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Abstract: Alzheimer's Disease (AD), a common, chronic neurodegenerative 

condition, is characterized by the loss of neurons and synapses in the cerebral 

cortex and specific subcortical regions. According to claims from a recent 

study, AD has a 20% misdiagnosis rate. Therefore, it is essential to create a 

useful tool to recognize the stages of AD with a lower prediction error rate 

to reduce misdiagnosis. Hence proposed a model called Whale-Optimized 

Deep Generative Adversarial Network (WODGAN). A generator plus a 

discriminator make up the model. The discriminator trains the model using 

real images; The generator creates synthetic images using noise and random 

selection. The discriminator goes through some processes to improve image 

quality, including Adaptive Histogram Equalization (AHE) and Adaptive 

Filtering (AF) approaches. Fuzzy feature extraction techniques are used to 

accurately segregate biomarker regions from brain MRI scans depending on 

AD pathology. The model uses Hilbert-Schmidt Independence Criterion 

Lasso (HSICL) to discover optimized biomarker features to combat 

overfitting. Before training, the discriminator can tell actual photos from 

artificial ones. The Whale Optimizer (WO) is used during training to 

improve network efficiency and lower prediction errors. The numerical 

results show a high accuracy of 99.93% in AD stage recognition. 

 

Keywords: Alzheimer's Disease, 3D MRI Brain Neuroimaging, Biomarker 

Feature, Feature Extraction, Deep Generative Adversarial Networks, Fuzzy 

Neutrosophic Logic Region Growing, Whale Optimize, Image Enhancement 
 

Introduction  

Alzheimer's is a neurodegenerative disorder 

(Brazaca et al., 2020) characterized by progressive and 

irreversible cognitive decline. The causes of AD are 

poorly understood: About 70% of the risk is present at 

birth in patients with many genes frequently involved. 

Other general risk factors are a history of head injury, 

depression, and hypertension. As of the 2020 report, 

approximately 50 million people worldwide suffer from 

various AD stages. Clinical stages of AD are Cognitive 

Normal (CN) (Nawaz et al., 2021), Significant Memory 

Concern (SMC) (Kazemi and Houghton, 2018), Mild 

Cognitive Impairment (MCI) (Leandrou et al., 2018) and 

AD (Shi et al., 2017a). While AD is at the normal 

cognitive stage, the patient shows no signs of the disease, 

including depression, MCI, or dementia. With cognitive 

variation indices and a clinical dementia grade of 0, SMC 

indicates that the patient is self-reporting significant 

memory apprehension. Patients' scores are now within the 

normal range for cognitive ability. Patients with Mild 

Cognitive Impairment (MCI) have reported subjective 

memory worry independently or in consultation with their 

clinician. They have been placed into either the early or 

late phases of MCI. In the final stages of AD, dementia 

symptoms gradually deteriorate over many years. 

Therefore, early identification (Chen et al., 2018; Lu et al., 

2018) is essential to prevent worsening health conditions. 

A probable diagnosis is based on illness and cognitive 

testing history with medical imaging and blood test to rule 

out other possible causes. Despite being effective, 

Neuroimaging methods are extensively suggested 
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diagnosing methods by medicos for early recognition of 

AD, like Positron Emission Tomography (PET) (Cheng 

and Liu, 2017) and MRIs (Lian et al., 2018). The Brain 

3D MRI technology can provide a clear image of various 

brain parts than other imaging techniques. Generally, an 

image is gathered from the 3 Tesla T1 weighted imaged 

MRI scanners. This study uses 3D MRIs (Wee et al., 

2019) baseline imageries from the AD Neuroimaging 

Initiative (ADNI, 2007) (http://adni.loni.usc.edu/data-

samples/access-data) dataset acquired from 3 Tesla T1 

weighted pictures. The T1 structural weighted MRI scans 

are acquired using a 1.5 T or 3T scanner. The 

characteristic 1.5 T gaining parameters Repetition Times 

(RT) = 2400 ms, Inversion Times (IT) = 1000 ms, least 

full Echo Time (ET), flip angle = 8°, acquisition matrix = 

256256170 in x, y and z dimension, the Field Of View 

(FOV) =240240 mm2. Capturing voxel sizes of 

1.251.251.2 mm3. The variable acquisition value of the 

3T scan is repetition time = 2300 mm, minimum full of 

echo time, inversion time = 900 ms, flip angles = 8°, FOV 

= 260260 mm2, acquisition matrix = 256256170, 

Capturing voxel sizes of 1.01.01.2 mm3. The parameters 

are commonly utilized to capture brain MRI scans in many 

scan centers. For processing and produce the highest 

throughput from the 3D MRI brain images (Feng et al., 

2018). There are numerous machine learning models that 

already exist for early AD phase identification using MRI 

(Vu et al., 2018; Beheshti et al., 2017; Ortiz et al., 2017; 

Shi et al., 2017b; Jha and Kwon, 2017) imaging. However, 

most existing approaches failed to forecast the early phases 

of Alzheimer's with minimum prediction error or loss. This 

research's main objectives are precise pathological 

biomarkers' AD identification region, reducing the 

overfitting issues, and optimizing the classifier's 

performance to reduce error/loss rate. The research 

contributes to filling the gaps and improving the WODSNN 

model's performance in AD stage identification. 

Literature Review 

This section deliberates the studies on MRI imaging 

methods and different studies on deep learning-based AD 

detection approaches. Table 1 describes recent studies on AD 

disease, which contain information about the type of data 

used, the name of the dataset and the number of samples and 

classes used, deep classifier name, contribution and 

limitations of the research work, and accuracy rate. 

Note: Ref- Reference, Acc*-Accuracy, ROC*-Receiver 

operating characteristic, OASIS*-Open Access Serious of 

Imaging Studies, ADNI*-Alzheimer's disease neuroimaging 

initiative, LSTM*-Long short-term memory, DCNN*-deep 

convolution network, PSA*-Principal component analysis. 

It is essential to avoid the limitations of the above 

discussed recent studies in Table 1 and to enhance the 

performance of the deep models to achieve AD stages 

detection with less loss rate. A new dermoscopic image 

segmentation (Ashour et al., 2019) approach has been 

introduced in this research, which uses a Neutrosophic set 

for segmentation. Unlike other logics, Neutrosophic uses an 

indeterminacy subset. The Neutrosophic images have been 

defined as three subsets, true, false, and indeterminacy 

subset. This research's comparative evaluation results 

analysis shows that the Neutrosophic logic-based 

segmentation approach has attained the highest accuracy 

than comparison segmentation approaches. The goal of this 

study (Gupta and Verma, 2020) is to transform 1-D 

adaptive filters into innovative 2D adaptive filters. The 

results of the performance evaluation show that the unique 

adaptive filters outperform other comparison filtering 

techniques, which is advantageous for reassembling the 

biological image. This study (Singh et al., 2020) proposes 

a new model for multiplicative noise suppressions and 

strong contrast improvement and demonstrates its 

effectiveness by utilizing a wide variety of clinical 

ultrasound images. The feature enlargement step of this 

framework improves the texture and contrast of ultrasound 

videos using a developed CLAHE method. The study by 

Damodaran et al. (2017) created a novel feature assortment 

method for classifying hyperspectral images. Aligning the 

empirical kernel map in the RKHS according to Surrogate 

Kernal and HSIC yields the 'new class separability extent. 

The study included feature extraction and decreased 

content-based picture retrieval methods (Garg and 

Dhiman, 2021). The method combines the Gray Level 

Co-occurrence Matrices (GLCM) descriptor and 

comprehensive structural feature extraction to extract 

statistical characteristics of an image's texture. Improved 

accuracy in the classification of the CORAL dataset is 

made possible using GLCM based feature extraction 

methods. A wavelet, transform-based feature extraction 

method and an evolving neural network, as described in the 

paper above, may now be used to discover and localize 

high-impendence faults in a time fluctuating distributed 

generation model (Lucas et al., 2020). In terms of 

dependability and accuracy, the findings of this procedure 

are positive. The output of the Gabor filter was used in this 

study (Al-Kadi, 2017) with 4 different fixed-resolution 

texture signatures with and without segmenting the cell 

nuclei to examine the magnitude responses. The best 

accuracy rate was obtained during testing when the energy of 

the Gabor filter was combined with the fractal signatures of 

the meningiomas in the sub-image. In this study (Fan et al., 

2021), an improved WO has been introduced with a join 

search mechanism for solving low convergence rates, easy 

fall into local optimum, and handling high dimensional data 

problems in other optimizers (Darwish, 2018). Initially, it 

uses a chaotic tent map to maintain the initial population's 

diversity for global search. 
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Table 1: Recent research on deep learning-based ad detection 
Ref. Data Dataset and class Deep model Contribution Limitations Acc % 

Jain et al. (2019) T1- MRI ADNI and 50 AD,  VGG16 Introduced transfer  Fewer samples 95.73 

  50 CN, 50 MCI  learning for a feature used for training 

    learning using VGG16 

    and image 

Liu et al. (2020) T1 MRI ADNI and 97 AD, Multi-tasks deep  Multi-model DL for Fewer samples 92.5 

  233 MCI, 119 NC CNNs +3D hippocampal classification- used for training (ROC) 

   DenseNets cation and segmentation 

Basaia et al. (2019) 3D T1- ADNI 416 AD, CNN Introduced a computer Skipped pre pro 99 

 MRI 280 cMCI,  -aided system for cessing, model 

  533 sMCI  individual diagnosis trained with less 

    of AD and MCI 

Wang et al. (2019) 3D MRI ADNI and 221 AD, Dense Net Developed an ensemble  Pathological bio 97.52

  297 MCI, 351 NC  of 3D Dense connections markers of AD not 

    and probability-based identified before 

    fusion methods training 

Wang et al. (2018) 3.0T MRI The local hospital,  8 layered CNNs CNNs with leaky Overfitting issues 97.65 

  OASIS and 98 AD,  ReLU, and max pooling 

  98 HC 

Ebrahimi-  3D MRI ADNI and 132 AD GoogleNet/ AlexNet/ Utilized different Complex to train  90.62 

Ghahnavieh et al.  subjects VGGNet16 and19/ combined CNN models obtained high 

(2019)   ResNet 18 and 15 and with LSTM to train prediction error 

   101/ single and multi-view 

   SqueezeNet/Inceptive3 mode images of AD 

   + LSTM  

Allioui et al. (2020) MRI OASIS and 609 NC, PSO + CNNs Usage of PSO in Pathological 94.73 

  489 AD  CNNs to reduce biomarkers 

    training losses of AD not identified 

     before training 

Li et al. (2020) 4D fMRI ADNI and 116 C3D + LSTM Established a 4D learning Fewer samples used 92.11

  AD, 99 MCI, 174 NC  model for utilizing for training 

    spatial and time-varying 

    data for AD discrimination 

Niu and Tan (2020)  MRI ADNI and 3DCNN Introduced residual Pathological 94.4

    densely connected CNN biomarkers of 

     AD not identified 

     before training 

Liu et al. (2020) 1.5 T T1 ADNI-3566 Deep siamese New non-linear Skipped 99.86 

 MRI BIO CARD-744 neural networks kernel tricks are Preprocessing 

    utilized to normalize  Uncertainty issues 

    the extracted feature 

 

Next, an adaptive inertia weight enhances the 

convergence precision speed and jumps from the local 

optimum. In conclusion, an opposition-based learning 

process updates the whale population's individuals in each 

iteration. The results prove that the JSWO outperforms 

with twenty-three benchmark functions. In this study 

(Saxena and Cao, 2019), researchers implicitly learned 

the characteristics necessary for accurate Spatiotemporal 

(ST) prediction using a unique deep generative 

adversarial network model. Autoencoders and decoders 

are built into this model's DGAN architecture. One of its 

main features is a fusion model that considers external 

influences and another is a deep ST feature learning model 

that can deal with ST correlation and stochastic aspects. 

The results demonstrate that the DGAN technique 

outperformed 14 commonly used baseline approaches in 

handling the ST data in terms of accuracy. 

The above studies discuss the recent image processing-

related methodologies and their special features, all 

incorporated in WODGAN to improve performance. Most 

existing approaches failed to forecast the early phases of AD 

with minimum prediction error or loss. 

Therefore, these studies face certain limitations, such as 

improper pathological biomarker region identification and 

overfitting issues, reducing the classifier's performance to 

reduce the error/loss rate. The research contributed to 

fulfilling the above-discussed existing AD detection 

system's limitations and introduced a new AD detection 

approach named WODGAN. The AD detection system 

consists of two distinct models to train networks: A 

discriminator and a generator. The generator makes a fake 

image (by randomly choosing image samples and adding 

noise to them) while the discriminator uses real images as 

input to train the model. The AF approach is applied to 

eliminate noise in a real image and adaptive histogram-

based image enchantment methods were employed to 

enhance the image's quality. Instead of whole direct MRI 

image-based training, the region grows. The significant 

biomarker features are a selection from the extracted 

features to reduce overfitting issues. The deep and fully 



R. Sampath and M. Baskar / Journal of Computer Science 2023, 19 (8): 998.1014 

DOI: 10.3844/jcssp.2023.998.1014 

 

1001 

connected layer of the deep generative adversarial networks 

receives the combined features and uses them to train 

models. If the MRI image contains real AD stages, the 

discriminator obtains prediction loss to determine validity. 

Each time the discriminator meets fake images of the 

generator (high losses), the discriminator and the 

generator's network nodes are back-propagated to retrain 

the model. The optimizer in DGAN helps reduce the 

prediction error and improves network performance. The 

methods of WODGAN and their functionalities are 

discussed in the subsequent section. 

Methods of Wodgan-Based Ad Stages Recognition 

Figure 1 demonstrates the AD recognition procedure 

of the WODAN model; in line with the AD recognition 

system, 3D MRI brain images had initially been gathered 

from several dataset sources. 

Functionalities are discussed in the subsequent section. 

But, first, the approach is utilized to segment exact biomarker 

regions, and various texture feature extraction approaches are 

applied to extract feature information. 

The discriminator uses actual pictures as training 

data, while the generator produces test data by 

randomly selecting image samples and adding noise. 

The preprocessing stage consists of image filtering, 

enchantment, region growing based biomarker regions 

segmentation, biomarker feature extraction techniques, 

and significant biomarker feature selection. Next, when 

features are consolidated, they train a deep generative 

adversarial network consisting of several layers. The 

discriminator then uses the likelihood to determine the 

prediction loss, which it uses to determine whether or 

not the phases shown on the MRI are associated with 

AD. Finally, the DGAN nodes are back propagated 

using a whale optimizer when the discriminator 

identifies a false generator image (based on losses), 

retraining the generator model and a generator until the 

model learns real AD stages. This section explores the 

WODGAN methods and their features. 

In contrast to existing deep learning models, the 

proposed WODAN model includes a distinct step for 

segmenting biomarker regions where densenet with 

ensemble technique, 3DCNN, PSO + CNNs fails to 

handle this biomarker regions identification before 

training. Skipped preprocessing steps in deep Siamese 

neural networks and CNN leads to drawbacks. It enables 

the model to concentrate on pertinent brain areas linked to 

Alzheimer's disease. The model may increase its 

recognition and discriminating abilities by utilizing 

texture features. The WODAN model updates and retrains 

the generator using backpropagation and a whale 

optimizer. Existing approaches like CNN ReLU couldn't 

handle uncertainty issues, thus leading to overfitting 

issues. Here we are solving uncertainties with the help of 

fuzzy neutrosophic logic. 

 

 
 

Fig. 1: The architecture of WODGAN-based AD stages detection 
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Table 2: Overall class-wise Alzheimer's images 

 Stages/classes of AD 

Samples (MRI Imageries) CN SMC MCI AD 

Total samples  1067 550 1191 968 

Training  801 413 894 727 

Testing  266 137 297 241 

 

3D MRI Data Acquisition 

In this research, the following benchmark, Alzheimer's 

datasets, are utilized for training the AD detection models. 

The overall AD dataset images contain 4 classes: CN, 

SMC, MCI, and AD. The MRI imageries are gathered 

from different datasets, which are discussed here. The 

imbalanced value in Table 2 is chosen since we are 

employing various datasets from which the MRI images 

were obtained to analyze different stages of AD. 

Alzheimer's Disease Neuroimaging Initiative (ADNI) 

database (ADNI, 2007) is classified into 4 categories of 

database ADNI-GO (Grand Opportunity), ADNI-1, 

ADNI-3, and ADNI-2. When combined, ADNI-1 and 

ADNI-GO have 400 SMC, 400 MCI, and 200 AD. 150 MCI, 

150 ND, 150 AD, and 150 SMC comprise ADNI-2. 133 ND, 

151 MCI, and 87 AD are in the ADNI-3. More than a 

thousand people's information is stored in the database for 

the Australian Imaging Biomarker and Lifestyle flagship 

study of aging (AIBL) (AIBL Study ADNI Data, n.d.) 

(https://aibl.csiro.au/adni/index.html). Images of AD, MCI, 

and CN are included in the collection. Almost a thousand 

people contributed to the Open Access Serious of Imaging 

Studies (OASIS) dataset (Marcus et al., 2007). The database 

includes MRI images from 609 individuals with CN and 489 

with MCI. MIRIAD (NITRC: MIRIAD) Minimal Interval 

Resonance Imaging in Alzheimer's disease: 

Tool/Resource Info, n.d.) 

(https://www.nitrc.org/projects/miriad) is a dataset of 

volumetric MRI brain scans of 46 AD and 23 healthy 

persons. The dataset contains 708 brain scan images. 

Table 2 contains overall images used for the analysis 

and prediction of phases of AD. This study uses 3775 MRI 

brain scan images to evaluate the AD detection model. 

The model training and testing processes have been 

utilized in 75 and 25% of images.  

Adaptive Filtering  

Noise elimination is an important phase in 

preprocessing to reserve MRI pictures' biomarkers (brain 

neurons); it aids in improving prediction performance. 

The white Gaussian noises in MRI images decrease 

forecasting accuracy. Hence, this Classification model 

also incorporates an AF method to reduce the noise. The 

AF method creates better filtering outcomes than linear 

filtering. It conserves edges and other high-frequency 

portions of MRI pictures. The statistical derivation of the 

AF is expressed by: 

2

2
ˆ ( , , ) ( , , ) [ ( , , ) L

L

f a b c g x y z g a b c m




 
    

 
 (1) 

 

where, in (Eq. 1) the 2

  indicates the total noise, 2

L  signifies 

the local variance of local regions, mL represents local means, 

and g(x, y, z) symbolizes the noisy picture's voxel value at the 

location (a, b, c). The notations 2 2, LS S indicate local variance 

and noise variance of the particular area sxy correspondingly. 

The generator may explore a wider variety of image 

variations and create diverse and excellent synthetic 

images by constantly modifying the filtering algorithms 

with different input patterns that can be used to adjust the 

weights of adaptive filters. The filter parameters can be 

changed to produce more realistic and aesthetically 

pleasing images by considering the individual features 

and structures found in the data. Deep networks can 

perform numerous filtering activities, like edge detection, 

texture extraction, and feature development, without 

drastically distorting the images since they use 

convolutional layers. Convolutional filters are local, 

which enables the network to concentrate on capturing 

tiny details while preserving the general shape and layout 

of the input image. However, the deformation is limited 

in early layers where local filtering processes occur, 

allowing the networks to perform filtering tasks while 

maintaining picture integrity efficiently. 
 The subsequent three conditions enable filtering noise 

and preserving the biomarkers' edge: 

 

Condition i : 
2( 0)if s  , return values of g(x, y, z) 

Condition ii : 
2 2( )Ls s , return values close to g(x, y, z)  

(high local variance associated with the 

edge is conserved) 

Condition iii : 
2 2( )Lif s s  return arithmetic mean 

Lm  

 

Filtering the noises in MRI images using (Eq. 1) based 

on the three requirements above has been shown to reliably 

maintain the edges of biomarkers, even though MRI 

imaging noise is a widespread problem. Image 

enhancement follows the convolution layer as a crucial 

intermediate step. 

Adaptive Histogram Equalization 

The sliding window AHE methods were used in the 

framework for image improvement. Contrasting other 

equalization methods, it makes a lot of histograms. Every 

one resembles a different part of the MRI imageries and 

these are used to reallocate the lightness values of MRIs. 

Consequently, it enhances local contrast and brings out 

the boundaries in MRI brain pictures. When tiling an 

image, it just adjusts the histogram for each voxel by 

adding up the new row of voxels and deducting the row 
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that was left behind. The rectangle voxel is moved at a 

time. This lowers the computational histogram 

complexity from O (N2) to O (N). indicates the next 

rectangle's width. Every voxel is altered to boost AHE 

using transformation functions that take into account 

its surroundings. Because every voxel is altered 

according to the histogram of the square around it, this 

can simplify things. The better MRI image that resulted 

was then used as the input for noise filtering. The left 

side sample MRI brain images and the right-side 

standardized histogram curve of an image are shown in 

(Fig. 2). Improving the image quality is made easier by 

the AHE peak points. 

Region Growing-Based Segmentation Using Fuzzy 

Neutrosophic Logic (Rgsfnl) 

The enhanced MRI image has been taken to identify 

the AD stages related to pathological region-based 

biomarkers regions using the Fuzzy neutrosophic logic 

region growing approach. In logic, each proposition is 

estimated to have the Degree of Truth (DT), Degree of 

Indeterminacy (DI) (neither true nor false), and the 

Degree of False (DF), which are all called neutrosophic 

logic, where DT, DI, and DF are a neutrosophic 

Component. The main advantage of this logic over 

fuzzy logic is that it brings indeterminacy DI to 

estimate DT and DF's value. In this research, the 

region-growing approach defines the degree of false 

DF = 1-DT. Therefore, every pixel must calculate the 

DT and DI, respectively, and decide whether the pixel 

belongs to the biomarker region based on DT and DI 

values. The mathematical derivation for the degree of 

DT and DI is derived as follows: 

 

 
 

 

 
 

, ,
, , 1

, , 1

, , 1
100

R

R

mno R

R

mno

f m n o f
DT m n o

f

f f
DT m n o

f

var f
DI m n o e

 
  




  



  



 (2) 

 

where, (Eq. 2) ( , , )f m n o denotes the intensity value of 

pixel (m,n,o), Rf  denotes the intensity mean of all pixels 

in the current biomarker region. The mnof ( )mnovar f  and 

are intensity mean and variance of small circles region 

(each pathological biomarker region of the brain) centered 

at pixel (m,n,o), respectively. DT(m,n,o) and '( , , )DT m n o

can be used to examine the variations between the current 

pixel and pathological biomarker region's mean. (Eq. 2) is 

used as a region-growing criterion to decide whether the 

current pixel should be added to the pathological 

biomarker region. In a homogeneous region, the criterion 

DT(m,n,o) confidence is used to justify whether a pixel 

belongs to the pathological biomarker region or not. In a 

noisy region, the criterion ( , , )DT m n o is not confident 

because the current pixel intensity range becomes high 

due to noise effects. In such a case, it requires another 

criterion '( , , )DT m n o to decide whether or not the 

current pixel belongs to the pathological biomarker 

region. According to the analysis, a low DI denotes that 

a pixel belongs to a homogeneous region and a high DI 

denotes that the pixel belongs to a noisy region. When 

a DI becomes high and low the '( , , )DT m n o and 

DT(m,n,o) the region has been used, respectively. 

Figure 3 shows segmented MRI brain imageries of 

phases of AD that are based on fuzzy neutrosophic 

logic. The blue color denotes the segmented various 

biomarkers regions of AD. 

 

 

 
Fig. 2: Sample AHE outcomes 

 

 

 
Fig. 3: Segmented biomarkers regions of AD stages 
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Fig. 4: Block diagram of feature integration 
 

Algorithm: Fuzzy neutrosophic logic-based segmentation  

Input: Quality Enhanced real MRI brain image  

A= imread (data source) 

[m,n,o] = Size(A) 

For each i=1 to m 

          For every j=1 to n 

             For every k=1 to o  

             Seed= pick_from_region() // selecting seed point  

             IF ((DI(m,n,o) < threshold_1 && DT(m,n,o) >= 

threshold_2) || (DI(m,n,o) < threshold_1 && 

             DT’(m,n,o) >= threshold_3))   

                Region[m,n,o]=f(m,n,o)        // add current pixel 

in current region 

                 Update Rf  // update region mean 

 

            End IF 

         End For  

      End For  

   End For  

Output: Segmented MRI grayscale image 

 

The algorithm explained how the Fuzzy neutrosophic 

logic DI, DT, and DT's confidence rules help the region's 

growing segmentation of homogeneous biomarker 

regions. Finally, the segmented biomarker areas are 

extracted for biomarker features to train the model. 

Feature Extraction 

The segmented biomarker areas of the brain are used 

to extract the MRI biomarker features using a variety of 

feature extraction approaches. The biomarker data from 

the MRI images used in this investigation were extracted 

using the GLCM, wavelet, and Gabor features, as shown 

in Fig. 4. GLCM feature is used to extract the numerical 

features of a texture utilizing spatial associations of 

comparable grey tones: 
 

2

1 1 ( , )N gl N gl

r cContr r c GM r c     (3) 

 
where, in (Eq. 3), the symbol Ngl indicates the discrete 

grey levels, r denotes the row, c symbolizes the columns, 

and GM(r, c)-GLCM. The contrast feature values of M 

images are extracted using it:  
 

1 1 ( ) ( , ) ( ) ( )

( ) ( )

Ngl Ngl

r c x y

x y

rc GM r c r c
Corrm

r c

 

 

   
  (4) 

 
where, in (Eq. 4) symbol ( )x r  and ( )v c  denotes the 

mean of rows and columns, ( )x r  and ( )v c  denotes the 

standard deviation of the rows and columns utilized to 

extract the relationship feature values of MRI images: 
 

   , ( , )r cEntr GM r c ln GM r c   (5) 

 
where, (Eq. 5) is utilized to calculate the entropy values 

of MRI images. The  ,GM r c  denotes the grey tone 

spatial dependence matrices, the ,r c  indicates the row 

and column value and Ngl is the number of distinct grey 

levels in quantized images: 
 

 
4

1 1 ( ) ( , )Ngl Ngl

r c x yClust Pro r c r c GM r c  
        (6) 

 

 
3

1 1 ( ) ( , )Ngl Ngl

r c x yClustShade r c r c GM r c  
        (7) 

Fuzzy 

neutrosophic  

logic  

Segmented 

MRI images  

Wavelet 

transforms  
GLCM  Gabor Filter 

Extracted 

features to train 

the model 

  Spatial 

contrast  
Textural 

(ROI) 

Time 

frequency 

Input real 

MRI images 
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 
2

1 1 ( ) ( , )Ngl Ngl

r c x yClustTen r c r c GM r c  
        (8) 

 

where, (Eqs. 6-8) are utilized to compute the cluster 

shade, cluster prominence, and cluster tendency value of 

the segmented biomarkers areas. The variable
x  

indicates the mean of rows and 
y  Signifies the mean of 

columns. The GLCM-based mathematical relationships of 

different texture feature data of the biomarker texture are 

extracted to train models:  

 

1 1 ( , )Ngl Ngl

r cAC rcGM r c    (9) 

 

Equation 9, the notation 'r' denotes the row, 'c' denotes 

the column and the Ngl represents the number of discrete 

grey levels. (Eq. 9) calculates the autocorrelation of 

texture features:  

 

1 1 ( , )Ngl Ngl

r cDS r c GM r c     (10) 

 

Equation 10 calculates the dissimilarity ratio of a 

homogeneous or heterogeneous segmented region's 

texture information: 

 

 1

0 2( ) ( )Ngl

a r c r cDE GM a log GM a

    (11) 

 

Equation 11 calculates the difference entropy value 

segmented region's texture information. 

Input is taken from Quality Enhanced real MRI brain 

image. The improved MRI picture has been acquired to 

identify the AD phases associated with diseased area-

based biomarkers regions with the Segmented MRI 

grayscale image as output using the fuzzy neutrosophic 

logic region growth approach. The output images need to 

be enhanced by extracting features GLCM, wavelet, and 

Gabor filtering features. GLCM is first applied to extract 

numerical features from the texture with the spatial 

combination of grayscale images. Then Gabor filter 

captures the textural qualities and energy distribution 

found in the image. These texture features based on Gabor 

energy can be derived from certain image regions of 

interest or biomarker textures. Then, for various tasks, 

including segmentation and classification, these features 

are utilized to train machine learning models. 

Computational models for classifying and analyzing 

medical disorders can be taught by extracting Gabor filter 

characteristics from medical images. A wavelet filter for 

performing various scale analyses on signals and images. 

It breaks down a signal or image into various frequency 

bands, enabling the simultaneous analysis of both high- 

and low-frequency components. The wavelet provides a 

multi-resolution image of the data transformation, 

incorporating local and global information. Finally, 

extracted details are used to train the model. 

Incorporating these techniques within the suggested 

strategy intends to take advantage of each technique's 

advantages to improve segmentation performance. The 

fuzzy technique addresses the uncertainty and imprecision 

for superior segmentation results, while the wavelet 

transform and Gabor filtering extract pertinent features 

and texture information. 

Gabor Filter Feature 

The mathematical proof of feature extraction using a 

Gabor filter is shown below: 

 

1 1

0 0

1
( , )

k
r c

k x y fEnr I x y
rc

 

     (12) 

 

where, (Eq. 12) represents the traditional technique for 

extraction of Gabor filter-based texture features, the 

energy Enrk, k = 1, 2, 3 in the form of l1 and l2 norms. The 

Gabor energy-based texture feature data on the biomarker 

texture extracted to train models. The notation r and c are 

the sizes of the sub-band intensities If(x, y). 

Wavelet 

The basic notion of discrete wavelet transform is to bring 

the time-frequency representation. The two-dimensional 

discrete wavelet transform indicates images regarding a set 

of dilated and shifted wavelet functions LH, HL, HH, and 

scaling function  that form orthonormal basics for L2 R2. 

Provided J-scale discrete wavelet transform, images x(r,c) of 

M  M is decomposed by:  
 

1,

, 0 , ,

1

1 , 0

( , ) , , ( , )

, , , , ( , )

N q S

p o p q o

M B B

B B j q o

x r c p q o r c

w p q o p q o r c

 









  

 

  
 (13) 

 
with: 
 

22, , ( , ) 2 (2 , 2 ),

, , ( , ), , , ( , )

p

S p p

B B

p q o r c s q t o

p q o r c p q o r c

 

 



     (14) 

 

2 (2 ,2 ), ,
2

B p pp
s q t o B B B  
    

 

where, values of M are signified as Mp = M  2p, and 

(Eq. 13) is utilized for the decomposition of the image 

x(r,c) and (Eq. 14) is utilized to represent the derivative 

of the scaling functions. The HL, LH, and HH are entitled 

wavelet or DWT sub-bands in this research. 

, , ( , ) , ,p q ou x r c p q odsdt    is a scaling coefficient and

, , ( , ) , ,B B

p q ow x r c p q odsdt   denotes the ( , )thq o wavelet 

coefficient in scales p and sub-bands B. The derivation of 

wavelets in (Eqs. 13-14) enables wavelet feature data 

extraction to train the model. 
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HSICL-Based Feature Selection 

The HSICL method works effectively with both 

high and low dimensional data sets. As a result, the 

framework employs the HSICL technique to reduce 

less-important or more-important features from the set 

of retrieved MRI biomarker features. The optimal 

HSICL expression is as follows:  
 

, 1

1 11,

1
: ( , )

2

( , ) ,....., 0,

o

NN m NN m NN m

O

NN NN NN n

HSICL min a a HSIC f f

a HSIC f c a a a

 

   

 (15) 

 

The (Eq. 15) is also written as follows:  

 
2

( )

1

1, 1

1
:

2

,....., 0

O NN

NN NN F

o

HSICL min L a K

a a a

  

 

 (16) 

 

Equation 16 is utilized to decrease important features 

from the different extracted MRI biomarker features. 

Where 
( )( , ) ( )NN

NNHSIC f c tr K L  denotes kernel-based 

independence measures termed the observed HSIC, tr(.) 

indicates the trace,   denotes the regularization variable, 
( ) ( )NN NNK K    and L L   are inputs and outputs 

centered Gram matrix of MRI biomarker feature. 
( )

, , ,( , )NN

i j NN i NN jK K u u and , ( , )i j i jL L c c are Gram matrix, 

( , )k u u  and ( , )L c c are the two kernel functions. 

1
1 1

0

T

O O OI    denotes the centering matrices, and Io 

indicates the o-dimensional identity matrices (number of 

biomarker features). Io denotes m dimensional vectors 

every once and 
1

. is l1-norms. The over-fitting problem in 

the original recognition model is mitigated by the HSIC 

method used in the AD recognition system, which 

determines the bare minimum of biomarker features to 

train models. 

Deep Generative Adversarial Network 

In this study, a DGAN has been utilized to predict the 

AD stages. For better prediction accuracy, a Generative 

Adversarial Network (GAN) competes with two neural 

networks against one another in a competitive ML model. 

To learn, most GANs operate unsupervised and use a 

cooperative zero-sum game structure. A Generative 

Adversarial Network (GAN) is a form of generative 

modeling that uses an original dataset as input to produce 

new, believable results via machine learning and pattern 

discovery. To train generative models, GANs imitate a 

supervised learning process. Generator GR aims to 

generate MRI images resembling true data distribution 

samples. Discriminator DR aims to distinguish between 

MRI image samples created from GR (fakes) and those 

produced from the actual data distribution (original). 

The DR assigns a higher likelihood to actual MRI 

imageries and a lower likelihood to the MRI photo 

samples produced by the generator GR. Generative 

adversarial network training continues to try to remove 

the produced MRI samples from the original data by 

utilizing the gradient data that the DRs provide. The MRI 

image s is created using the genuine picture distributions, 

q data, noise vectors, qz, and qg, which stands for the GR's 

distributions over the picture s. In order to get hidden 

vectors z as close to GR(s) as possible, GR uses them as 

inputs and outputs for samples GR(z). Because DR(s) = 0 

ifs qg and DR(s) = 1ifs qdata, DR is a classifier. Both DR 

and GR models are trained with a min-max purpose to 

address the following problems: 
 

 ( ) (1 ( ( )))
zzqDR s log E log DR GR z    (17a) 

 

 , max ( )min ( )DR GRV GR DR    (17b) 

 
V(GR, DR) represents the maximum and minimum 

binary cross-entropy functions generally exploited in 

binary classification issues. The GR and DR are trained by 

backpropagating losses in expression (17) via their 

corresponding model update variables. Owing to the two 

various purposes in (Eq. 17a-b), the update rules are 

described by: 

 

 1, 1,

( )

, ( ( ))

( ( ))

t t

DR GR

updateifDR x predictswrong

updateifDR GR z predictswrong

updateifDR GR z predictscorrect

  








 (18) 

 

where, (Eq. 18) 
1, 1,t t

DR GR    indicates the corresponding 

variables for DR and GR as well as 𝑡, the number of 

iterations. DGAN has recently gained recognition as an 

avant-garde technique for learning generative models of 

complex problems, similar to an adversarial loss. 

Adversarial Losses 

In D-GAN, the adversarial loss 
DR

GANLDR is derived as 

follows: 
 

2 2

2 2( ) 1 ( ) 0DR

GAN real fakeL DR y DR y     (19) 

 

In expression (19), the adversarial losses are utilized 

to discover DR and GRs and stability during adversarial 

training. GR tries to reduce the DR(yfake) with true labels 

to reduce the GR loss
GR

GANL . GR's aim is to make real 

duplicate sample images for DR, thus, reducing the GR 

loss
DR

GANLDR , GR attempts to decrease the variance 

between DR(yFake) and true labels:  
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2

2( ) 1DR

GAN fakeL DR y   (20) 

 

The total aim of the deep generative adversarial 

network is articulated as follows:  
 

GR DR

DGAN GAN GANL L L   (21) 

 
where, (Eq. 20) is used to reduce the loss variance between 

the real labels and the DR's false label, and (Eq. 21) is used 

to calculate the total loss for the deep generative 

adversarial network, which is used to replace the 

traditional binary classification loss value of the DR and 

GR in expression (17). Then, DR and GR are trained by 

backpropagating the loss with optimizers' help via their 

corresponding model update variables. Training a GAN is 

difficult for several reasons, even though it has shown 

great effectiveness in creating realistic images. They 

include difficulties in model collapse, convergence, and 

the vanishing gradient. In this study, a whale optimizer is 

utilized in DGAN to reduce the convergence difficulties 

and as well as to avoid vanishing gradients problems. 

Optimizer 

DR and GR are trained by backpropagating the loss 

value with the optimizer's help through their 

corresponding model update variables. In this research, 

the DGAN loss has been backpropagated with the help of 

a whale optimizer. The exceptional hunting way of the 

humpback whale is measured as the major interesting 

point of these whales, stated as bubble net feeding 

methods. The statistical formation of WOA is as follows.  

Searching for Prey/Searching for Optimal Loss 

They are A  denoted as random values between the 

interval [-1, 1] if 1A  then it performs a global search 

mechanism:  
 

.

( 1) ( )

rand

rand

D C S S

S t S t A D

  

    

 (22) 

 

where, (Eq. 22) randS  denotes the random position vector. 

A  and C is considered the coefficient vector, D denotes 

the distance vector, and the symbol S  denotes absolute 

value. The search agent updates their positions randomly 

in each iteration by selecting search agents that are yet 

determined. The variable range of the A  search agent is 

from 2-0. The agent has been chosen when A1. The 

searching for prey model uses the DGAN approach to 

search for optimal network loss.  

The humpback whales' complex patterns of sound and 

movement, which they use to coordinate and 

communicate while hunting, served as the model for the 

WO algorithm. To enhance the effectiveness of the GAN 

model, the algorithm replicates this behavior and 

iteratively adjusts its settings. It fine-tunes the network 

parameters, enabling the GAN to recognize and learn the 

biomarker regions and patterns corresponding to various 

stages of AD. As a result, the model can more accurately 

identify and categorize AD-related photos. The WO 

algorithm can be incorporated into the GAN model to 

boost its ability to produce realistic visuals that closely 

mimic real AD-related patterns. The GAN model may be 

able to converge to better solutions by adding the WO 

algorithm during the training process, resulting in increased 

picture production and discrimination capabilities. The 

proposed model may increase the precision of AD stage 

recognition by optimizing the GAN using the WO 

algorithm. The improved network can learn and distinguish 

the biomarker regions that correspond to the various phases 

of AD better, enabling more accurate and reliable disease 

diagnosis. The WO method adjusts the model's parameters 

depending on the discriminator's assessment of produced 

and real images to optimize the network. 

Bubble Net Attacking / Select Optimum Loss 

Surround the Prey 

The main objective of this encircles the prey is obtaining 

the optimal candidate solution. The statistical derivation of 

the optimal candidate solution is represented by: 
 

( 1) ( )S t S t A D     (23) 

 

. ( ) ( )

2

2

D C S t S t

A a rand a

C rand

  



  


 


 (24) 

 

where, in (Eq. 23), 't' signifies the iteration of a current 

position, A  and C is measured as the coefficient vector. 

The ' 'S ' denotes the position vector of the current optimal 

solutions and the symbol S  denotes absolute value. The '' 

denotes the element-wide multiplication. Equation 23 is 

used to find the optimal candidate solutions. In (Eq. 24), 

the notation a  value has been chosen from 2-0 for each 

iteration and rand  is stated as a random vector in the 

interval of [0, 1]. The humpback whale hunts the prey 

utilizing the bubble nets approach.  

Spiral Updating Position 

 

( 1) '. biS t D e cos   (25) 

 

where, in (Eq. 25) the ' ( ) ( 1)D S t S t    denotes the 

distance of ith whale to prey, bie  the bi denotes the 
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constant and n indicates the random numeral between 

the interval [-1,1]: 

 

( ) , 0.5

'. .cos(2 ) ( ), 0.5

( 1) ( )

bi

S

S t A D ifq

D e n S t ifq

S t S t A D



  

 

   

  (26) 

 

In (Eq. 26), 'q' is denoted as the random values 

between the interval [0, 1]. During the optimization, 

whales swim around the prey in shrinking circles order 

with the likelihood of 0.5% of choosing spiral model 

orxcc to encircle the prey approach to update whale 

position, derived in (Eq. 26). The Bubble net attacking 

approach of WOA has been utilized in the DGAN model 

to select optimum network nodes and back-propagate 

during loss values updating. In this research, prey is 

considered as the loss value of nodes, and the whales are 

considered various node features. 

Pseudocode: WODGAN-Based AD Detection for 

Discriminator 

 

Step 1: Gather input data source 

    Initialize parameters for AE, AHE, and ROI. 

Step 2:  
     For every j=1 to TNF 

gabor [j,i] = imgaborfilt(Region of Interest)  

wavelet [j,i] = wav_fea(Region of Interest) 

   For GLCM update GLCM_feature1(ROI) 

  update contr, corn, autocorr, dissim for all i,j  

         End For 

      End For 

Step 3: 

        Reduct_set = HSICL(FV) 

        FV = Reduct_set 

Step 4: 
        For every t=1 to m 

             For each h=1 to n 

                           Rl=   (W. FV(t) + U. h + bi) 

Step 5: 

        If ( 1Rl ) & ( 1Rl ) 

             For every t=1 to Iterations 

                     
GR DR

DGAN GAN GANL L L   

          If ( DGANL <=Rl) 

                             
tO  = SMC CN MCI AD  

                      Else If (
DR

GANL Rl ) 

                            ( 1)FV t  = DGANL  

                     ( 1) ( ) '. .cosbiFVR t FV t A D D e     

             End For 

         End If 

Pseudocode: WODGAN-Based AD Detection for 

Generator 
 

      Gather data source 

      Assign h = 0, bi = U = 0.001; 

Step 1: 
For every j = 1 to TNF 

               gabor [j,i]= imgaborfilt(Region of Interest) 

               wavelet [j,i]= wav_fea(Region of Interest) 

               Update GLCM features 

End For 

Step 2: 

For every t=1 to m 

    For every h=1 to n, do step 3 

Step 3: 

If (Rl -1) &&(Rl 1 

      For every t=1 to Iterations 

              GR

DGAN GANL L  

End If 

If (
GR

GANL Rl ) 

       ( 1)FVF t  = DGANL   

    ( 1) ( ) '. .cosbiFVF t FV t A D D e      

End If 

  End For 
 

Based on the pseudocode, the AD stage is predicted. 

The above Pseudo code shows the step-by-step execution 

process of the WODGAN classifier. First, the classifier is 

evaluated with 3D MRI brain images, which have been 

gathered from many database sources. The preprocessing 

step consists of image filtering, image enchantment, 

region-growing-based biomarker regions segmentation, 

biomarker feature extraction techniques, and significant 

biomarker feature selection. Next, the consolidated feature 

is fed into the full and deep layer of the DGAN to train 

models. Finally, the discriminator determines whether the 

MRI images are genuine AD stages or the generator's fake 

images by computing the likelihood of knowing the 

forecasted losses. The generator model is retrained 

whenever the discriminator finds false images of the 

generator (losses), and a generator up to the model 

acquires real AD stages. 

Classification and Segmentation Validity Metrics  

Partition Entropy (PartEnt): 
 

, 1 2

1 k

r s rs rsPartEnt log
TPS

 


    (27) 

 

where, rs mean the segmented region and TPS the total 

number of pixels in a specific segmented region. 

 

Partition Coefficient (PartCo): 
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2

, 1

1 k

r s rsPartCo
TPS

   (28) 

 
2

rs  mean square of the segmented region and TPS  

represents the total number of pixels in a specific segmented 

area. r and s denote the sample position of the segment. 

 

Dice: 

 

The pairwise overlap of repeated segmentation is 

calculated using Dice: 

 

2

2

TrPo
Dice

TrPo FaPo FaNe


 
 (29) 

 

where, Trpo-Truepositive, FaPo-Falsepositive, FaNe-

FalseNegative. 

 

Accuracy (Acc): 

 

TrPo TrNe
Acc

TrPo TrNe FaPo FaNe




  
 (30) 

 

TP-True Positives, TN-True Negatives, FP-False 

Positives, FN-False Negatives. 

 

Recall (Rec): 
 

rPo
Rec

TrPo FaPo





 (31) 

 

It is otherwise called sensitivity. 

 

Precision (Pre): 

 

TrPo
Pre

TrPo FaNe



 (32) 

 

It is otherwise called specificity. 

 

Multi-Class log loss MCLogLoss: 

 

og 1 , ( , )tc

L Loss L o oMC a L log p L  (33) 

 

where,  

'tc = Total number of Alzheimer's stages (class labels) 

' 'op = Probability observation of the predicted 

Alzheimer's stage (class) 

oa =  Correctly predicted Alzheimer's stage (class label) 

of the observation 'o' 

L = Class labels of Alzheimer's stages (AD/ CN/ SMC/ 

MCI) 

 

Mean Square Error (MSE): 

 

2

1

1 ˆ( )TNS

j j jMSE AC PC
TNS

    (34) 

 

N = Total number of MRI image samples 

ACj = Actual Alzheimer's class  

ˆ
jPC  = Predicted Alzheimer's class 

 

Mean Absolute Error (MAE): 

 

1

1 ˆT N S

j j jMAE AC PC
TNS

    (35) 

 

S  denotes the absolute value. 

The effectiveness of the WODGAN model is 

assessed, and biomarker regions are segmented in AD 

detection phases utilizing brain MRI images, 

employing the aforementioned metrics (Eqs. 27-35). 

The evaluation results of the WODGAN model have 

been explained in the succeeding section. 

Results and Discussion 

This section deliberates on the performance 

assessment of the novel AD recognition model. first, 

the WODGAN model's excellence is identified with 

different classification assessment metrics of accuracy 

(Haq et al., 2018; Liu et al., 2020; Niu and Tan, 2020) 

and the loss/error rate, like accuracy, precision, recall, 

mean absolute errors and mean square errors, and 

multi-class log loss. Second, the segmentation 

accuracy is estimated with various accuracy metrics 

such as Partition entropy (Parent), Partition Coefficient 

(Part Co), and Dice index. Third, the AD phases 

categorization model has been executed in MATLAB 

simulators. Finally, the system performance is 

compared with current deep classifiers like 8-Layered 

CNN (8LCNN), Deep Siamese Neural Network 

(DSNN), DenseNet, and VGG16. 

 

Table 3: Segmentation accuracy 

 RGSFNL 

 ---------------------------------------------- 

Metrics name (%) CN SMC MCI AD 

S PartEnt   99.4 98.2 99.6 99.7 

Part Co  98.7 98.1 98.2 98.2 

Dice  98.9 97.4 99.3 99.5 
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Table 3 contains information about AD stages-wise 

segmentation accuracy rate comparison for region growing 

segmentation fuzzy neutrosophic logic. It shows that the

( , , )
( , , ) 1 , ( , , )

1

R

R

mno R

R

f m n o f
DT m n o DegreeofTrue m n o

f

f f

f


 


 

 and 

the degree of indeterminacy 
( )

( , , ) 1
100

mnovar f
DI m n o e 

rules of fuzzy neutrosophic logic help to segment the various 

pathological biomarkers regions precisely with a maximum 

of 99.7, 98.7, and 99.5% accuracy rate for partition entropy, 

partition coefficient, and dice index, respectively. 

Table 4 contains information about the consolidated 

performance comparisons of the WODGAN model with 

four recent high throughput class fiers for AD stage 

identifications, such as VGG16, DN, 8LCNN, DSNN, and 

WODGAN. According to the table values, the WODGAN 

has obtained a high 99.92% accuracy ratio and 0.08% 

lesser loss ratio in AD stages detection. 

Figure 5 illustrates the multi-class log loss curve 

comparison for the detection of WODGAN, DSNN, 

8LCNN, DN, and VGG16 models in AD stages. It 

attests that the adversarial loss function

 GR DR

DGAN GAN GANL L L   incorporated with the deep 

discriminator model in WODGAN helps in obtaining 

less loss rate than existing classifiers. 

Fig. 6 illustrates the Mean square error curve 

comparison for WODGAN, DSNN, 8LCNN, DN, and 

VGG16 models in AD stages detection. It attests that 

the adversarial loss functions of the generator and 

discriminator     
22

2 2
1 0DR

GAN real fakeL DR y DR y   

 
2

2
1GR

GAN fakeL DR y  and incorporated with the deep 

discriminator model in WODGAN help obtain less 

mean square error rate than existing classifiers. 

Fig. 7 illustrates the mean absolute error curve 

comparison for WODGAN, DSNN, 8LCNN, DN, and 

VGG16 models in AD stages detection. It proves that the 

proper preprocessing steps such as noise removal, image 

enhancement, biomarker region identification and 

extraction, and feature reduction approaches are all 

incorporated with the deep discriminator model in 

WODGAN in obtaining less mean absolute error rate than 

existing classifiers. 

 

 

 

Fig. 5: Multi-class log loss value comparison 

 

 

 
Fig. 6: Mean square error comparison 

 

Table 4: Total performance of classifiers in ad prediction comparison 

Accuracy (%)     Precision (%)     Recall (%) 

--------------------------------------------------------------- -------------------------------------------------------------------- ------------------------------------------------------------- 

Image VGG  8LC  WOD Image VGG  8LC  WOD Image VGG  8LC DSN WOD 

count 16 DN NN DSNN GAN count 16 DN NN DSNN GAN count 16 DN NN N GAN 

500 93.97 97.45 96.75 99. 33 99.57 500 93.92 97.32 96.75 99. 05 99.41 500 93.78 97.11 96.76 99.46 99.60 

1000 95.13 96.02 96.34 99.50 99.61  1000 95.11 96.05 96.56 99.51 99.64  1000 95.32 96.25 96.87 99.01 99.29 

2000 94.09 96.92 97.32 99.45 99.56  2000 94.22 96.33 97.62 99.49 99.53  2000 94.45 96.39 97.32 99.22 99.32 

3000 94.66 97.02 96.89 99.77 99.87  3000 94.56 97.02 96.55 99.66 99.74  3000 94.78 97.55 96.43 99.66 99.65 

3775 95.72 97.51 97.60 99.81 99.92 3775 95.67 97.51 97.58 99. 79 99.88 3775 95.77 97.67 97.44 99.79 99.90 

Mean square error (%)    Mean absolute error (%)    Multi-class log loss (%) 

500 6.08 2.68 3.25 0.95 0.59 500 6.22 2.89 3.24 0.54 0.4 500 6.03 2.55 3.25 0.67 0.43 

1000 4.89 3.95 3.44 0.49 0.36  1000 4.68 3.75 3.13 0.99 0.71  1000 4.87 3.98 3.66 0.5 0.39 

2000 5.78 3.67 2.38 0.51 0.47  2000 5.55 3.61 2.68 0.78 0.68  2000 5.91 3.08 2.68 0.55 0.44 

3000 5.44 2.98 3.45 0.34 0.26  3000 5.22 2.45 3.57 0.34 0.35  3000 5.34 2.98 3.11 0.23 0.13 

3775 4.33 2.49 2.42 0.21 0.12 3775 4.23 2.33 2.56 0.21 0.1 3775 4.28 2.49 2.4 0.23 0.08 
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Fig. 7: Mean absolute error comparison 
 

 
 
Fig. 8: Accuracy rate analysis 

 

 
 
Fig. 9: Precision rate analysis 
 

 
 
Fig. 10: Recall rate comparison 

Figure 8 illustrates the accuracy rate comparison for 

WODGAN, DSNN, 8LCNN, DN, and VGG16 models in 

AD stages detection. It proves that the optimized network 

functionalities of the WODGAN model using the 

derivation of the (Eq. 26) Whale optimizer to achieve an 

increase in the accuracy rate of 99.92% for the WODGAN 

model in AD stages detection. 

Figure 9 illustrates the precision rate comparison for the 

detection of WODGAN, DSNN, 8LCNN, DN, and VGG16 

models in the AD stages. It proves that the optimized 

network functionalities of the WODGAN model using the 

derivation of (Eq. 26) Whale optimizer helps achieve a high 

precision rate (99.83%) than Deep comparison models. 

Figure 10 illustrates the recall rate comparison for 

detecting WODGAN, DSNN, 8LCNN, DN, and VGG16 

models in AD stages. In addition, it displays that the HSICL-

based feature reduction feature 

2
' ' ( )

1 1.

1
:min 1, ,....., 0

2

o NN

NN NN oFa
HSICL L a K a a a

 
   

 

incorporated in preprocessing that effectively reduces 

overfitting problems during model training. As a result, the 

model has a higher recall rate (99.90%) than comparison 

deep models. 

The particular problematic-oriented functionalities of the 

WODGAN model and whale optimizers prey hunting 

feature in the DGAN model facilitate the optimization of the 

uncertainty issues and optimize the network functions 

effectively. These two features support attaining a high 

99.92% accuracy ratio in AD stage identification. The 

overfitting problems are reduced by the DGAN adversarial 

loss functions of the generator and discriminator models as 

well as the HSICL-based inappropriate feature lessening 

function. This overfitting reduction impacts the classification 

model to achieve the reduced error ratio of 0.08% in AD 

phases recognition as compared to the other 4 comparisons 

Deep model methods. The section's total assessment result 

demonstrates that the AD detection models' features, like 

exact biomarker area recognition, feature enhancement, 

extraction, and inappropriate feature decrease methods, 

helped decrease overfitting during model training. The exact 

pathological biomarker feature identification problem and 

network node functionalities optimization concern has been 

resolved effectively with WO functionalities in DGAN. 

Conclusion 

Thus, the result and discussion section clearly 

describes the WODGAN models' performance with high 

and low-dimensional brain MRI images of various AD 

stages. In this study, the AD stages recognition system's 

accuracy ratio is improved maximum of 0.11% and the 

error ratio is reduced by up to 0.15% than existing 

comparison deep classifiers. Moreover, during the model 

training, the deep model discriminator in the DGAN model 

identifying the generator model generated fake MRI AD 
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images efficiently with WO functionalities and adversarial 

loss. It clearly shows that the AD detection system 

performs excellently, then comparing recent deep learning 

models. Furthermore, the feature reduction functionality 

incorporated WODGAN model has also reduced 

overfitting issues. These features help to reduce the AD 

misdiagnosis error issues in the existing AD detection 

system. It could be difficult to comprehend the precise 

features that influence the models' conclusions. In 

therapeutic situations, wherein interpretability and clarity 

are critical, this can reduce the trust and acceptability of 

the model. Researchers can use other recent deep 

classification models, such as the Inception network, 

Siamese neural network, and residual network, for future 

studies. Fine-tuning bio-inspired optimizer methods can 

also be incorporated to improve the models' performance 

in AD stage detection. In addition to the above the 

accuracy and dependability of AD stage diagnosis may be 

enhanced by investigating the integration of various 

imaging modalities, such as integrating MRI and Positron 

Emission Tomography (PET) imaging or additional 

biological markers in the future. 
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