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Abstract: The Boolean even-N-parity function returns T (i.e., true) if an even 

number of its Boolean arguments for N arguments are T and otherwise returns 

NIL (i.e., false). Learning Boolean even-N-parity functions has been recognized 

as a difficult problem for evolutionary computation (such as genetic 

programming) especially when N is large (e.g., 20+). A number of approaches 

have been proposed for solving the benchmark problem of even-N-parity. Most 

approaches focus on improving the representation of individuals and/or 

improving the effectiveness of crossover. So far, no approach has attempted to 

use high-arity background knowledge/functions for automating problem 

decomposition in the course of evolution. Our current approach combines the use 

of high-arity background functions, automatically defined functions, and random 

sampling of fitness cases to (1) Automate problem decomposition for high-arity 

even-N-parity problems and (2) Promote diversity in the retainment of genetic 

materials across generations by using random samples of fitness cases in fitness 

evaluation. Experimental evaluation shows that such an approach can 

dramatically reduce the total number of individuals needed to be processed by 

genetic programming. Therefore, such an approach to genetic programming can 

significantly improve computational efficiency.  

 

Keywords: Genetic Programming, Symbolic Regression, Even-N-Parity 

Boolean Functions, Random Sampling, Background Functions  
 

Introduction  

Learning Boolean functions from examples began in 

machine learning (at least) as early as 1943 when an 

artificial neuron was created to learn Boolean functions 

such as and, OR (McCulloch and Pitts, 1943). Earlier works 

on learning Boolean functions include learning of 

conjunctive normal form from examples (Hirschberg et al., 

1994). Learning Boolean functions from examples has 

continued to be an important problem in machine learning 

(Veness and Hutter, 2014).  

The Boolean even-N-parity function returns T (i.e., 

true) if an even number of its Boolean arguments are T 

and otherwise returns nil (i.e., false). Learning Boolean 

even-N-parity functions has been recognized as a difficult 

problem for evolutionary computation (such as Genetic 

Programming) especially when N is large (e.g., 20+). 

When N is equal to 21, there are O (2M) truth table rows 

to process in learning a target function. If the learning 

mechanism involved is “vanilla”-i.e., not using 

background knowledge and/or domain-specific language 

bias in learning, the search space is practically intractable.  

Genetic Programming (GP) is a paradigm in machine 

learning that employs evolutionary search in the course of 

learning a target concept/function (Koza, 1992). It is an 

extension of John Holland’s genetic algorithm 1975 in 

which the population consists of computer programs of 

varying sizes and shapes (Koza, 1992). GP automatically 

solves problems without having to tell the computer 

explicitly how to do it. GP is a systematic and domain-

independent method for having computers automatically 

solve problems starting from a high-level statement of 

problem formulation. It generates a solution to a given 

problem by maintaining a population of S-expressions 

(i.e., LISP functions) which is evolved over a number of 

generations by the application of a tree-based crossover 

operator, a reproduction operator, and a mutation operator 

over the individuals in the population. Individual 

programs are evaluated by their fitness: Programs with 

higher fitness are selected for a crossover with a higher 

probability. Genetic materials for solving a problem are 

acquired incrementally from generation to generation 

until a solution that satisfies all the fitness cases is found 
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(or the number of generations is exhausted). On learning 

Boolean even-N-parity functions, GP has been applied, by 

Koza, on solving the problem for a maximum N of up to 

11. Koza used automatically defined functions for solving 

the problem (Koza, 1994). 
An approach to solving Boolean parity problems for 

very large N is by using smooth uniform crossover, sub-

machine-code GP, and interacting demes (i.e., sub-

populations) running on separate workstations (Poli et al., 

1999). More precisely, uniform crossover, inspired by that 

in the genetic algorithm, selects two points in the parents 

that are located within the "common" sub-tree structure of 

the two parents for a crossover with a probability of 0.5. 

Sub-machine-code GP exploits the bit-level parallelism of 

a CPU to do GP by making the CPU execute the same 

program on different data in parallel and independently; 

hence, it is possible to evaluate the same GP program on 

multiple fitness cases at the same time. Finally, a parallel 

implementation is employed in which GP sub-

populations, or demes, are distributed over some number 

of workstations. This "three-pronged" approach to GP 

allows the system to solve even-N-parity problems up to 

an N of 22, which is the largest attempted complexity of 

the problem so far. 

Yet another approach in GP for learning Boolean 

even-N-parity functions is called Traceless Genetic 

Programming (TGP) (Oltean, 2004). TGP is a novel 

method combining a technique for building individuals 

and a technique for representing individuals. More 

precisely, TGP does not explicitly store the mathematical 

expression for each individual-instead, the output values 

for the fitness cases are stored. TGP uses two genetic 

operators-crossover and insertion. In the crossover, 

selected parents are recombined to form new individuals. 

The insertion operator chooses a point in an individual and 

replaces it with a relatively simple expression: This can 

counter the problem of bloating in Genetic Programming. 

Finally, the algorithm starts with a random initial 

population of expressions, and new generations are 

produced by using the insertion operator and crossover 

operator with some probabilities. The approach was applied 

on solving the even-N-parity problem up to an N = 8. The 

runtime of the approach is at least an order of magnitude 

faster than standard GP.  

An approach called Self-Modifying Cartesian 

Genetic Programming (SMCGP) was also proposed to 

solve the problem of learning Boolean even-N-parity 

functions (Miller and Harding, 2008). In SMCGP, a 

genotype-to-phenotype mapping is used-i.e., the genetic 

programming is developmental. More precisely, each 

genotype and phenotype are a directed graph. During the 

course of evolution, a genotype graph is mapped to a 

phenotype graph which is executed. In each generation, 

the best 5 individuals are automatically promoted to the 

next generation. A self-modification operator can be 

applied to a phenotype graph to change its internal 

structures. Other individuals are produced by using 

selection and mutation with some probabilities. The 

approach was applied on solving the even-N-parity 

problem up to an N = 8. It was demonstrated that such 

an approach is more efficient than the original CGP in 

solving the even-N-parity problem. 

Multi Expression Programming (MEP) is another 

approach proposed for learning Boolean even-N-parity 

functions (Oltean, 2003). The approach to GP involves 

storing multiple solutions in a single chromosome. It 

starts by creating a random population of individuals. 

The following steps are repeated until a given number 

of generations is reached. Two parents are chosen using 

a selection procedure. The parents are randomly 

recombined to obtain two offspring. The offspring are 

then considered for mutation. The best offspring replaces 

the worst individual in the current population if the 

offspring is better. Finally, the system returns the best 

individual evolved over the total number of generations. 

The approach was applied to solve the even-N-parity 

problem up to N = 5. However, it was demonstrated that 

MEP significantly outperformed standard GP in terms of 

reducing the size of the population involved. 

Using background knowledge in GP concerns the 

incorporation of domain-specific functions in the function 

set. A random sampling of fitness cases concerns the use 

of random samples (instead of the full set of fitness cases) 

in GP. The use of domain-specific background knowledge 

facilitates problem decomposition and functional 

composition for producing useful genetic materials in 

evolution. Using random samples of fitness cases allows 

evolution to be conducted more computationally 

efficiently since fitness evaluation of the individuals 

needs only to handle a relatively small subset of the 

potentially massive amounts of fitness cases. Using 

automatically defined functions facilitates automatic 

problem decomposition and allows for the reusability of 

invented sub-functions in the course of program 

evolution. So far, no approach in genetic programming 

has attempted to combine the use of high-arity 

background knowledge, the use of automatically defined 

functions, and random sampling of fitness cases to 

leverage the advantage of automatic large-scale problem 

decomposition and boosting efficiency in evolution for 

problem-solving by GP. This study demonstrates the 

advantages of combining the use of high-arity background 

knowledge, automatically defined functions, and random 

sampling of fitness cases in GP in solving the even-N-

parity problem. More precisely, it can be shown that such 

an approach can significantly reduce the total number of 

individuals to be processed by GP in solving the even-N-

parity problem; hence, the efficiency of GP can be 

significantly improved. 
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Materials and Methods  

Using Background Knowledge in GP  

The use of background knowledge is critical and 

essential in some paradigms in Machine Learning such 

as Inductive Logic Programming (Muggleton, 1991). 

More precisely, domain-specific knowledge can be 

incorporated into the learning process when inducing a 

hypothesis or a target function to explain the input data. 

The use of background knowledge relevant to solving a 

particular problem facilitates the learning of the target 

concept (Srinivasan et al., 2003). In cases where the 

concept or the function to be learned is compositional 

(i.e., it is composed of sub-concepts and/or sub-

functions relevant to solving the problem), the use of 

background knowledge facilitates problem 

decomposition in learning as in using a divide-and-

conquer strategy in problem-solving (Koza, 1994).  

In learning Boolean even-N-parity functions, we can 

provide GP background functions such as some even-

parity functions for k < N in addition to primitive Boolean 

functions such as AND, OR, and XOR. The provision of 

such background functions to GP is arguably reasonable 

for two reasons. Firstly, background functions can be 

learned incrementally. For example, we can first learn the 

definition of the even-3-parity function using primitive 

logic gates (e.g., OR, XOR) before we try to learn the 

even-5-parity function where even-3-parity may serve as 

a background function. Hence, we can acquire 

background knowledge incrementally and background 

functions can be acquired systematically. Secondly, 

background functions can be created in a relatively 

straightforward manner if we rely on a “non-circuit” 

general definition of odd parity (i.e., to check if the 

number of input Boolean arguments is an odd number). 

Doing so still allows us to discover the logic circuit of an 

even-N-parity function for some N. Such an approach is, 

therefore, useful for discovering the “blueprint” of a logic 

circuit for an even-N-parity generator (Elprocus, 2013).  

Using Automatically Defined Functions in GP  

A target function for a problem can usually be 

expressed as a hierarchy of sub-functions in which 

subfunctions may be reused repeatedly within the target 

function (Koza et al., 1996). An Automatically Defined 

Function (ADF) is a function that is dynamically evolved 

during a run of Genetic Programming and which may be 

called by a calling program (or sub-program) that is 

concurrently being evolved. When automatically defined 

functions are being used, a program in the population 

consists of a hierarchy of one (or more) reusable function-

defining branches (i.e., ADFs) along with a main result-

producing branch. Usually, ADFs contain one or more 

formal parameters where the ADFs are reused with 

different instantiations of the parameters by the main 

result-producing branch.  

When automatically defined functions are used, it is 

necessary to determine the architecture of the evolved 

programs. The specification of the architecture consists of 

(1) The number of function-defining branches in the 

overall program, (2) The number of parameters possessed 

by each function-defining branch, and (3) If there is more 

than one function-defining branch, the nature of the 

hierarchical references allowed between them.  

The use of ADFs allows for automatic problem 

decomposition when solving a problem by GP. It also 

allows for the reusability of a solution to a sub-problem 

within the overall problem the same sub-program can be 

reused multiple times within the overall solution program. 

These advantages of ADFs are useful for evolution 

because problems as well as their solution programs may 

be compositional in nature: Automatic discovery of 

subprograms facilitates the discovery of a sub-problem 

within the overall problem and the use of reusable 

subprograms cuts down the need and effort for re-doing 

work and rediscovery of partial solutions to a problem. 

Hence, ADFs are highly desirable in GP.  

Random Sampling Fitness Cases in GP  

As the number of fitness cases for a problem can be 

potentially large, it would be desirable to use only a 

relatively small subset of fitness cases when evaluating the 

fitness of an individual in the population. For example, in 

solving the even-N-parity problem (s), the number of fitness 

cases amounts to O (2M) when N = 21. When N = 30, the 

number of fitness cases amounts to O (1B). It takes a lot of 

computation to fully evaluate the fitness of an individual 

program over an entire set of fitness cases. However, a 

solution program that has solved only a subset of all the 

fitness cases may be able to solve a large fraction of or even 

all of the fitness cases. Since evaluating the fitness of an 

individual only on a subset of fitness cases can dramatically 

cut down on the amount of computation needed, it is 

desirable to explore the use of random sampling of fitness 

cases in GP as such an approach can boost the efficiency of 

GP. In addition, using random sampling of fitness cases 

may make evolution more resistant to bloating (Harper, 

2012). The technique is also useful for avoiding overfitting 

(Gonçalves and Silva, 2011) and in finding novel solutions 

(Klein and Spector, 2008).  

A number of random sampling techniques had been 

used and experimented with. One method is called 

interleaved sampling, which is a deterministic-based 

sampling method (Gonçalves and Silva, 2011). It uses the 

entire training set to compute fitness in some generations 

and uses a single fitness case in others. The approach was 

motivated by the idea of balancing learning and 

overfitting through the interleaving of fitness cases, which 

attempts to avoid local optima. An earlier method, called 
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historical subset selection, uses misclassified instances 

from previous GP runs at each generation using the best 

individual of the population (Gathercole and Ross, 

1994). The subset contains not only difficult cases but 

also easy ones that are collected at earlier generations. 

In fixed random selection, the selection of fitness cases 

is based on a uniform probability among the training 

subset (Zhang and Joung, 1999). A fixed number of 

cases are selected for every generation.  

Our approach to random sampling is very similar to 

that of fixed random selection. More precisely, a fixed 

number of fitness cases are selected for each generation to 

be used in the evaluation of the fitness of the individuals 

in the population. However, we employ multi-core 

threading in our implementation of the GP kernel. In some 

of the experiments in solving the even-N-parity problem, 

we employ fixed random selection for each sub-

population at each generation.  

Results 

We have attempted seven different experiments in 

learning Boolean even-N-parity functions. More 

precisely, we tackled the problem by GP for N = 8, 9, 

11, 13, 15, 17, and 20. In solving the even-N-parity 

problem for each N, we ran GP for four independent 

trials and selected the best run out of the trials. Our GP 

kernel was able to learn the target function for each 

target N in an even-N-parity problem.  

In solving a particular even-N-parity problem, we 

provided two kinds of background knowledge: (1) 

Primitive Boolean functions such as AND, OR, and XOR; 

(2) Some even-k-parity functions for k < N such as the 

even-3-parity function in solving the even-8parity 

problem. We have used two automatically defined 

functions each has an arity of five. In a random sampling 

of fitness cases, we chose a fitness case subset of size 500 

at each generation. The fitness evaluation method used 

was tournament selection (Fang and Li, 2010).  

For each even-N-parity problem, we evaluated the size 

of the population needed to find the target Boolean 

function and also the total number of individuals 

processed by GP to find the target function.  

Experimental Results  

Generally speaking, as N increases, the size of the 

population needed to find the target Boolean function and 

the total number of individuals processed by GP (in 

finding the target function) both increase in numbers.  

In Fig. 1, N (the x-axis) is plotted against the size of 

the population needed to find the target Boolean 

function (the y-axis).  

As we can see from Fig. 1, generally, the population size 

needed for finding the target Boolean function increases 

with respect to the arity N in an even-N-parity problem.  

 
 
Fig. 1: How N (x-axis) varies with population size (y-axis) 

needed to find the target Boolean function in an even-N-

parity problem  
 

 
 
Fig. 2: How N (x-axis) varies with the total number of 

individuals processed by GP (y-axis) to find the target 

Boolean function in an even-N-parity problem  
 

This is because as the arity of a problem becomes 

bigger, the number of terminals (i.e., variables) involved 

in instantiating the parameters of the background 

functions in the function set also increases. Hence, we 

have a larger hypothesis space as N increases (i.e., as the 

number of terminals increases). Therefore, as N increases, 

we need larger populations of individuals to increase the 

probability that a target Boolean function can be 

generated within the population.  

In Fig. 2, N (the x-axis) is plotted against the total 

number of individuals processed by GP to find the target 

Boolean function (the y-axis).  

As we can see from Fig. 2, generally, the total 

number of individuals processed by GP to find the target 

Boolean function increases with respect to the arity N in 

an even-N-parity problem. As the arity N of an even-N-

parity problem becomes bigger, the hypothesis space 

becomes larger as well since the expected arity of a 

background function also becomes larger if we want to 

carry out large-scale automatic problem decomposition.  
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Fig. 3: An experimental comparison of (1) Our approach in GP, (2) 

Koza’s approach in GP, and (3) (Poli et al., 1999) approach 

in GP in terms of the total number of individuals processed 

by GP versus the arity N of an even-N-parity problem 

  
Table 1: An experimental comparison of (1) Our approach in GP, (2) 

Koza’s approach in GP, and (3) (Poli et al., 1999) approach 

in GP in terms of the total number of individuals processed 
by GP versus the arity N of an even-N-parity problem 

Approach 

\Arity 7  8  11  13  15  17  20  

Koza's  96000  160000  84000  N/A  N/A  N/A  N/A  

Poli et al.  N/A  N/A  N/A  30000  54200  98000 356400 
(1999) 

Ours  8000  12000  16000  15000  31000  30000  151000  

 

More precisely, GP needs to exchange and/or process 

more genetic materials in the population across the 

generations by performing more crossover operations as 

N increases so that a sufficient amount of processing of 

genetic materials is done to produce a target Boolean 

function for a given even-N-parity problem.  

In Fig. 3 and in Table 1, our approach of using 

background functions, random sampling of fitness cases, 

and automatically defined functions are compared against 

Koza’s approach using only ADFs and (Poli et al., 1999) 

approach of using smooth uniform crossover, submachine 

code GP and demes.  

It can be seen that our approach needs to process a 

significantly lower total number of individuals in order to 

find a target Boolean function for a given even-N-parity 

problem. More precisely, when solving even-N-parity 

problems for N = 8, 9, and 11, Koza’s approach of using 

only ADFs needs to process a total of 96000, 160000, and 

84000 individuals respectively. When solving even-N-

parity problems for N = 13, 15, 17, and 20, the (Poli et al., 

1999) approach needs to process a total of 30000, 54200, 

98000, and 356400 individuals respectively.  

Our approach is processing a significantly smaller 

total number of individuals when learning the target 

Boolean function for a given even-N-parity problem 

mainly because of the following reasons: 
 

 Using background functions such as even-k-parity 

for k < N facilitates problem decomposition in the 

course of learning a target Boolean function. More 

precisely, a lot of function compositions otherwise 

using primitive Boolean functions such as AND, OR 

and XOR can be saved by using background 

functions. This can reduce the amounts of genetic 

materials that need to be processed by the crossover 

operation; hence, the total number of individuals 

that need to be processed can be significantly 

reduced as potentially “big chunks” of primitive 

functions inter-composed can be succinctly 

represented by background functions. In other 

words, a lot of crossover operations needed for 

composing a sub-concept in an even-N-parity 

problem can be saved by the use of a sub-concept 

directly. Furthermore, as background functions are 

reusable by the main result-producing branch in a 

program, the total number of individuals needed to 

be processed can be exponentially reduced by 

repeated use of the same background functions: The 

effect is similar to the use of caching in computation 

(i.e., unnecessary repeated computational steps can 

be avoided). As we can see, Koza’s use of ADFs 

cannot reinvent sub-concepts represented directly 

by background functions. This suggests that a sub-

concept represented by a background function can 

potentially possess a level of functional complexity 

beyond the capacity of function invention using 

ADFs alone. Poli et al. (1999) approach mainly uses 

uniform crossover to increase the diversity of 

genetic materials chosen in a crossover operation. 

While such an approach may increase the 

probability of finding a target individual with a bias 

of using a diverse set of primitive Boolean 

functions, it is not as effective in “short-cutting” the 

composition of a sub-concept that can be directly 

represented by a background function. Hence, their 

approach is processing a larger total number of 

individuals when learning a target Boolean function  

 Using random sampling for selecting a subset of 

fitness cases can increase the diversity of genetic 

materials chosen in the crossover from generation to 

generation due to diversity in fitness cases. More 

precisely, such an approach promotes the retainment 

of diverse genetic materials in the population from 

generation to generation. Hence, premature 

convergence to a sub-optimal solution can be avoided 

and convergence to a global solution can be facilitated  
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 Using background functions together with ADFs can 

create synergy between the kind of problem 

decomposition employed by ADFs and the kind 

induced by the use of background functions. More 

precisely, ADFs can now be created to “bridge the 

gap” in connecting different sub-concepts 

represented by background functions. For example, 

an ADF may be created by using particular primitive 

Boolean functions to represent a sub-concept not 

expressed by but needed by the use of specific 

background functions. In other words, problem 

decomposition by using ADFs is shaped by the use of 

specific background functions and it is carried out 

more purposefully. Therefore, using background 

functions together with ADFs enhances the 

effectiveness of problem decomposition in learning a 

target concept by exploiting the synergy between the 

two kinds of problem decomposition strategies. The 

increase in effectiveness in problem decomposition 

reduces the total number of individuals needed to be 

processed by GP since a sub-concept invented and/or 

employed is reusable by the main result-producing 

branch in an evolving program  

  

Discussion 

When using background functions together with 

automatically defined functions, we can see that GP 

would employ the following strategy for solving a 

particular even-N-parity problem. An ADF would be 

created to represent a sub-concept by composing 

primitive Boolean functions over a subset of its 

parameters (e.g., (AND (NOT A0) A1)) where A0 and A1 

are two particular parameters of the ADF. Such a sub-

function is then employed in composing with other 

background functions (e.g., even-3-parity). A background 

function in the main result-producing branch of an 

evolving program can be called compositionally with 

ADFs and/or other background functions (e.g., even-8-

parity can be called even-3-parity in one of its arguments). 

A target Boolean function (e.g., even-11-parity) is created 

by inter-composing ADFs and/or background functions so 

that all parameters in the target Boolean function are used 

by some functions within the tree of composing functions. 

Hence, a target concept is expressed by a hierarchy of sub-

concepts, which makes for an alternative definition of a 

target Boolean function.  

In Fig. 4, we have the learned definition of even-11-

parity. To create such an alternative definition of the 

target Boolean function, GP exploits the following 

strategies in evolution: 

  

 Repeated use of the same background function (e.g., 

even-10-parity)  

 Calling an ADF by a background function (e.g., even-

10-parity calls ADF1)  

 An ADF may call a background function (e.g., ADF1 

calls even-3-parity)  

 Using the same term within a function (e.g., D2 

appears as two different arguments in even-8-parity), 

creates a specific context of terminals (i.e., variables) 

in which an even-k-parity function can be true or 

false over the context  

 Relatively higher arity background function(s)  

 (e.g., even-10-parity) within the target  

 Boolean functions (e.g., even-11-parity) are used to 

define the overall basic structure of the target solution  

 All terminals in the terminal set are used by some 

functions within the entire learned definition 

 

In Fig. 5, we can see a learned alternative definition for 

the target Boolean function even-20-parity. Again, we can 

see a similar strategy used by GP to learn the definition. 

More precisely, even-k-parity functions (k < N) of 

relatively big k are used to define the overall basic 

structure of the target solution. In this case, even-19-

parity, even-17-parity, and even-15-parity are used for 

defining the basic layout of the target solution they define 

the basic organization of the solution tree.  

Again, ADFs and primitive Boolean functions (e.g., 

XOR) are used for “gluing” together the entire definition. 

The same terminal can appear as different arguments to a 

background function and the same background functions 

are called multiple times within the entire definition. All 

the terminals are instantiated as arguments to some 

functions within the entire definition.  

Our experience in conducting the experiments is that 

the larger the arity of an even-N-parity problem, the 

bigger would be the requirement on the population size 

for successfully finding a target solution.  

Random sampling serves to create a subset of 

fitness cases to use with fitness evaluation at each 

generation. Exploiting this strategy, GP is much more 

efficient in its computation since a subset of O (10) to 

O (10000) smaller in size is instead used in fitness 

evaluation for an individual program. Hence, GP has a 

speedup of O (10) to O (10000) in its computation 

as a result of a dramatic reduction in the number of 

fitness cases employed in fitness evaluation. This 

makes an intractable problem of evaluating O (1M) 

fitness cases repeatedly a tractable problem.  

The strategy employed by GP when using random 

sampling is that it progressively retains a more and 

more diverse set of genetic materials from generation 

to generation until a target solution is found. This is 

because the genetic materials retained by crossover are 
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dependent upon the fitness cases chosen for a particular 

generation. Varying the fitness cases from generation to 

generation, thus, allows GP to retain genetic materials 

from a variety of individuals within the population. In 

other words, genetic materials are “recruited” from 

different individuals from one generation to the next and 

the best overall individual is built up incrementally over 

time until it would become the target solution.  

 

 
 

Fig. 4: The learned definition of even-11-parity. The learned alternative definition for the target Boolean function is composed of 

relatively higher arity even-k-parity functions (k < N) with ADFs and primitive Boolean functions serving to “gluing” the 

overall definition together 
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Fig. 5: The learned definition of even-20-parity. Again, relatively higher arity background functions (e.g., even-19parity, and even-

17-parity) define the overall basic structure of the target solution. ADFs and primitive Boolean functions (e.g., XOR) are used 

for “gluing” the overall definition together 
 

Conclusion  

Learning Boolean functions for the even-N-parity 

problem is a benchmark problem because it is a 

difficult problem for evolutionary computation. Most 

approaches proposed have been focusing on the 

representation of individuals and/or the effectiveness 

of crossover operation. Our proposed approach 

involves the use of high-arity background functions, 

automatically defined functions, and random sampling 

of fitness cases. Such an approach has the advantages 

of (1) Facilitating automatic large-scale problem 

decomposition in finding a target solution and (2) 

Promoting diversity in the retainment of genetic 

materials in the course of evolution. A major advantage 

of using high-arity background functions is that a lot of 

steps of crossover involved in function composition 

using primitive Boolean functions can be saved by the 

direct use of a sub-concept or a sub-function. In other 

words, the total number of individuals to be processed 

can be reduced by saving crossover operations that 

would have been carried out over function composition 

using primitive Boolean functions-instead, a sub-

function, or a sub-concept is used directly. Secondly, 

random sampling of fitness cases promotes the use of a 

diverse set of genetic materials across the population 

from generation to generation. This facilitates the 

convergence of evolution to a global optimum due to 

diversity in evolution. Our experimental results show 

that the proposed “three-pronged” approach can 

significantly reduce the total number of individuals 

needed to be processed by GP. Although our approach 

in complexity, as per Fig. 3, is not linear with respect to 

N, it is growing less dramatically compared to the (Poli et al., 

1999) approach (the state of the art in learning Boolean 

even-N-parity functions). In the future, we plan to 

experiment with our approach to solving the even-N-

parity problem for much larger values of N (e.g., up to 26 

and/or 30) to further investigate computational principles 

that might be involved in Genetic Programming in 

solving very large even-N-parity problems.  
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