Binary 87 

LT-LBP + RESNET50 Binary (quadrants) 88 
 

Results and Discussion 

The experiment started with data cleaning and noise 

removal using a Gaussian filter and underwent LT-LBP 

processing implemented by us. Then the generated feature 

vector was fed into DL models and the results were 

analyzed. InceptionV3, Dense Net, Mobile Net, Efficient 

Net, VGG16, and RESNET50 were combined with LT-

LBP and the accuracy has been compared. 

Then the experiment was continued with four quadrants 
of the images. The model output is 87% for binary and 85% 
for multi-class, respectively as shown in Table 6. 

The results are presented in Table 4. As from the 

literature survey 127 COVID X-Ray images got an 

accuracy of 87% with 1351 X-ray images achieving 89% 

of accuracy metrics. Also, Born et al. (2020); Mahmud et al. 

(2020); Qayyum et al. (2021); Muhammad et al. (2022) 

concluded with an accuracy of 89, 87, 90, and 90% 

respectively. But when compared to other models from the 

literature the dataset used in the previous work was trained 

with a limited number of training images. Johnson and 

Khoshgoftaar (2019) have discussed distinct methods to 

overcome the class imbalance in the data set. 

Two-phase learning and dynamic sampling methods 

were suggested for DL models. Our model had been 

trained with more training images and also the real-time 

data were included for training as well as testing. A 

model has a small training error but a huge validation 

error, it is producing a high variance. Although the 

model doesn't display changes in training and validation 

errors, learning could be improved. A similar experiment 

was carried out at this point with the model being trained 

and the images divided into four quadrants. The 

accuracy has increased, yielding scores of 88-87%.  

Figure 10 shows the performance of LT-LBP for feature 

extraction and combined with ML models. From the curve, 

it has been shown that the model is perfect and LT-LBP can 

be used in place of LBP. The LT-LBP was used in machine 

learning models including Support Vector Machine (SVM), 

Random Forest (RF), K-Nearest Neighbor (KNN), and 

Logistic Regression (LR) based on the prior research.  

Since the feature generator, LT-LBP has shown better 

results from the prior work, the same is used for analyzing 

the DL models. Moreover, there was a modest increase in 

accuracy. In addition to unbalanced data, the complexity, 

and the overlap also affect the classification. 

The model performance was compared with RESNET50 

and LT-LBP + RESNET50 and is shown in Table 5. For 

binary and multi-classification, the accuracy variations rely 

on the number of images utilized in each class. Figure 13 

shows the accuracy comparison of RESNET50 with LT-

LBP + RESNET50 for binary classification. 

The accuracy is the proportion of productive results 

obtained with the validation datasets, whereas the loss is 

the total errors based on the training and validation 

datasets. The images were divided into four quadrants and 

the feature map has been extracted using LT-LBP and fed 

into the DL models for evaluating the accuracy. 

 The Quadrant images produced an improvement in 

accuracy when the size of the image was reduced to half 

without changing the resolution of the image. The results 

are shown in Fig. 10. The results are less in train datasets 

but better in the validation datasets, the loss is decreased 

and accuracy is increased. Table 5 shows the results of the 

proposed model. The accuracy and loss curve for the 

experimented results are shown in Figs. 11,12 and 14. The 

Accuracy comparison of LT-LBP with ResNet50 is 

shown in Fig. 13. 

 
Table 6: Accuracy comparison for Multi classification 

Model  Class  Accuracy % 

RESNET50 Multi 75 

LT-LBP + RESNET50 Multi 85 

LT-LBP + RESNET50 Multi (quadrants) 87 
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Fig. 10: Cumulative accuracy file (CAP) Lakshmi et al., 2021 
 

 
 

 
 
Fig. 11: Accuracy and loss curve for ResNet50 

 

 

 
 
Fig. 12: Accuracy and loss curve for LT-LBP + ResNet 50 
 

 
 
Fig. 13: Accuracy comparison for ResNet 50 with LT-LBP + 

 ResNet 50 (binary classification) 
 

 
 
Fig. 14: Accuracy and loss curve for LT-LBP + ResNet50 for 

 quadrant images 
 

 
 
Fig. 15: Area under the curve for LT-LBP + ResNet50 
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Fig. 16: Comparison of validation loss for ResNet50, LTLBP +

 ResNet50, LT-LBP (quadrants) + ResNet50 

 

The AUC for the proposed model is 91%. The results 

are displayed in Fig. 15. The models VGG16 and 

RESNET50 yield the most significant outcomes. The 

experiment is then continued by extracting LT-LBP 

texture features. Tuncer et al. (2020) proposed Relief and 

this method was adopted for images which were then 

divided into four quadrants the quadrants are LT-LBP was 

used and the data was fed in RESNET50, which produces 

better accuracy. 

The temporal complexity of an algorithm serves as an 

indicator of its speed for a given input size. The amount 

of space that an algorithm uses in relation to the size of 

the input is defined as the algorithm's space complexity. 

Auxiliary space and input space are both parts of space 

complexity. As same as the time complexity, it is 

described according to a specific input size. Model 

complexity is influenced by the model framework 

selection and was discussed by Hu et al. (2021). Model 

type such as feed-forward Neural Networks or CNN, 

activation function such as sigmoid or ReLU, and other 

factors are included in the model framework element. The 

complexity measure criteria for various model 

frameworks may differ. 

An efficient model has an Area Under the Curve 

(AUC) close to 1, indicating that it has a high level of 

separability. An AUC close to 0, which indicates the worst 

measure of separability, indicates a poor model. It predicts 

both 1s and 0s as 1. Moreover, if the AUC is 0.5, the 

model has absolutely no capacity for class separation.  

The AUC for the proposed model is shown in Fig. 15. 

The complexity of a model is also influenced by the data 

used to train it. Data dimensionality, data distribution, 

and information volume assessed by Kolmogorov 

complexity are important criteria. L1 regularized SVM 

and LDA model are two models that are used to create 

the hybrid model. The predictive model's training time 

is decreased by reducing the temporal complexity of the 

forecasting model by removing irrelevant features from 

the feature space in Afshin-Pour et al. (2014). 

When the data are not equally distributed then the class 

imbalance arises and the accuracy of the learning network 

could show variations. The lack of data is also one of the 

reasons for class imbalance in medical diagnosis. Other 

than the imbalanced data, the complexity and 

overlapping also influence the data reparability between 

classes (Abd Elrahman and Abraham (2013). The 

validation loss for the experimented results has been 

analyzed in Fig. 16. The use of LT-LBP and RESNET50 in 

combination decreased the validation loss more than in the 

RESNET50 model. 

Conclusion 

The LT-LBP as a texture feature extractor from 

COVID X-Ray images were used with DL models and 

the results have been studied. With the addition of ML 

models from the previous research, the study has been 

done and the outcomes have been examined. Thse 

outcomes revealed a notable increase in accuracy. In 

spite of the learning from the deep neural network 

Additionally, the extraction of texture features requires 

less computation. Data cleaning and noise removal were 

applied to the dataset and then LT-LBP texture 

extraction was performed in order to create feature 

vectors. Inception V3, Dense Net, MobileNet, Efficient 

Net (B0-B7), VGG16 and RESNET50 were among the 

DL models that the features were then loaded for 

training. All of the models had a class imbalance and the 

performance metrics were mostly determined by the data 

set. The class imbalance in the dataset had a significant 

impact on the model's performance. With 118 real-time 

datasets and 8342 training images, the proposed 

approach in this research achieved an accuracy of 87%. 

When applying the deep learning model to the data, 

additional research would have focused on the class 

imbalance in the data. Storage needs have increased 

from gigabytes to petabytes as the number of digitized 

images has expanded exponentially.  

The dataset of COVID X-ray images is used in this 

study to examine the effectiveness of LT-LBP-based 

texture feature extraction using a DL model. At the 

preprocessing stage, texture features are created with the 

least amount of computational complexity. The model's 

accuracy has been compared to other deep learning 

models' accuracy. The results were more accurately 

achieved when the LT-LBP and RESNET-50 were 

coupled. So LT-LBP can be used as a feature extractor 

instead of LBP. The outcomes demonstrated the 

accuracy improvement in both ML and DL models. 

Additionally, the cost of computing to extract texture 

features was decreased from exponential to linear. 

Further research will focus on fine-tuning the model. 



Pankaja Lakshmi P. and Sivagami M. / Journal of Computer Science 2024, 20 (1): 106.120 

DOI: 10.3844/jcssp.2024.106.120 

 

117 

Acknowledgment 

We would like to express our gratitude to 

Chengalpattu Medical College Hospital, Chengalpattu, 

Chennai for their help in collecting the images. 

Funding Information 

The Authors have not received any financial support 

or funding to report. 

Author’s Contributions 

Pankaja Lakshmi P.: Conceptualization, Methodology, 

Software. Data curation, Writing- Original draft preparation. 

Sivagami M.: Investigation, Validation, Supervision. 

Ethics  

I undersigned that this article has not been published 

elsewhere. The authors declare no conflict of interest. 

References 

Abbas, A., Abdelsamea, M. M., & Gaber, M. M. (2021). 

Classification of COVID-19 in chest X-ray images 

using DeTraC deep convolutional neural network. 

Applied Intelligence, 51, 854-864. 

 https://doi.org/10.1007/s10489-020-01829-7 

Abd Elrahman, S. M., & Abraham, A. (2013). A review 

of class imbalance problem. Journal of Network and 

Innovative Computing, 1(2013), 332-340. 

 https://ias04.softcomputing.net/jnic2.pdf 

Afshin-Pour, B., Shams, S. M., & Strother, S. (2014). A 

hybrid LDA+ gCCA model for fMRI data 

classification and visualization. IEEE Transactions on 

Medical Imaging, 34(5), 1031-1041. 

 https://doi.org/10.1109/TMI.2014.2374074 

Al-Haija, Q. A., & Adebanjo, A. (2020). Breast cancer 

diagnosis in histopathological images using resnet-50 

convolutional neural network. In 2020 IEEE 

International IOT, Electronics and Mechatronics 

Conference (IEMTRONICS) 1-7. IEEE. 
 https://doi.org/10.1109/IEMTRONICS51293.2020.9216455 
Ardakani, A. A., Kanafi, A. R., Acharya, U. R., Khadem, 

N., & Mohammadi, A. (2020). Application of deep 

learning technique to manage COVID-19 in routine 

clinical practice using CT images: Results of 10 

convolutional neural networks. Computers in 

Biology and Medicine, 121, 103795. 
 https://doi.org/10.1016/j.compbiomed.2020.103795 
Asif, S., Wenhui, Y., Jin, H., & Jinhai, S. (2020). 

Classification of COVID-19 from chest X-ray images 
using deep convolutional neural network. In 2020 
IEEE 6th International Conference on Computer and 
Communications (ICCC) 426-433. IEEE. 

 https://doi.org/10.1109/ICCC51575.2020.9344870 

Bedi, A. K., & Sunkaria, R. K. (2021). Mean distance 

local binary pattern: A novel technique for color and 

texture image retrieval for liver ultrasound 

images. Multimedia Tools and Applications, 80, 

20773-20802. 

 https://doi.org/10.1007/s11042-021-10758-7 

Born, J., Brändle, G., Cossio, M., Disdier, M., Goulet, J., 

Roulin, J., & Wiedemann, N. (2020). POCOVID-

Net: Automatic detection of COVID-19 from a new 

lung ultrasound imaging dataset (POCUS). arxiv 

Preprint arxiv:2004.12084. 

 https://doi.org/10.48550/arXiv.2004.12084 

Burrello, A., Schindler, K., Benini, L., & Rahimi, A. 

(2019). Hyperdimensional computing with local 

binary patterns: One-shot learning of seizure onset and 

identification of ictogenic brain regions using short-

time iEEG recordings. IEEE Transactions on 

Biomedical Engineering, 67(2), 601-613. 

 https://doi.org/10.1109/TBME.2019.2919137 

Chauhan, T., Palivela, H., & Tiwari, S. (2021). 

Optimization and fine-tuning of dense net model for 

classification of COVID-19 cases in medical 

imaging. International Journal of Information 

Management Data Insights, 1(2), 100020. 

 https://doi.org/10.1016/j.jjimei.2021.100020 

Chen, J., He, C., Yin, J., Li, J., Duan, X., Cao, Y., ... & Li, 

Q. (2021). Quantitative analysis and automated lung 

ultrasound scoring for evaluating COVID-19 

pneumonia with neural networks. IEEE Transactions 

on Ultrasonics, Ferroelectrics and Frequency 

Control, 68(7), 2507-2515. 

 https://doi.org/10.1109/TUFFC.2021.3070696 

Chowdhary, C. L., & Acharjya, D. P. (2020). 

Segmentation and feature extraction in medical 

imaging: A systematic review. Procedia Computer 

Science, 167, 26-36. 

 https://doi.org/10.1016/j.procs.2020.03.179 

Demir, A., Yilmaz, F., & Kose, O. (2019). Early detection 

of skin cancer using deep learning architectures: 

Resnet-101 and inception-v3. In 2019 Medical 

Technologies Congress (TIPTEKNO) 1-4. IEEE. 

 https://doi.org/10.1109/TIPTEKNO47231.2019.8972045 

Elpeltagy, M., & Sallam, H. (2021). Automatic prediction 

of COVID-19 from chest images using modified 

ResNet50. Multimedia Tools and 

Applications, 80(17), 26451-26463. 

 https://doi.org/10.1007/s11042-021-10783-6 

Erfankhah, H., Yazdi, M., Babaie, M., & Tizhoosh, H. R. 

(2019). Heterogeneity-aware local binary patterns for 

retrieval of histopathology images. IEEE Access, 7, 

18354-18367. 

 https://doi.org/10.1109/ACCESS.2019.2897281 

https://doi.org/10.1007/s10489-020-01829-7
https://doi.org/10.1109/TMI.2014.2374074
https://doi.org/10.1109/IEMTRONICS51293.2020.9216455
https://doi.org/10.1016/j.compbiomed.2020.103795
https://doi.org/10.1109/ICCC51575.2020.9344870
https://doi.org/10.1007/s11042-021-10758-7
https://doi.org/10.48550/arXiv.2004.12084
https://doi.org/10.1109/TBME.2019.2919137
https://doi.org/10.1016/j.jjimei.2021.100020
https://doi.org/10.1109/TUFFC.2021.3070696
https://doi.org/10.1016/j.procs.2020.03.179
https://doi.org/10.1109/TIPTEKNO47231.2019.8972045
https://doi.org/10.1007/s11042-021-10783-6
https://doi.org/10.1109/ACCESS.2019.2897281


Pankaja Lakshmi P. and Sivagami M. / Journal of Computer Science 2024, 20 (1): 106.120 

DOI: 10.3844/jcssp.2024.106.120 

 

118 

Garg, M., & Dhiman, G. (2021). A novel content-based 

image retrieval approach for classification using 

GLCM features and texture fused LBP 

variants. Neural Computing and Applications, 33, 

1311-1328. 

 https://doi.org/10.1007/s00521-020-05017-z 

Gaur, L., Bhatia, U., Jhanjhi, N. Z., Muhammad, G., & 

Masud, M. (2021). Medical image-based detection of 

COVID-19 using deep convolution neural networks. 

Multimedia Systems, 1-10. 

 https://doi.org/10.1007/s00530-021-00794-6 

Guan, J., Lai, R., & Xiong, A. (2019). Wavelet deep 

neural network for stripe noise removal. IEEE 

Access, 7, 44544-44554. 

 https://doi.org/10.1109/ACCESS.2019.2908720 
Hafiane, A., Seetharaman, G., Palaniappan, K., & 

Zavidovique, B. (2008). Rotationally invariant 
hashing of median binary patterns for texture 
classification. In Image Analysis and Recognition: 5th 
International Conference, ICIAR 2008, Póvoa de 
Varzim, Portugal, Proceedings 5 619-629. Springer 
berlin Heidelberg. 

 https://doi.org/10.1007/978-3-540-69812-8_61 

Han, Y., Song, T., Feng, J., & Xie, Y. (2021). Grayscale-

inversion and rotation invariant image description 

with sorted LBP features. Signal Processing: Image 

Communication, 99, 116491. 

 https://doi.org/10.1016/j.image.2021.116491 

Hasan, N., Bao, Y., Shawon, A., & Huang, Y. (2021). 

DenseNet convolutional neural networks application 

for predicting COVID-19 using CT image. SN 

Computer Science, 2(5), 389. 

 https://doi.org/10.1007/s42979-021-00782-7 

Hassaballah, M., Alshazly, H. A., & Ali, A. A. (2019). Ear 

recognition using local binary patterns: A 

comparative experimental study. Expert Systems with 

Applications, 118, 182-200. 

 https://doi.org/10.1016/j.eswa.2018.10.007 

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity 

mappings in deep residual networks. In Computer 

Vision-ECCV 2016: 14th European Conference, 

Amsterdam, The Netherlands, Proceedings, Part IV 

14 630-645. Springer International Publishing. 

 https://doi.org/10.1007/978-3-319-46493-0_38 

Heikkila, M., & Pietikainen, M. (2006). A texture-based 

method for modeling the background and detecting 

moving objects. IEEE Transactions on Pattern 

Analysis and Machine Intelligence, 28(4), 657-662. 

 https://doi.org/10.1109/TPAMI.2006.68 

Hu, X., Chu, L., Pei, J., Liu, W., & Bian, J. (2021). Model 

complexity of deep learning: A survey. Knowledge 

and Information Systems, 63, 2585-2619. 

 https://doi.org/10.1007/s10115-021-01605-0 

Johnson, J. M., & Khoshgoftaar, T. M. (2019). Survey on 

deep learning with class imbalance. Journal of Big 

Data, 6(1), 1-54. 

 https://doi.org/10.1186/s40537-019-0192-5 

Joshi, K., Tripathi, V., Bose, C., & Bhardwaj, C. (2020). 

Robust sports image classification using inception 

V3 and neural networks. Procedia Computer 

Science, 167, 2374-2381. 

 https://doi.org/10.1016/j.procs.2020.03.290 

Kakarla, J., Isunuri, B. V., Doppalapudi, K. S., & 

Bylapudi, K. S. R. (2021). Three‐class classification 

of brain magnetic resonance images using average‐

pooling convolutional neural network. International 

Journal of Imaging Systems and Technology, 31(3), 

1731-1740. 

 https://doi.org/10.1002/ima.22554 

Kaplan, K., Kaya, Y., Kuncan, M., & Ertunç, H. M. 

(2020). Brain tumor classification using modified 

Local Binary Patterns (LBP) feature extraction 

methods. Medical Hypotheses, 139, 109696. 

 https://doi.org/10.1016/j.mehy.2020.109696 

Kar, C., & Banerjee, S. (2021). Intensity prediction of 

tropical cyclone using multilayer multi-block local 

binary pattern and tree-based classifiers over North 

Indian Ocean. Computers and Geosciences, 154, 

104798. 

 https://doi.org/10.1016/j.cageo.2021.104798 

Kaya, Y., & Gürsoy, E. (2023). A mobilenet-based CNN 

model with a novel fine-tuning mechanism for 

COVID-19 infection detection. Soft Computing, 

27(9), 5521-5535. 

 https://doi.org/10.1007/s00500-022-07798-y 

Kulkarni, A. R., Athavale, A. M., Sahni, A., Sukhal, S., 

Saini, A., Itteera, M., ... & Kulkarni, H. (2021). 

Deep learning model to predict the need for 

mechanical ventilation using chest X-ray images in 

hospitalised patients with COVID-19. BMJ 

Innovations, 7(2). 

 https://doi.org/10.1136/bmjinnov-2020-000593 

Kumar, N., & Nachamai, M. (2017). Noise removal and 

filtering techniques used in medical images. Orient. 

J. Comput. Sci. Technol, 10(1), 103-113. 

 https://doi.org/10.13005/ojcst/10.01.14 

Lakshmi, P. P., Sivagami, M., & Balaji, V. (2021). A 

novel LT-LBP based prediction model for COVID-

CT images with Machine Learning. In 2021 

International Conference on Information Systems 

and Advanced Technologies (ICISAT) 1-5. IEEE. 

 https://doi.org/10.1109/ICISAT54145.2021.9678196 

Li, Y., Xie, X., Shen, L., & Liu, S. (2019). Reverse active 

learning based atrous densenet for pathological image 

classification. BMC Bioinformatics, 20(1), 1-15. 

https://doi.org/10.1186/s12859-019-2979-y 

https://doi.org/10.1007/s00521-020-05017-z
https://doi.org/10.1007/s00530-021-00794-6
https://doi.org/10.1109/ACCESS.2019.2908720
https://doi.org/10.1007/978-3-540-69812-8_61
https://doi.org/10.1016/j.image.2021.116491
https://doi.org/10.1007/s42979-021-00782-7
https://doi.org/10.1016/j.eswa.2018.10.007
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1109/TPAMI.2006.68
https://doi.org/10.1007/s10115-021-01605-0
https://doi.org/10.1186/s40537-019-0192-5
https://doi.org/10.1016/j.procs.2020.03.290
https://doi.org/10.1002/ima.22554
https://doi.org/10.1016/j.mehy.2020.109696
https://doi.org/10.1016/j.cageo.2021.104798
https://doi.org/10.1007/s00500-022-07798-y
https://doi.org/10.1136/bmjinnov-2020-000593
https://doi.org/10.13005/ojcst/10.01.14
https://doi.org/10.1109/ICISAT54145.2021.9678196
https://doi.org/10.1186/s12859-019-2979-y


Pankaja Lakshmi P. and Sivagami M. / Journal of Computer Science 2024, 20 (1): 106.120 

DOI: 10.3844/jcssp.2024.106.120 

 

119 

Loey, M., El-Sappagh, S., & Mirjalili, S. (2022). 

Bayesian-based optimized deep learning model to 

detect COVID-19 patients using chest X-ray image 

data. Computers in Biology and Medicine, 142, 

105213. 

 https://doi.org/10.1016/j.compbiomed.2022.105213 

Luz, E., Silva, P., Silva, R., Silva, L., Guimarães, J., 

Miozzo, G., ... & Menotti, D. (2021). Towards an 

effective and efficient deep learning model for 

COVID-19 patterns detection in X-ray 

images. Research on Biomedical Engineering, 1-14. 

 https://doi.org/10.1007/s42600-021-00151-6 

Mahmud, T., Rahman, M. A., & Fattah, S. A. (2020). 

CovXNet: A multi-dilation convolutional neural 

network for automatic COVID-19 and other 

pneumonia detection from chest X-ray images with 

transferable multi-receptive feature optimization. 

Computers in Biology and Medicine, 122, 103869. 

 https://doi.org/10.1016/j.compbiomed.2020.103869 

Mistry, A. R., Uzbelger Feldman, D., Yang, J., & 

Ryterski, E. (2014). Low dose x-ray sources and high 

quantum efficiency sensors: The next challenge in 

dental digital imaging? Radiology Research and 

Practice. 

 https://doi.org/10.1155/2014/543524 

Muhammad, L. J., Algehyne, E. A., Usman, S. S., 

Mohammed, I. A., Abdulkadir, A., Jibrin, M. B., & 

Malgwi, Y. M. (2022). Deep learning models for 

predicting COVID-19 using chest x-ray 

images. Trends and Advancements of Image 

Processing and Its Applications, 127-144. 

 https://doi.org/10.1007/978-3-030-75945-2_6 

Najmabadi, M., & Moallem, P. (2022). Local symmetric 

directional pattern: A novel descriptor for extracting 

compact and distinctive features in face recognition. 

Optik, 251, 168331. 

 https://doi.org/10.1016/j.ijleo.2021.168331 

Nanni, L., Lumini, A., & Brahnam, S. (2010). Local 

binary patterns variants as texture descriptors for 

medical image analysis. Artificial Intelligence in 

Medicine, 49(2), 117-125. 

 https://doi.org/10.1016/j.artmed.2010.02.006 

Nirthika, R., Manivannan, S., Ramanan, A., & Wang, R. 

(2022). Pooling in convolutional neural networks for 

medical image analysis: A survey and an empirical 

study. Neural Computing and Applications, 34(7), 

5321-5347. 

 https://doi.org/10.1007/s00521-022-06953-8 

Ojala, T., Pietikäinen, M., & Harwood, D. (1996). A 

comparative study of texture measures with 

classification based on featured distributions. Pattern 

Recognition, 29(1), 51-59. 

 https://doi.org/10.1016/0031-3203(95)00067-4 

Ozturk, T., Talo, M., Yildirim, E. A., Baloglu, U. B., 

Yildirim, O., & Acharya, U. R. (2020). Automated 

detection of COVID-19 cases using deep neural 

networks with X-ray images. Computers in Biology 

and Medicine, 121, 103792. 

 https://doi.org/10.1016/j.compbiomed.2020.103792 

Pantazi, X. E., Moshou, D., & Tamouridou, A. A. (2019). 

Automated leaf disease detection in different crop 

species through image features analysis and One 

Class Classifiers. Computers and Electronics in 

Agriculture, 156, 96-104. 

 https://doi.org/10.1016/j.compag.2018.11.005 

Pérez-García, F., Sparks, R., & Ourselin, S. (2021). 

TorchIO: A Python library for efficient loading, 

preprocessing, augmentation and patch-based 

sampling of medical images in deep learning. 

Computer Methods and Programs in Biomedicine, 

208, 106236. 

 https://doi.org/10.1016/j.cmpb.2021.106236 

Pietikäinen, M., & Zhao, G. (2015). Two decades of local 

binary patterns: A survey. In Advances in Independent 

Component Analysis and Learning Machines 175-210. 

Academic Press. 

 https://doi.org/10.1016/B978-0-12-802806-3.00009-9 

Qayyum, A., Razzak, I., Tanveer, M., & Kumar, A. (2021). 

Depth-wise dense neural network for automatic 

COVID19 infection detection and diagnosis. Annals of 

Operations Research, 1-21.  

 https://doi.org/10.1007/s10479-021-04154-5 

Qiao, S., Yu, Q., Zhao, Z., Song, L., Tao, H., Zhang, T., 

& Zhao, C. (2022). Edge extraction method for medical 

images based on improved local binary pattern 

combined with edge-aware filtering. Biomedical Signal 

Processing and Control, 74, 103-490.  

 https://doi.org/10.1016/j.bspc.2022.103490 

Salih, O., & Duffy, K. J. (2022). The local ternary pattern 

encoder-decoder neural network for dental image 

segmentation. IET Image Processing, 16(6), 1520-1530. 

https://doi.org/10.1049/ipr2.12416 

Shah, H. A., Saeed, F., Yun, S., Park, J. H., Paul, A., & Kang, 

J. M. (2022). A robust approach for brain tumor 

detection in magnetic resonance images using finetuned 

efficientnet. IEEE Access, 10, 65426-65438. 

 https://doi.org/10.1109/ACCESS.2022.3184113 
Siddique, N., Paheding, S., Reyes Angulo, A. A., Alom, 

M. Z., & Devabhaktuni, V. K. (2022). Fractal, 

recurrent and dense U-Net architectures with 

efficientnet encoder for medical image segmentation. 

Journal of Medical Imaging, 9(6), 064004-064004. 

 https://doi.org/10.1117/1.JMI.9.6.064004 
Simonyan, K., & Zisserman, A. (2014). Very deep 

convolutional networks for large-scale image 

recognition. Arxiv Preprint Arxiv:1409.1556. 

 https://doi.org/10.48550/arXiv.1409.1556 

https://doi.org/10.1016/j.compbiomed.2022.105213
https://doi.org/10.1007/s42600-021-00151-6
https://doi.org/10.1016/j.compbiomed.2020.103869
https://doi.org/10.1155/2014/543524
https://doi.org/10.1007/978-3-030-75945-2_6
https://doi.org/10.1016/j.ijleo.2021.168331
https://doi.org/10.1016/j.artmed.2010.02.006
https://doi.org/10.1007/s00521-022-06953-8
https://doi.org/10.1016/0031-3203(95)00067-4
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1016/j.compag.2018.11.005
https://doi.org/10.1016/j.cmpb.2021.106236
https://doi.org/10.1016/B978-0-12-802806-3.00009-9
https://doi.org/10.1007/s10479-021-04154-5
https://doi.org/10.1016/j.bspc.2022.103490
https://doi.org/10.1049/ipr2.12416
https://doi.org/10.1109/ACCESS.2022.3184113
https://doi.org/10.1117/1.JMI.9.6.064004


Pankaja Lakshmi P. and Sivagami M. / Journal of Computer Science 2024, 20 (1): 106.120 

DOI: 10.3844/jcssp.2024.106.120 

 

120 

Tuncer, T., Dogan, S., & Ozyurt, F. (2020). An automated 

residual exemplar local binary pattern and iterative 

relieff based COVID-19 detection method using 

chest X-ray image. Chemometrics and Intelligent 

Laboratory Systems, 203, 104054. 

 https://doi.org/10.1016/j.chemolab.2020.104054 

Van Ginneken, B., Romeny, B. T. H., & Viergever, M. A. 

(2001). Computer-aided diagnosis in chest 

radiography: A survey. IEEE Transactions on 

Medical Imaging, 20(12), 1228-1241. 

 https://doi.org/10.1109/42.974918 

Vani, S., & Rao, T. M. (2019). An experimental approach 

towards the performance assessment of various 

optimizers on convolutional neural network. In 2019 

3rd International Conference on Trends in 

Electronics and Informatics (ICOEI) 331-336. IEEE. 

 https://doi.org/10.1109/ICOEI.2019.8862686 

Wang, C., Chen, D., Hao, L., Liu, X., Zeng, Y., Chen, J., & 

Zhang, G. (2019). Pulmonary image classification based 

on inception-v3 transfer learning model. IEEE 

Access, 7, 146533-146541. 

 https://doi.org/10.1109/ACCESS.2019.2946000 

Wang, L., & He, D. C. (1990). Texture classification 

using texture spectrum. Pattern Recognition, 23(8), 

905-910. 

 https://doi.org/10.1016/00313203(90)90135-8 

Wang, S., Jiang, Y., Hou, X., Cheng, H., & Du, S. (2017). 

Cerebral micro-bleed detection based on the 

convolution neural network with rank based average 

pooling. IEEE Access, 5, 16576-16583. 

 https://doi.org/10.1109/ACCESS.2017.2736558 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wibowo, A., Hartanto, C. A., & Wirawan, P. W. (2020). 

Android skin cancer detection and classification 

based on mobilenetv2 model. International Journal 

of Advances in Intelligent Informatics, 6(2), 135-148. 

https://doi.org/10.26555/ijain.v6i2.492 

Yazdekhasty, P., Zindari, A., Nabizadeh-ShahreBabak, 

Z., Roshandel, R., Khadivi, P., Karimi, N., & Samavi, 

S. (2021). Bifurcated auto encoder for segmentation 

of COVID-19 infected regions in CT images. 

In Pattern Recognition. ICPR International 

Workshops and Challenges: Virtual Event, 

Proceedings, Part II 597-607. Springer International 

Publishing.  

 https://doi.org/10.1007/978-3-030-68790-8_46 

Yu, A. (2018). How to teach a computer to see with 

convolutional neural networks? Towards data 

science, Towards Data Science, 26. 

Zeebaree, D. Q., Haron, H., Abdulazeez, A. M., & 

Zebari, D. A. (2019). Trainable model based on 

new uniform LBP feature to identify the risk of the 

breast cancer. In 2019 International Conference on 

Advanced Science and Engineering 

(ICOASE) 106-111. IEEE.  

 https://doi.org/10.1109/ICOASE.2019.8723827 

Zhao, G., Ahonen, T., Matas, J., & Pietikainen, M. (2011). 

Rotation-invariant image and video description with 

local binary pattern features. IEEE Transactions on 

Image Processing, 21(4), 1465-1477.  

 https://doi.org/10.1109/TIP.2011.2175739 

 

https://doi.org/10.1016/j.chemolab.2020.104054
https://doi.org/10.1109/42.974918
https://doi.org/10.1109/ICOEI.2019.8862686
https://doi.org/10.1109/ACCESS.2019.2946000
https://doi.org/10.1016/00313203(90)90135-8
https://doi.org/10.1109/ACCESS.2017.2736558
https://doi.org/10.26555/ijain.v6i2.492
https://doi.org/10.1007/978-3-030-68790-8_46
https://doi.org/10.1109/ICOASE.2019.8723827
https://doi.org/10.1109/TIP.2011.2175739

