

 © 2023 Lappoon R. Tang. This open-access article is distributed under a Creative Commons Attribution (CC-BY)

4.0 license.

Journal of Computer Science

Original Research Paper

Using Background Knowledge and Random Sampling in

Genetic Programming: A Case Study in Learning Boolean

Parity Functions

Lappoon R. Tang

Department of Engineering, Roborn Technology Limited 8/F, Core F, Cyberport 3, 100. Cyberport Road, Hong Kong

Article history

Received: 08-02-2023

Revised: 06-06-2023

Accepted: 19-06-2023

Email: rupert.tang@gmail.com

Abstract: The Boolean even-N-parity function returns T (i.e., true) if an even

number of its Boolean arguments for N arguments are T and otherwise returns

NIL (i.e., false). Learning Boolean even-N-parity functions has been recognized

as a difficult problem for evolutionary computation (such as genetic

programming) especially when N is large (e.g., 20+). A number of approaches

have been proposed for solving the benchmark problem of even-N-parity. Most

approaches focus on improving the representation of individuals and/or

improving the effectiveness of crossover. So far, no approach has attempted to

use high-arity background knowledge/functions for automating problem

decomposition in the course of evolution. Our current approach combines the use

of high-arity background functions, automatically defined functions, and random

sampling of fitness cases to (1) Automate problem decomposition for high-arity

even-N-parity problems and (2) Promote diversity in the retainment of genetic

materials across generations by using random samples of fitness cases in fitness

evaluation. Experimental evaluation shows that such an approach can

dramatically reduce the total number of individuals needed to be processed by

genetic programming. Therefore, such an approach to genetic programming can

significantly improve computational efficiency.

Keywords: Genetic Programming, Symbolic Regression, Even-N-Parity

Boolean Functions, Random Sampling, Background Functions

Introduction

Learning Boolean functions from examples began in

machine learning (at least) as early as 1943 when an

artificial neuron was created to learn Boolean functions

such as and, OR (McCulloch and Pitts, 1943). Earlier works

on learning Boolean functions include learning of

conjunctive normal form from examples (Hirschberg et al.,

1994). Learning Boolean functions from examples has

continued to be an important problem in machine learning

(Veness and Hutter, 2014).

The Boolean even-N-parity function returns T (i.e.,

true) if an even number of its Boolean arguments are T

and otherwise returns nil (i.e., false). Learning Boolean

even-N-parity functions has been recognized as a difficult

problem for evolutionary computation (such as Genetic

Programming) especially when N is large (e.g., 20+).

When N is equal to 21, there are O (2M) truth table rows

to process in learning a target function. If the learning

mechanism involved is “vanilla”-i.e., not using

background knowledge and/or domain-specific language

bias in learning, the search space is practically intractable.

Genetic Programming (GP) is a paradigm in machine

learning that employs evolutionary search in the course of

learning a target concept/function (Koza, 1992). It is an

extension of John Holland’s genetic algorithm 1975 in

which the population consists of computer programs of

varying sizes and shapes (Koza, 1992). GP automatically

solves problems without having to tell the computer

explicitly how to do it. GP is a systematic and domain-

independent method for having computers automatically

solve problems starting from a high-level statement of

problem formulation. It generates a solution to a given

problem by maintaining a population of S-expressions

(i.e., LISP functions) which is evolved over a number of

generations by the application of a tree-based crossover

operator, a reproduction operator, and a mutation operator

over the individuals in the population. Individual

programs are evaluated by their fitness: Programs with

higher fitness are selected for a crossover with a higher

probability. Genetic materials for solving a problem are

acquired incrementally from generation to generation

until a solution that satisfies all the fitness cases is found

Lappoon R. Tang / Journal of Computer Science 2023, 19 (7): 900.908

DOI: 10.3844/jcssp.2023.900.908

901

(or the number of generations is exhausted). On learning

Boolean even-N-parity functions, GP has been applied, by

Koza, on solving the problem for a maximum N of up to

11. Koza used automatically defined functions for solving

the problem (Koza, 1994).
An approach to solving Boolean parity problems for

very large N is by using smooth uniform crossover, sub-

machine-code GP, and interacting demes (i.e., sub-

populations) running on separate workstations (Poli et al.,

1999). More precisely, uniform crossover, inspired by that

in the genetic algorithm, selects two points in the parents

that are located within the "common" sub-tree structure of

the two parents for a crossover with a probability of 0.5.

Sub-machine-code GP exploits the bit-level parallelism of

a CPU to do GP by making the CPU execute the same

program on different data in parallel and independently;

hence, it is possible to evaluate the same GP program on

multiple fitness cases at the same time. Finally, a parallel

implementation is employed in which GP sub-

populations, or demes, are distributed over some number

of workstations. This "three-pronged" approach to GP

allows the system to solve even-N-parity problems up to

an N of 22, which is the largest attempted complexity of

the problem so far.

Yet another approach in GP for learning Boolean

even-N-parity functions is called Traceless Genetic

Programming (TGP) (Oltean, 2004). TGP is a novel

method combining a technique for building individuals

and a technique for representing individuals. More

precisely, TGP does not explicitly store the mathematical

expression for each individual-instead, the output values

for the fitness cases are stored. TGP uses two genetic

operators-crossover and insertion. In the crossover,

selected parents are recombined to form new individuals.

The insertion operator chooses a point in an individual and

replaces it with a relatively simple expression: This can

counter the problem of bloating in Genetic Programming.

Finally, the algorithm starts with a random initial

population of expressions, and new generations are

produced by using the insertion operator and crossover

operator with some probabilities. The approach was applied

on solving the even-N-parity problem up to an N = 8. The

runtime of the approach is at least an order of magnitude

faster than standard GP.

An approach called Self-Modifying Cartesian

Genetic Programming (SMCGP) was also proposed to

solve the problem of learning Boolean even-N-parity

functions (Miller and Harding, 2008). In SMCGP, a

genotype-to-phenotype mapping is used-i.e., the genetic

programming is developmental. More precisely, each

genotype and phenotype are a directed graph. During the

course of evolution, a genotype graph is mapped to a

phenotype graph which is executed. In each generation,

the best 5 individuals are automatically promoted to the

next generation. A self-modification operator can be

applied to a phenotype graph to change its internal

structures. Other individuals are produced by using

selection and mutation with some probabilities. The

approach was applied on solving the even-N-parity

problem up to an N = 8. It was demonstrated that such

an approach is more efficient than the original CGP in

solving the even-N-parity problem.

Multi Expression Programming (MEP) is another

approach proposed for learning Boolean even-N-parity

functions (Oltean, 2003). The approach to GP involves

storing multiple solutions in a single chromosome. It

starts by creating a random population of individuals.

The following steps are repeated until a given number

of generations is reached. Two parents are chosen using

a selection procedure. The parents are randomly

recombined to obtain two offspring. The offspring are

then considered for mutation. The best offspring replaces

the worst individual in the current population if the

offspring is better. Finally, the system returns the best

individual evolved over the total number of generations.

The approach was applied to solve the even-N-parity

problem up to N = 5. However, it was demonstrated that

MEP significantly outperformed standard GP in terms of

reducing the size of the population involved.

Using background knowledge in GP concerns the

incorporation of domain-specific functions in the function

set. A random sampling of fitness cases concerns the use

of random samples (instead of the full set of fitness cases)

in GP. The use of domain-specific background knowledge

facilitates problem decomposition and functional

composition for producing useful genetic materials in

evolution. Using random samples of fitness cases allows

evolution to be conducted more computationally

efficiently since fitness evaluation of the individuals

needs only to handle a relatively small subset of the

potentially massive amounts of fitness cases. Using

automatically defined functions facilitates automatic

problem decomposition and allows for the reusability of

invented sub-functions in the course of program

evolution. So far, no approach in genetic programming

has attempted to combine the use of high-arity

background knowledge, the use of automatically defined

functions, and random sampling of fitness cases to

leverage the advantage of automatic large-scale problem

decomposition and boosting efficiency in evolution for

problem-solving by GP. This study demonstrates the

advantages of combining the use of high-arity background

knowledge, automatically defined functions, and random

sampling of fitness cases in GP in solving the even-N-

parity problem. More precisely, it can be shown that such

an approach can significantly reduce the total number of

individuals to be processed by GP in solving the even-N-

parity problem; hence, the efficiency of GP can be

significantly improved.

Lappoon R. Tang / Journal of Computer Science 2023, 19 (7): 900.908

DOI: 10.3844/jcssp.2023.900.908

902

Materials and Methods

Using Background Knowledge in GP

The use of background knowledge is critical and

essential in some paradigms in Machine Learning such

as Inductive Logic Programming (Muggleton, 1991).

More precisely, domain-specific knowledge can be

incorporated into the learning process when inducing a

hypothesis or a target function to explain the input data.

The use of background knowledge relevant to solving a

particular problem facilitates the learning of the target

concept (Srinivasan et al., 2003). In cases where the

concept or the function to be learned is compositional

(i.e., it is composed of sub-concepts and/or sub-

functions relevant to solving the problem), the use of

background knowledge facilitates problem

decomposition in learning as in using a divide-and-

conquer strategy in problem-solving (Koza, 1994).

In learning Boolean even-N-parity functions, we can

provide GP background functions such as some even-

parity functions for k < N in addition to primitive Boolean

functions such as AND, OR, and XOR. The provision of

such background functions to GP is arguably reasonable

for two reasons. Firstly, background functions can be

learned incrementally. For example, we can first learn the

definition of the even-3-parity function using primitive

logic gates (e.g., OR, XOR) before we try to learn the

even-5-parity function where even-3-parity may serve as

a background function. Hence, we can acquire

background knowledge incrementally and background

functions can be acquired systematically. Secondly,

background functions can be created in a relatively

straightforward manner if we rely on a “non-circuit”

general definition of odd parity (i.e., to check if the

number of input Boolean arguments is an odd number).

Doing so still allows us to discover the logic circuit of an

even-N-parity function for some N. Such an approach is,

therefore, useful for discovering the “blueprint” of a logic

circuit for an even-N-parity generator (Elprocus, 2013).

Using Automatically Defined Functions in GP

A target function for a problem can usually be

expressed as a hierarchy of sub-functions in which

subfunctions may be reused repeatedly within the target

function (Koza et al., 1996). An Automatically Defined

Function (ADF) is a function that is dynamically evolved

during a run of Genetic Programming and which may be

called by a calling program (or sub-program) that is

concurrently being evolved. When automatically defined

functions are being used, a program in the population

consists of a hierarchy of one (or more) reusable function-

defining branches (i.e., ADFs) along with a main result-

producing branch. Usually, ADFs contain one or more

formal parameters where the ADFs are reused with

different instantiations of the parameters by the main

result-producing branch.

When automatically defined functions are used, it is

necessary to determine the architecture of the evolved

programs. The specification of the architecture consists of

(1) The number of function-defining branches in the

overall program, (2) The number of parameters possessed

by each function-defining branch, and (3) If there is more

than one function-defining branch, the nature of the

hierarchical references allowed between them.

The use of ADFs allows for automatic problem

decomposition when solving a problem by GP. It also

allows for the reusability of a solution to a sub-problem

within the overall problem the same sub-program can be

reused multiple times within the overall solution program.

These advantages of ADFs are useful for evolution

because problems as well as their solution programs may

be compositional in nature: Automatic discovery of

subprograms facilitates the discovery of a sub-problem

within the overall problem and the use of reusable

subprograms cuts down the need and effort for re-doing

work and rediscovery of partial solutions to a problem.

Hence, ADFs are highly desirable in GP.

Random Sampling Fitness Cases in GP

As the number of fitness cases for a problem can be

potentially large, it would be desirable to use only a

relatively small subset of fitness cases when evaluating the

fitness of an individual in the population. For example, in

solving the even-N-parity problem (s), the number of fitness

cases amounts to O (2M) when N = 21. When N = 30, the

number of fitness cases amounts to O (1B). It takes a lot of

computation to fully evaluate the fitness of an individual

program over an entire set of fitness cases. However, a

solution program that has solved only a subset of all the

fitness cases may be able to solve a large fraction of or even

all of the fitness cases. Since evaluating the fitness of an

individual only on a subset of fitness cases can dramatically

cut down on the amount of computation needed, it is

desirable to explore the use of random sampling of fitness

cases in GP as such an approach can boost the efficiency of

GP. In addition, using random sampling of fitness cases

may make evolution more resistant to bloating (Harper,

2012). The technique is also useful for avoiding overfitting

(Gonçalves and Silva, 2011) and in finding novel solutions

(Klein and Spector, 2008).

A number of random sampling techniques had been

used and experimented with. One method is called

interleaved sampling, which is a deterministic-based

sampling method (Gonçalves and Silva, 2011). It uses the

entire training set to compute fitness in some generations

and uses a single fitness case in others. The approach was

motivated by the idea of balancing learning and

overfitting through the interleaving of fitness cases, which

attempts to avoid local optima. An earlier method, called

Lappoon R. Tang / Journal of Computer Science 2023, 19 (7): 900.908

DOI: 10.3844/jcssp.2023.900.908

903

historical subset selection, uses misclassified instances

from previous GP runs at each generation using the best

individual of the population (Gathercole and Ross,

1994). The subset contains not only difficult cases but

also easy ones that are collected at earlier generations.

In fixed random selection, the selection of fitness cases

is based on a uniform probability among the training

subset (Zhang and Joung, 1999). A fixed number of

cases are selected for every generation.

Our approach to random sampling is very similar to

that of fixed random selection. More precisely, a fixed

number of fitness cases are selected for each generation to

be used in the evaluation of the fitness of the individuals

in the population. However, we employ multi-core

threading in our implementation of the GP kernel. In some

of the experiments in solving the even-N-parity problem,

we employ fixed random selection for each sub-

population at each generation.

Results

We have attempted seven different experiments in

learning Boolean even-N-parity functions. More

precisely, we tackled the problem by GP for N = 8, 9,

11, 13, 15, 17, and 20. In solving the even-N-parity

problem for each N, we ran GP for four independent

trials and selected the best run out of the trials. Our GP

kernel was able to learn the target function for each

target N in an even-N-parity problem.

In solving a particular even-N-parity problem, we

provided two kinds of background knowledge: (1)

Primitive Boolean functions such as AND, OR, and XOR;

(2) Some even-k-parity functions for k < N such as the

even-3-parity function in solving the even-8parity

problem. We have used two automatically defined

functions each has an arity of five. In a random sampling

of fitness cases, we chose a fitness case subset of size 500

at each generation. The fitness evaluation method used

was tournament selection (Fang and Li, 2010).

For each even-N-parity problem, we evaluated the size

of the population needed to find the target Boolean

function and also the total number of individuals

processed by GP to find the target function.

Experimental Results

Generally speaking, as N increases, the size of the

population needed to find the target Boolean function and

the total number of individuals processed by GP (in

finding the target function) both increase in numbers.

In Fig. 1, N (the x-axis) is plotted against the size of

the population needed to find the target Boolean

function (the y-axis).

As we can see from Fig. 1, generally, the population size

needed for finding the target Boolean function increases

with respect to the arity N in an even-N-parity problem.

Fig. 1: How N (x-axis) varies with population size (y-axis)

needed to find the target Boolean function in an even-N-

parity problem

Fig. 2: How N (x-axis) varies with the total number of

individuals processed by GP (y-axis) to find the target

Boolean function in an even-N-parity problem

This is because as the arity of a problem becomes

bigger, the number of terminals (i.e., variables) involved

in instantiating the parameters of the background

functions in the function set also increases. Hence, we

have a larger hypothesis space as N increases (i.e., as the

number of terminals increases). Therefore, as N increases,

we need larger populations of individuals to increase the

probability that a target Boolean function can be

generated within the population.

In Fig. 2, N (the x-axis) is plotted against the total

number of individuals processed by GP to find the target

Boolean function (the y-axis).

As we can see from Fig. 2, generally, the total

number of individuals processed by GP to find the target

Boolean function increases with respect to the arity N in

an even-N-parity problem. As the arity N of an even-N-

parity problem becomes bigger, the hypothesis space

becomes larger as well since the expected arity of a

background function also becomes larger if we want to

carry out large-scale automatic problem decomposition.

Lappoon R. Tang / Journal of Computer Science 2023, 19 (7): 900.908

DOI: 10.3844/jcssp.2023.900.908

904

Fig. 3: An experimental comparison of (1) Our approach in GP, (2)

Koza’s approach in GP, and (3) (Poli et al., 1999) approach

in GP in terms of the total number of individuals processed

by GP versus the arity N of an even-N-parity problem

Table 1: An experimental comparison of (1) Our approach in GP, (2)

Koza’s approach in GP, and (3) (Poli et al., 1999) approach

in GP in terms of the total number of individuals processed
by GP versus the arity N of an even-N-parity problem

Approach

\Arity 7 8 11 13 15 17 20

Koza's 96000 160000 84000 N/A N/A N/A N/A

Poli et al. N/A N/A N/A 30000 54200 98000 356400
(1999)

Ours 8000 12000 16000 15000 31000 30000 151000

More precisely, GP needs to exchange and/or process

more genetic materials in the population across the

generations by performing more crossover operations as

N increases so that a sufficient amount of processing of

genetic materials is done to produce a target Boolean

function for a given even-N-parity problem.

In Fig. 3 and in Table 1, our approach of using

background functions, random sampling of fitness cases,

and automatically defined functions are compared against

Koza’s approach using only ADFs and (Poli et al., 1999)

approach of using smooth uniform crossover, submachine

code GP and demes.

It can be seen that our approach needs to process a

significantly lower total number of individuals in order to

find a target Boolean function for a given even-N-parity

problem. More precisely, when solving even-N-parity

problems for N = 8, 9, and 11, Koza’s approach of using

only ADFs needs to process a total of 96000, 160000, and

84000 individuals respectively. When solving even-N-

parity problems for N = 13, 15, 17, and 20, the (Poli et al.,

1999) approach needs to process a total of 30000, 54200,

98000, and 356400 individuals respectively.

Our approach is processing a significantly smaller

total number of individuals when learning the target

Boolean function for a given even-N-parity problem

mainly because of the following reasons:

 Using background functions such as even-k-parity

for k < N facilitates problem decomposition in the

course of learning a target Boolean function. More

precisely, a lot of function compositions otherwise

using primitive Boolean functions such as AND, OR

and XOR can be saved by using background

functions. This can reduce the amounts of genetic

materials that need to be processed by the crossover

operation; hence, the total number of individuals

that need to be processed can be significantly

reduced as potentially “big chunks” of primitive

functions inter-composed can be succinctly

represented by background functions. In other

words, a lot of crossover operations needed for

composing a sub-concept in an even-N-parity

problem can be saved by the use of a sub-concept

directly. Furthermore, as background functions are

reusable by the main result-producing branch in a

program, the total number of individuals needed to

be processed can be exponentially reduced by

repeated use of the same background functions: The

effect is similar to the use of caching in computation

(i.e., unnecessary repeated computational steps can

be avoided). As we can see, Koza’s use of ADFs

cannot reinvent sub-concepts represented directly

by background functions. This suggests that a sub-

concept represented by a background function can

potentially possess a level of functional complexity

beyond the capacity of function invention using

ADFs alone. Poli et al. (1999) approach mainly uses

uniform crossover to increase the diversity of

genetic materials chosen in a crossover operation.

While such an approach may increase the

probability of finding a target individual with a bias

of using a diverse set of primitive Boolean

functions, it is not as effective in “short-cutting” the

composition of a sub-concept that can be directly

represented by a background function. Hence, their

approach is processing a larger total number of

individuals when learning a target Boolean function

 Using random sampling for selecting a subset of

fitness cases can increase the diversity of genetic

materials chosen in the crossover from generation to

generation due to diversity in fitness cases. More

precisely, such an approach promotes the retainment

of diverse genetic materials in the population from

generation to generation. Hence, premature

convergence to a sub-optimal solution can be avoided

and convergence to a global solution can be facilitated

Lappoon R. Tang / Journal of Computer Science 2023, 19 (7): 900.908

DOI: 10.3844/jcssp.2023.900.908

905

 Using background functions together with ADFs can

create synergy between the kind of problem

decomposition employed by ADFs and the kind

induced by the use of background functions. More

precisely, ADFs can now be created to “bridge the

gap” in connecting different sub-concepts

represented by background functions. For example,

an ADF may be created by using particular primitive

Boolean functions to represent a sub-concept not

expressed by but needed by the use of specific

background functions. In other words, problem

decomposition by using ADFs is shaped by the use of

specific background functions and it is carried out

more purposefully. Therefore, using background

functions together with ADFs enhances the

effectiveness of problem decomposition in learning a

target concept by exploiting the synergy between the

two kinds of problem decomposition strategies. The

increase in effectiveness in problem decomposition

reduces the total number of individuals needed to be

processed by GP since a sub-concept invented and/or

employed is reusable by the main result-producing

branch in an evolving program

Discussion

When using background functions together with

automatically defined functions, we can see that GP

would employ the following strategy for solving a

particular even-N-parity problem. An ADF would be

created to represent a sub-concept by composing

primitive Boolean functions over a subset of its

parameters (e.g., (AND (NOT A0) A1)) where A0 and A1

are two particular parameters of the ADF. Such a sub-

function is then employed in composing with other

background functions (e.g., even-3-parity). A background

function in the main result-producing branch of an

evolving program can be called compositionally with

ADFs and/or other background functions (e.g., even-8-

parity can be called even-3-parity in one of its arguments).

A target Boolean function (e.g., even-11-parity) is created

by inter-composing ADFs and/or background functions so

that all parameters in the target Boolean function are used

by some functions within the tree of composing functions.

Hence, a target concept is expressed by a hierarchy of sub-

concepts, which makes for an alternative definition of a

target Boolean function.

In Fig. 4, we have the learned definition of even-11-

parity. To create such an alternative definition of the

target Boolean function, GP exploits the following

strategies in evolution:

 Repeated use of the same background function (e.g.,

even-10-parity)

 Calling an ADF by a background function (e.g., even-

10-parity calls ADF1)

 An ADF may call a background function (e.g., ADF1

calls even-3-parity)

 Using the same term within a function (e.g., D2

appears as two different arguments in even-8-parity),

creates a specific context of terminals (i.e., variables)

in which an even-k-parity function can be true or

false over the context

 Relatively higher arity background function(s)

 (e.g., even-10-parity) within the target

 Boolean functions (e.g., even-11-parity) are used to

define the overall basic structure of the target solution

 All terminals in the terminal set are used by some

functions within the entire learned definition

In Fig. 5, we can see a learned alternative definition for

the target Boolean function even-20-parity. Again, we can

see a similar strategy used by GP to learn the definition.

More precisely, even-k-parity functions (k < N) of

relatively big k are used to define the overall basic

structure of the target solution. In this case, even-19-

parity, even-17-parity, and even-15-parity are used for

defining the basic layout of the target solution they define

the basic organization of the solution tree.

Again, ADFs and primitive Boolean functions (e.g.,

XOR) are used for “gluing” together the entire definition.

The same terminal can appear as different arguments to a

background function and the same background functions

are called multiple times within the entire definition. All

the terminals are instantiated as arguments to some

functions within the entire definition.

Our experience in conducting the experiments is that

the larger the arity of an even-N-parity problem, the

bigger would be the requirement on the population size

for successfully finding a target solution.

Random sampling serves to create a subset of

fitness cases to use with fitness evaluation at each

generation. Exploiting this strategy, GP is much more

efficient in its computation since a subset of O (10) to

O (10000) smaller in size is instead used in fitness

evaluation for an individual program. Hence, GP has a

speedup of O (10) to O (10000) in its computation

as a result of a dramatic reduction in the number of

fitness cases employed in fitness evaluation. This

makes an intractable problem of evaluating O (1M)

fitness cases repeatedly a tractable problem.

The strategy employed by GP when using random

sampling is that it progressively retains a more and

more diverse set of genetic materials from generation

to generation until a target solution is found. This is

because the genetic materials retained by crossover are

Lappoon R. Tang / Journal of Computer Science 2023, 19 (7): 900.908

DOI: 10.3844/jcssp.2023.900.908

906

dependent upon the fitness cases chosen for a particular

generation. Varying the fitness cases from generation to

generation, thus, allows GP to retain genetic materials

from a variety of individuals within the population. In

other words, genetic materials are “recruited” from

different individuals from one generation to the next and

the best overall individual is built up incrementally over

time until it would become the target solution.

Fig. 4: The learned definition of even-11-parity. The learned alternative definition for the target Boolean function is composed of

relatively higher arity even-k-parity functions (k < N) with ADFs and primitive Boolean functions serving to “gluing” the

overall definition together

Lappoon R. Tang / Journal of Computer Science 2023, 19 (7): 900.908

DOI: 10.3844/jcssp.2023.900.908

907

Fig. 5: The learned definition of even-20-parity. Again, relatively higher arity background functions (e.g., even-19parity, and even-

17-parity) define the overall basic structure of the target solution. ADFs and primitive Boolean functions (e.g., XOR) are used

for “gluing” the overall definition together

Conclusion

Learning Boolean functions for the even-N-parity

problem is a benchmark problem because it is a

difficult problem for evolutionary computation. Most

approaches proposed have been focusing on the

representation of individuals and/or the effectiveness

of crossover operation. Our proposed approach

involves the use of high-arity background functions,

automatically defined functions, and random sampling

of fitness cases. Such an approach has the advantages

of (1) Facilitating automatic large-scale problem

decomposition in finding a target solution and (2)

Promoting diversity in the retainment of genetic

materials in the course of evolution. A major advantage

of using high-arity background functions is that a lot of

steps of crossover involved in function composition

using primitive Boolean functions can be saved by the

direct use of a sub-concept or a sub-function. In other

words, the total number of individuals to be processed

can be reduced by saving crossover operations that

would have been carried out over function composition

using primitive Boolean functions-instead, a sub-

function, or a sub-concept is used directly. Secondly,

random sampling of fitness cases promotes the use of a

diverse set of genetic materials across the population

from generation to generation. This facilitates the

convergence of evolution to a global optimum due to

diversity in evolution. Our experimental results show

that the proposed “three-pronged” approach can

significantly reduce the total number of individuals

needed to be processed by GP. Although our approach

in complexity, as per Fig. 3, is not linear with respect to

N, it is growing less dramatically compared to the (Poli et al.,

1999) approach (the state of the art in learning Boolean

even-N-parity functions). In the future, we plan to

experiment with our approach to solving the even-N-

parity problem for much larger values of N (e.g., up to 26

and/or 30) to further investigate computational principles

that might be involved in Genetic Programming in

solving very large even-N-parity problems.

Acknowledgment

We are grateful to Koza for providing the coding of

the genetic programming kernel using automatically

defined functions. We are also grateful to the community

that developed the publicly available framework gplearn

for symbolic regression by genetic programming.

Funding Information

The authors have not received any financial support or

funding to report the work.

Lappoon R. Tang / Journal of Computer Science 2023, 19 (7): 900.908

DOI: 10.3844/jcssp.2023.900.908

908

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that there

were no ethical dilemmas.

References

Elprocus. (2013). What is Parity Generator and Parity

Checker: Types & Its Logic Diagrams.

https://www.elprocus.com/what-is-parity-generator-

and-parity-checker-types-its-logic-diagrams/

Fang, Y., & Li, J. (2010). A review of tournament selection

in genetic programming. In Advances in Computation

and Intelligence: 5th International Symposium, ISICA

2010, Wuhan, China, October 22-24, 2010.

Proceedings 5, (pp. 181-192). Springer Berlin

Heidelberg. https://doi.org/10.1007/978-3-642-

16493-4_19

Gathercole, C., & Ross, P. (1994). Dynamic training

subset selection for supervised learning in genetic

programming. In Parallel Problem Solving from

Nature-PPSN III: International Conference on

Evolutionary Computation The Third Conference

on Parallel Problem Solving from Nature

Jerusalem, Israel, October 9-14, 1994 Proceedings

3 (pp. 312-321). Springer Berlin Heidelberg.

https://doi.org/10.1007/3-540-58484-6_275

Gonçalves, I., & Silva, S. (2011, October). Experiments

on controlling overfitting in genetic programming. In

15th Portuguese Conference on Artificial Intelligence

(EPIA 2011), (pp. 10-13).

Harper, R. (2012, July). Spatial co-evolution: quicker,

fitter and less bloated. In Proceedings of the 14th

Annual Conference on Genetic and Evolutionary

Computation, (pp. 759-766).

https://doi.org/10.1145/2330163.2330269

Hirschberg, D. S., Pazzani, M. J., & Ali, K. M. (1994).

Average Case Analysis of k-CNF and k-DNF

learning algorithms. Computational Learning Theory

and Natural Learning Systems, 2, 15-28.

https://citeseerx.ist.psu.edu/document?repid=rep1&t

ype=pdf&doi=f1f517fd4e43de9b23e03f8d7a44b816

bcc32742. ISBN: 0262111896.

Klein, J., & Spector, L. (2008). Genetic programming

with historically assessed hardness. In Genetic

Programming Theory and Practice VI, (pp. 1-14).

Boston, MA: Springer US.

https://doi.org/10.1007/978-0-387-87623-8_5

Koza, J. R. (1992). Genetic Programming, On the

Programming of Computers by Means of Natural

Selection. A Bradford Book. MIT Press.

ISBN: 9780262111706.

Koza, J. R. (1994). Genetic programming II: Automatic

Discovery of Reusable Programs. MIT press.

Koza, J. R. andre, D., Bennett III, F. H., & Keane, M. A.

(1996, July). Use of automatically defined functions

and architecture-altering operations in automated

circuit synthesis with genetic programming. In

Proceedings of the First Annual Conference on

Genetic Programming, (pp. 132-140). Stanford

University MIT Press, Cambridge, MA.

http://www.genetic-

programming.com/jkpdf/gp1996adfaa.pdf

McCulloch, W. S., & Pitts, W. (1943). A logical calculus

of the ideas immanent in nervous activity. The

Bulletin of Mathematical Biophysics, 5, 115-133.

https://doi.org/10.1007/BF02478259

Miller, J. F., & Harding, S. L. (2008, July). Cartesian

genetic programming. In Proceedings of the 10th

annual conference companion on Genetic and

evolutionary computation (pp. 2701-2726).

https://doi.org/10.1145/1388969.1389075

Muggleton, S. (1991). Inductive logic programming. New

generation computing, 8, 295-318.

https://doi.org/10.1007/BF03037089

Oltean, M. (2003, September). Solving even-parity

problems using multi expression programming. In

Proceedings of the 5th International Workshop on

Frontiers in Evolutionary Algorithms, The 7th Joint

Conference on Information Sciences (pp. 26-30).

https://www.tcreate.org/oltean_fea2003_2.pdf

Oltean, M. (2004, June). Solving even-parity problems

using traceless genetic programming. In Proceedings

of the 2004 Congress on Evolutionary Computation

(IEEE Cat. No. 04TH8753), (Vol. 2, pp. 1813-1819).

IEEE. https://doi.org/10.1109/CEC.2004.1331116

Poli, R., Page, J., & Langdon, W. B. (1999, July). Smooth

uniform crossover, sub-machine code GP and demes:

A recipe for solving high-order boolean parity

problems. In Proceedings of the Genetic and

Evolutionary Computation Conference (Vol. 2, pp.

1162-1169).

Srinivasan, A., King, R. D., & Bain, M. E. (2003). An

empirical study of the use of relevance information in

inductive logic programming. The Journal of

Machine Learning Research, 4, 369-383.

https://www.jmlr.org/papers/volume4/srinivasan03a/

srinivasan03a.pdf

Veness, J., & Hutter, M. (2014). Online learning of K-

CNF boolean functions. arXiv preprint

arXiv:1403.6863.

https://doi.org/10.48550/arXiv.1403.6863

Zhang, B. T., & Joung, J. G. (1999, July). Genetic

programming with incremental data inheritance. In

Proceedings of the 1st Annual Conference on

Genetic and Evolutionary Computation-Volume 2,

(pp. 1217-1224).

http://gpbib.cs.ucl.ac.uk/gecco1999/GP-460.pdf

https://www.elprocus.com/what-is-parity-generator-and-parity-checker-types-its-logic-diagrams/
https://www.elprocus.com/what-is-parity-generator-and-parity-checker-types-its-logic-diagrams/

