

 © 2023 Tesfamichael Gebregziabher Gebrehiwot, Fitsum Assamnew Andargie and Mohammed Ismail. This open-access

article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

DEACT: Hardware Solution to Rowhammer Attacks

1Tesfamichael Gebregziabher Gebrehiwot, 1Fitsum Assamnew Andargie and 2Mohammed Ismail

1School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia
2Department of Electronics and Communication Engineering, Sasi Institute of Technology and Engineering Andhra Pradesh, India

Article history

Received: 28-02-2023
Revised: 05-04-2023

Accepted: 15-04-2023

Corresponding Author:

Tesfamichael Gebregziabher

Gebrehiwot

School of Electrical and

Computer Engineering, Addis

Ababa Institute of Technology,

Addis Ababa, Ethiopia
Email: tesfamichael.gegziabher@aait.edu.et

Abstract: Dynamic Random Access Memory (DRAM) is a crucial component in

modern computing devices. Improvements in process technology have

significantly increased the speed and storage capacity of memory devices.

However, as memory cells become smaller and closer to one another, annoying

circuit disturbance errors such as the Row-hammer problem have become

significant. Studies show that attackers can systematically exploit such errors to

induce bit flips and take control of local/remote systems. Even though several

hardware and software-based mitigation techniques have been proposed, it is still

continuing to be a big threat to system security. In this research, we propose

DEACT, a counter-based hardware mitigation to the Rowhammer attack.

Contrary to existing countermeasures that refresh victim rows or throttle memory

access upon excessive row activation, DEACT uses additional row buffers to

keep hot rows and prevent further activation. The size of our counter uses 1.67

times less space than the optimal of existing implementations. DEACT not only

eliminates the Rowhammer problem, but it also improves the performance of

DRAM. We tested DEACT on the TPC and CPU-2006 benchmarks; the average

hit rate has increased by 41% when compared to standard DRAM.

Keywords: DRAM, CPU, Rowhammer, Security, Side Channel Attack

Introduction

DRAM technology scaling, increasing the density of

DRAM cells, has enabled better performance in modern

computers. However, a study by Mutlu (2013) describes

that a strong electromagnetic coupling between compact

cells aided by a lower noise margin of smaller nodes has

intensified the electrical disturbance errors. Another study

by Kim et al. (2014b) showed how such errors can be

amplified; they demonstrated that frequent activation of a

row maximizes inter-cell interference which results in

data corruption on vulnerable DRAM cells. They also

revealed that at least 139 K row activation is needed to

cause data corruption on DDR3 modules.

DDR3 modules have been vulnerable to this error since

2010 according to a study by Lanteigne (2016). DRAM

manufacturers have been working on the improvement of

inter-cell isolation and have initially considered such

problems as a simple reliability concern, not a security one.

All attempts were unsuccessful and the problem still persists

(Kim et al., 2014b; Liu et al., 2013). The severity of box or

gain kernel privileges (Seaborn and Dullien, 2015).

The susceptibility to Rowhammer attacks increases

with technology scales. The minimum number of

consecutive row activation required to induce bit flips on

neighboring cells has reduced by more than 10 since the

problem became known (Mutlu et al., 2023). The study

also reveals that the susceptibility, the number of bit

errors, have increased by 500.

There exist various local and remote-based attacks

that target 86 (Gruss, 2018; de Ridder et al., 2021;

Bosman et al., 2016; Tatar et al., 2018; Zhang et al.,

2020a; Cheng et al., 2019) and ARM machine (Van Der

Veen et al., 2016; 2018; Frigo et al., 2018). The immediate

response of some manufacturers (Apple, 2015; HP, 2015)

was to increase the refresh rate on DDR3. However, the

mitigation was not effective Lanteigne (2016). Others

Gautam et al., (2018; 2019; 2020); Yang et al. (2016);

Ryu et al. (2017) proposed an optimization of cell fabrication

to prevent electromagnetic interference between cells. The

Target Row Refresh (TRR) (Micron, 2015) method is adopted

by manufacturers of DDR4.

However, refresh-based mitigation incurs additional

performance and energy penalties (Liu et al., 2012). Even

so, a recent publication by Frigo et al. (2020), has shown

that DDR4 modules are still vulnerable to the

Rowhammer attack. Similarly, the smash research (de

Ridder et al., 2021) went one step further and

demonstrated exploitation from JavaScript, without

invoking cache management primitives or system calls.

Rowhammer is still a big threat to system security as new

attack vectors continued to break previous mitigation.

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

862

Hence, it is required to provide effective mitigation where

the associated performance overhead is minimal.

In this study, we introduce DEACT, counter-based

mitigation to the Rowhammer attack. DEACT effectively

stops the Rowhammer attack by limiting the number of row

activation to a safe threshold value. Our contribution

includes (a) The most space-efficient implementation of a

counter table. (b) Effective neutralization of Rowhammer by

moving frequently accessed rows to dedicated row buffers.

DEACT not only eliminates Rowhammer, but it also

performs better than standard DRAM. We tested DEACT

using TPC and CPU-2006 benchmarks; it improves the read

hit rate on average by 41.16% for all workloads; decreases

the read latency by more than 18%. The remainder of this

study is organized as follows. We first provide background

information on DRAM followed by a review of Rowhammer

attacks and/or countermeasures in current literature. We then

discuss DEACT and evaluate it.

DRAM is hierarchically organized into ranks, bank

groups, and banks; one or more memory ranks are connected

to a memory channel. If a system supports N memory

channels, the data transfer rate is increased by a factor of N.

A memory rank is a 64-bit wide module that contains a set

of DRAM chips that are configured as 4, 8, or 16.

For example, in 8 configuration, 8 physical chips

each with a bit-width of 8 (8) are connected together Fig. 1.

Other configurations include, 4 (16 chips) or 16 (4 chips).

All ranks work independently. However, full

parallelism is limited as all ranks connected to the same

channel share the same data lines.

A typical DDR5 rank contains 32 banks. A bank contains

an array of memory cells where each cell stores a single bit.

The memory cells of a bank are further grouped into several

sub-arrays. In a typical DRAM configuration, a bank

contains 32 subarrays where each subarray is composed of

32 MATs (multiple cell matrices). Each MAT contains

262,144 memory cells (512 rows and 512 columns).

Figure 2 shows a 1T (one transistor) memory cell; it

consists of a capacitor that is connected to the sense

amplifier through an access transistor. The line that

connects the capacitor and the sense amplifier is called a

bit line. A group of memory cells that can be activated by

the same word line at once are collectively called a

memory row. As the gate of all transistors of the given row

is connected to the same word line, activating the word

line switches on these transistors thereby allowing a

charge flow between the capacitors and the respective

sense amplifiers via each bit line.

As can be seen in Fig. 2, each bit line of the memory

cell is connected to respective sense amplifiers; these

sense amplifiers act as a row buffer. When the open

page policy is implemented, recently accessed rows are

kept in the row buffer. Consecutive memory requests to

the same row, row hit, are served from the row buffer at

a lower access latency. However, if the requested

address is not located in the same row (row conflict),

the access latency will increase as additional tasks are

performed; to write back row buffer contents to the

previously accessed row and sense the charges stored

in each capacitor of the new row.

Memory reads are destructive; charges flow from the

capacitor to the sense amplifier during sensing. Moreover,

capacitors leak charge; the rate of charge leakage varies

from cell to cell due to variations in process technology.

In order to prevent the integrity of the stored data, each

capacitor's charge is restored back to its original level. The

restoration process is called a refresh operation. Even

though most capacitors of DRAM cells can retain the

charge contents for up to 1 sec, DRAM is refreshed every

64ms dictated by a worst-case scenario.

Rowhammer

The physical size of memory cells has significantly

decreased due to advances in process technology. Even

though the production of smaller cells has resulted in a high

density of memory chips, the noise margin of these memory

cells is also getting smaller as smaller capacitors hold fewer

charges. As a result, we are witnessing circuit disturbance

errors which are caused by frequent activation of nearby

rows. The cumulative electromagnetic interference between

memory cells could cause unexpected bit flips. Such a kind

of problem that occurs during one refresh period is called a

Rowhammer (Kim et al., 2014b).

Kim et al. (2014b) showed that during a 64 ms time

period, the minimum number of row activation that is

required to induce an error is 139 K for the most

vulnerable DDR3 in the experiment. The number of

DRAM disturbance errors (Kim et al., 2014b) varies as

the activation interval is varied. The number of errors

reaches its peak at an activation interval of 55 ns

(equivalent to approximately 1,140,000 activations) and

the disturbance error becomes zero at an activation

interval of 500 ns which is approximately equivalent to

125,379 activations. In a similar work, Hassan et al.

(2021) demonstrated that 10 K activation is required to

create a Rowhammer on DDR4 devices while it is

required only to make 4.8 K activation to create the same

problem on LPDDR4.

Fig. 1: Memory hierarchy: 8 Configuration

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

863

Fig. 2: DRAM bank structure (memory cell organization)

Fig. 3: Hammering techniques

A row that is frequently activated (accessed) is

called an aggressor row. Any row whose data integrity

is lost due to a hammed row is called a victim row. Figure 3a

a single row (R3) is frequently accessed during a

refreshed interval; circuit disturbance errors occur on

adjacent rows (R2/R4) and the bit value of victim cells

is flipped. This hammering technique is called one-

location hammering and is only applicable if the

memory controller implements a closed-page policy.

If the memory controller implements the open page

policy, single-sided hammering is implemented; two

rows, located in the same bank, are accessed in an

alternating manner. This forces to close previously

accessed rows and forces activation by preventing a

row buffer. Figure 3b shows how R3 and R7 are

hammered to induce errors on R2, R4, R6, and R8.

The most effective hammering technique is double-

sided hammering which is shown in Fig. 3c a victim row

(R3) feels the effect of hammering of both aggressor rows

(R2 and R4). Moreover Fig. 3d shows a one and half

hammering technique. When R3 is accessed frequently

while R2 and R4 are accessed proportionally fewer times,

victims R1 and R5 are affected.

Rowhammer Exploitations

There exist various local and remote-based

Rowhammer attacks. Modern systems such as mobile

devices, servers, and browsers are still vulnerable. The

first-Rowhammer exploit, kernel privilege escalation, and

escaping browser sandbox, were conducted by Seaborn

and Dullien (2015). Other browser exploitation on 86

machines (Gruss et al., 2016; de Ridder et al., 2021;

Bosman et al., 2016) and ARM machines by Frigo et al.

(2018) are reported. Similarly, kernel privilege escalation

was conducted on 86 machines (Zhang et al., 2020a;

Cheng et al., 2019) and ARM machines (Van Der Veen et al.,

2016; 2018; Frigo et al., 2018). Tatar et al. (2018) achieved

the privilege of code execution on a remote key-value server

application by implementing attacks through network

packets. Rowhammer attacks on Hardware Virtual Machines

(HVM) (Razavi et al., 2016) and hypervisors (Xiao et al.,

2016) show the extent of threats caused by Rowhammers.

Some forms of Rowhammer attacks (Bhattacharya

and Mukhopadhyay, 2016; Kwong et al., 2020;

Weissman et al., 2019) work on extracting RSA key;

others (Rakin et al., 2022) show how weights of a Deep

Neural Network (DNN) can be leaked and yet others show

how the accuracy of DNN can be diminished using

Rowhammer attack (Hong et al., 2019; Yao et al., 2020).

SpecHammer (Tobah et al., 2022), a row of hammer-

assisted specter attacks, was able to bypass current specter

defenses. Rowhammer can also be the source of Denial of

Service (DoS) attacks; (Lipp et al., 2020) implemented

network-based attacks on remote systems to compromise

system security or cause Denial of Service (DoS). Similar

works (Jang et al., 2017; Gruss et al., 2018) showed how

DOS attacks can be conducted on local systems.

Rowhammer Mitigation Techniques

DRAM refresh restores the charge in a capacitor and

reduces the vulnerability of weaker cells. Following the

announcement of the Rowhammer problem, some

manufacturers (Apple, 2015; HP, 2015) doubled the

DRAM refresh rate from every 64 ms to every 32 ms and

claimed to have fixed the problem on DDR3. However, an

analysis by Lanteigne (2016), shows that the problem is

still prevalent on DDR3 modules.

Many mitigation techniques that focus on refreshing

victim rows have been proposed. They are

implemented in either DRAM, the memory controller,

or both. A few of them are probabilistic (You and Yang,

2019; Kim et al., 2014b; Son et al., 2017); they toss a

coin to decide if a row needs to be refreshed. Kim et al.

(2014a) proposed a work that implements both

probabilistic and counter-based target row refresh.

Bennett et al. (2021) proposed hardware counters to be

implemented in a DRAM MAT. Moreover, much counter-

based mitigation has been proposed. They implement

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

864

different algorithms to count row activation and refresh

target rows. Graphine Park et al. (2020) implement the

Misra-Gries algorithm (Misra and Gries, 1982;

Seyedzadeh et al., 2018) employ adaptive tree-based

counter, (Lee et al., 2019) uses a TWiCe (time window

counter) and many others (Kim et al., 2022; Marazzi et al.,

2022; Yağlıkçı et al., 2021; Hong et al., 2023).

Some registered patents implement counters to detect

excessive row activation (Devaux and Ayrignac, 2021;

Bains and Halbert, 2016; Greenfield and Tomer, 2016;

Bains et al., 2015; Gans, 2021; Fisch and Plants, 2017;

Greenfield et al., 2014). The only drawback of count

and refresh-based mitigation is that increasing the

number of refreshes incurs performance and energy

penalties.

Several software-based mitigations have also been

implemented or proposed. Google (Google, 2014;

2017) updated its Chrome browser to prevent attacks

on browser sandbox. Linux (Shutemov, 2015) updated

its kernel and restricted access to page map files in

order to hide the information about virtual to physical

page mapping. Other works that require kernel updates

include a work that isolates a user's physical memory

location from that of a kernel (Brasser et al., 2017) and

a work that isolates the physical memory locations of

individual processes (Bock et al., 2019).

Wu et al. (2019) introduced a profiling-based mitigation

technique. They categorize the nature of error creation in

memory cells. They prevented a Rowhammer attack on the

page table by placing all page tables on a cell whose value is

flipped from 0-1 when an error occurs. Other isolation-based

mitigations include Direct Memory Access (DMA) enabled

buffer isolation (Tatar et al., 2018; Van Der Veen et al., 2018)

on ARM machines and Hardware Virtual Machine (HVM)

hypervisor isolation by Konoth et al. (2018).

Zhang et al. (2022) focus on refreshing DRAM rows that

contain page tables whenever abnormal row access patterns

are detected. Detecting memory access patterns that are

likely to cause bit flips were first introduced by Aweke et al.

(2016). They tracked abnormal CPU cache misses and

suspicious memory access patterns. On the other hand,

MASCAT (Irazoqui et al., 2018) performs static analysis

on binary code to identify instructions that can cause

Rowhammer attacks. Zhang et al. (2020b) use radio to

control Electromagnetic (EM) signals and detect

Rowhammer attacks. Other hardware-based Rowhammer

detection methods include work by Gomez et al. (2016).

They use a dummy cell, a cell with a larger leakage

current, to enable early detection of bit flips. Another

detection method is implemented by Vig et al. (2018)

using a sliding window protocol and a dynamic skewed

hash tree. Hong et al. (2023) employ an approximate

counting algorithm to detect hot rows.

Whenever potentially dangerous memory access is

detected, some relocate it (Taouil et al., 2021) or throttle

it (Yağlıkçi et al., 2021; Greenfield et al., 2015); while

others correct bit errors using Error Correction Codes

(ECC) (Nair et al., 2016; Ryan and Lin, 2009). It is

important to note that ECC cannot correct errors if the

number of bit flips exceeds the maximum number of bits

that ECCs can correct.
A rather different approach that involves Rowhammer

mitigation via fabrication process optimization includes, a
work by Yang et al. (2016) using additional Phosphorus (P)
implantation between two adjacent buried word lines and
Ryu et al. (2017) using silicon migration technique of
hydrogen (H2) annealing. Gautam et al. (2018; 2019; 2020)
proposed three works that target the reduction of leakage
currents between cells. The first work (Gautam et al., 2018)
introduces metal nano-particles at the gate metal-oxide
interface; the second work (Gautam et al., 2019) introduces
a Metal Nano Wire (MNW) at the gate metal/gate oxide
interface. Both techniques induced Energy Valleys (EVs)
between nodes to prevent the diffusion of electrons from
being hammered to the victim cell. The third work
(Gautam et al., 2020) provides isolation between the storage
capacitor and the word line that passes over it. The electron
current density near the Shallow Trench Isolation (STI) was
reduced by 92% when accessing PWL.

Vendors implement the TRR (Micron, 2015) on DDR4
modules. Even though the implementation details are not
yet made public, it is based on refreshing target (victim)
rows. However, a recent publication by Frigo et al. (2020),
has shown that DDR4 modules are still vulnerable to the
Rowhammer attack. The SMASH research (de Ridder et al.,
2021) also demonstrated Rowhammer exploitation on
DDR4 from JavaScript, without invoking cache
management primitives or system calls.

DEACT

In this section, we discuss our solution to the
Rowhammer problem and explain why it is better as
compared to other countermeasures.

Why a New Approach?

Manufacturers initially doubled the refresh rate to

prevent Rowhammers. However, any solution that tends

to double the refresh rate or refresh victim rows incurs

significant performance and energy overhead.

Liu et al. (2012) showed that the charge retention

capacity of DRAM varies from cell to cell and the

majority of the cells can retain the charge for a

significantly longer duration. Unfortunately, the default

refresh rate (64 ms) is set by a few weaker cells which

can hold the charge for 64 ms only.
We believe studies should focus on minimizing

DRAM refresh rates. Any work that adds extra refresh on
top of a refresh rate (dictated by the worst case) could be
regarded as inefficient. Hence, we introduce a DEACT, a
novel approach that does not perform any extra refreshes.
DEACT controls row activation and buffers hot rows for
better performance and Rowhammer prevention.

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

865

High-Level Overview

The key idea of DEACT is to prevent Rowhammer

by detecting unsafe memory access patterns that are

likely to cause bit flips; In order to detect such access

patterns, DEACT maintains a list of memory rows

along with their activation count which can be achieved

by implementing a counter. DEACT also implements

additional row buffers to keep hot rows from further

activation improving the row buffer hit rate.
DEACT can be configured to set the maximum

number of activation allowed; any rows that are activated
beyond the threshold value are moved to a row buffer
dedicated for this purpose. Moreover, the size of the
counter and the expiry time of its contents is configurable.
The number of row buffers that are needed for this
purpose depends on the number of times a Rowhammer
can be performed within one refresh period.

Figure 4, DEACT intercepts any ACT (activate row)
command and checks if the row address is already in the
counter. If present, the value of its activation count is
incremented; otherwise, the row address is managed as
per the counting algorithm. Word line activation per
refresh interval is counted and if the activation count
exceeds a thresh hold value, the target row is moved to
one of the extra row buffers dedicated for this purpose.
The counter is invalidated periodically and its contents are
cleared when the expiry time is reached.

In order to track row activation, we need a table that
keeps track of all row activation; keeping track of a big
list of rows incurs a huge performance, energy, and
storage overhead. One way to work around this problem
is to maintain a fewer list of row addresses using
probabilistic data structures. The count-min sketches
(Cormode and Muthukrishnan, 2005) and their
derivatives (Ting, 2018; Zhang et al., 2014a) have been

widely adopted in detecting heavy hitters of data streams.
The accuracy of the count-min sketch can be improved by
setting the maximum error rate to a lower value.

Another alternative that deterministically detects

heavy heaters is space saving (Metwally et al., 2005) or

the Misra-Greis algorithm (Misra and Gries, 1982). The

Misra-Greis algorithm, shown in algorithm 1, finds all rows

with at least n/k activation using k counters. We maintain a

counter table that can hold k-row addresses along with their

activation counts. This table is invalidated at a specific time

interval (window); the default being every 64 ms (refresh

interval). During this interval, the Misra-Greis algorithm

(Misra and Gries, 1982) guarantees that all rows which are

activated at least n/k times are kept in the table:

Algorithm 1: Misra-Gries algorithm

 Procedure Misra-Gries(s, size) ▷ s a stream sequence
of positive integers and s is the size of the counter

 D Dictionary [Key, Count]
 while s empty do
 k s
 if D[k] empty then
 D[k] D[k]+1
 else if |D| ≤ size then
 D[k] 1

 else

 for i 0, size - 1 do

 D[k] D[k] - 1

 if D[k] = 0 then

 D[k] empty

 end if

 end for

 end if

 end while

end procedure

Fig. 4: DEACT: Hardware-based solution to the Rowhammer problem

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

866

Counter Table

In order to have an estimate of the maximum number of

activations that can be performed within refresh intervals, we

look at a specific DRAM model shown in Table 1. DRAM

cell is refreshed once every tREFW and a refresh command is

invoked every tREFI. The refresh operation takes a time of tRFC

and the memory is not available to serve user requests during

this time. The attacker can use the remaining tREFI -tRFC time

period to induce bit flips. As only one activation can be made

within a time period of tRC, the maximum number of row

activation that can be made on any bank during a fraction of

the refresh window (tREFW/x) is shown in Eq. 1:

/ 1REFW

B REFI RFC

REFI RC

t x
N t t

t t
 (1)

where:

 x is the Reset interval of the counter per refresh window

 Other parameters are described in Table 1

Unlike existing counter-based mitigation (Park et al.,

2020; Seyedzadeh et al., 2016; 2018; Lee et al., 2019),

DEACT follows a different approach to minimize the space

and area overhead. We focus on the DRAM rules that dictate

activation per rank. Since a maximum of four activations are

allowed during a time period of two (four activation

windows), we base our computation on tFAW and tREFW. Eq. 2

shows, the total number of activation per rank during a

fraction of the refresh window (tREFW /x).

4 REFW
R

FAW

t
N

t x
 (2)

where:

NR = The number of maximum activation per rank

x = Reset interval of the counter per refresh window

other parameters are described in Table 1

As DEACT periodically clears its counter and if we

divide the reset window into x time frames of the refresh

window (tREFW), the counter is cleared at the end of every

tREFW/x time window. Hence, the actual activation count

could be less than the real cumulative activation of the

current and previous x time frames. Moreover, a victim

row could be hammered twice by two aggressor adjacent

rows; one from above and another from below (double-

sided hammering). In order to compensate for both the

double-sided hammering and untimely clearance of rows

in the counter table, the Rowhammer threshold needs to

be adjusted by a factor of 2(x + 1) as shown in Eq. 3:

 2 1

TH
TH

R
A

x

 (3)

where:

ATH = Adjusted activation threshold

RTH = Rowhammer threshold

x = Reset interval of the counter per refresh window

In order to count up to ATH activation, the size of the

counter should be at least
TH

N

A

, where ATH is the adjusted

activation threshold. Equation 4 shows a table size

computed using the tRC timing parameter while Eq. 5

shows a size computed using the tFAW timing parameter.

For any value activation threshold ATH, the ratio of tRC

based vs tFAW based table size is shown in Eq. 6:

RC Banks

TH

NB
TableSize Num

A
 (4)

where:

NB = The number of activation per bank

NumBanks = The number of banks per rank

ATH = The adjusted activation threshold

1 4R REFW
FAW

TH TH FAW

N t
TableSize

A A t x
 (5)

where:

NR = The number of maximum activation per rank

ATH = The adjusted activation threshold

x = Reset interval of the counter per refresh window

other parameters are described in Table 1

1
4

RC FAW RFC
Banks

FAW RC REFI

TableSize t t
Num

TableSize t t

 (6)

where:

 NumBanks is the number of banks per rank

 other parameters are described in Table 1

/

2

1

REFW

REFW x

t

t

TableSize x

TableSize x

 (7)

where:

tREFW = Refresh time window

x = Reset interval of the counter per refresh window

Substituting the values of the timing parameters of the

DRAM model shown in Table 1 in Eq. 5 yields 1.13, 1.84,

and 1.27 for 4, 8, and 16 configurations. On average tFAW

based estimation reduces the space overhead by a factor of

1.4. The space can be further reduced by decreasing the reset

interval; i.e., the default 64 ms (tREFW) is divided into x time

frames. Taking the ratio of tREFW/1 and tREFW/x in Eq. 5 yields

Eq. 7. Reducing the reset interval from tREFW with tREFW/2,

reduces the space overhead to ¾ of its original value.

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

867

Table 1: Key timing parameters of DDR4-2400P (JEDEC, 2021)

 Configuration

Parameter Description 4 8 16

tRC Row cycle 45 ns 45 ns 45 ns

tRFC Refresh cycle 350 ns 350 ns 350 ns

tREFI Refresh interval 7.8 µs 7.8 µs 7.8 µs

tREFW Refresh window 64 ms 64 ms 64 ms

tFAW Four activation windows 3.33 ns 21.67 ns 30 ns

DEACT implements the counter table at the Register

Clock Driver (RCD); it also keeps a list of buffered rows

and implements LRU as a replacement policy. The task of

inserting row addresses and updating activation counts is

done independently of any DRAM operation. The

memory controller also needs to be informed whenever a

row is added or evicted from a row buffer. This way the

memory controller knows what command to issue (PRE,

ACT, or RD/WR) when targeting a specific row.

Therefore, a new DRAM command (BFR) is sent to

indicate if a row is active (buffered) (1) or not (0).

Rowhammer Prevention

For the DRAM model shown in Table 1, the maximum

number of row activation of a bank during one refresh window

(using Eq. 1) is approximately 1358405 (1.3584 M). This value

is much higher than the minimum number of activation

required to induce bit flips (10 K) Hassan et al. (2021). Recall

that the number of activation required to induce bit flips

is 39 K Kim et al. (2014b) on DDR3 devices, 10 K

(Hassan et al., 2021) on DDR4, and 4.8 K on LPDDR4.

Rowhammer can be prevented as long as the number of

row activation is kept below the Rowhammer threshold.

Once excessive activation is detected, hot rows are moved to

a row buffer dedicated to this purpose. The quantity of these

buffers, which are located in each bank, is determined by the

number of hot rows. A row is called hot if it is activated

beyond the Rowhammer threshold value. The number of hot

rows can be computed using Eq. 8 note that we have divided

the Rowhammer threshold value by 2 to compensate for the

effects of double-sided hammering. In order to compute the

maximum number of possible hot rows:

 1

/ 2

REFI RFC REFW
ROWS

TH REFI RC

t t t
HOT

R t t

 (8)

where:

 HOTROWS is the maximum number of possible hot rows

 RTH is the Rowhammer threshold

 Other parameters are described in Table 1

For a Rowhammer threshold of 10 K and a DRAM

model shown in Table 1, the number of hot rows is

approximately 272. The sense amplifiers that make up a

row buffer require more than 100 space as compared to

normal memory cells. It would incur a huge area overhead

to allocate 272-row buffers per rank. Moreover, the

Rowhammer threshold may continue to reduce as a result

of technology scaling. Hence, it is required to minimize

the number of row buffers as much as possible. Instead,

we could use a mix of sense amplifiers and standard

memory cells; we call this a safe area.

Implementation of DEACT is shown in Fig. 4; once a

memory row in the main area starts to be hot, it is moved

to one of the row buffers in the safe area. Subsequent

memory requests to the same row are served from the row

buffer. However, if a different row becomes hot and all

row buffers are occupied, we apply the Least Recently

Used replacement (LRU) policy to evict a row and replace

it with the new highly activated row. The evicted row

remains in the memory cells of the safe area until the

refresh window is elapsed. During this period, the counter

table is updated to hold the index of the row in the safe area.

If any row in the safe area is activated more than the

Rowhammer threshold size of the safe area, it is then

buffered again. The benefits of our approach are double-fold

as the extra row buffers improve the performance of DRAM.

Materials and Methodology

We used a machine equipped with Intel CORE i7,

four 2.5Ghz logical processors with 12 GB RAM to run

DDRSharp, a cycle-accurate DRAM simulator

(Gebrehiwot et al., 2023), to evaluate DEACT using

CPU traces; these traces are made available by the

SAFARI research group at ETH Zurich and Carnegie

Mellon University (Kim et al., 2015). We compared

DEACT with DDR4-2133R (JEDEC, 2021) using

traces of the CPU2006 (Henning, 2006; TPC, 2023)

benchmarks; each workload is simulated for 1 billion

cycles. The basic configuration settings of DDRSharp

used for this evaluation are shown in Table 2.

Table 2: Configuration parameters

Component Parameter Value

 Number of cores 1

 Frequency 3.2GHz

CPU ROB size 128

 ROB fetch/retire width 3

 MSHR size 32

 Read/write queue size 64

 Scheduling policy FRFCFS

Memory Refresh policy Rank

Controller Page Policy Open

 Channels 1

 Ranks 1

DRAM Bank groups 4

 Banks per bank group 4

 row buffers per bank 8

 activation permitted 2

DEACT Validation interval 32 ms

 entry size of counter 64

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

868

Evaluation

Rowhammer is prevented by always keeping the

number of row activation below the activation

threshold. In order to achieve this, we must detect all

excessive activation and buffer them. As long as the

counter guarantees that all n/k activation is detected,

we can assert that no circuit disturbance errors can be

induced. DEACT implements the Misra-Gries

algorithm (Misra and Gries, 1982).

To prove the correctness of the Misra-Gries

algorithm, we describe how the algorithm works. A

Table (T) counts instances of row activation Ri; if there

is free space in T and Ri is not recorded yet, Ri is added

with a counter value of 1 to T. If Ri is already stored in

T, its counter value is incremented. However, when T

is full and Ri is not in T, Ri is discarded and the count

value of each item in T is decremented by 1. Any row

in T whose count value is 0 is discarded from the list.

Let Cr be the estimated count of row r, S stream of row

addresses and Fr be the actual frequency of r.

Claim: For every (r, Cr) ∈ S, Fr −n/k ≤Cr ≤ Fr.

Proof: To prove that all elements with frequency at

least n/k will have a non-zero counter at the end, let X be

an occurrence of r which is discarded and Y be an

occurrence of r which is decremented. Therefore, the

count value of row r is given by:

r rC F X Y

Table 3: Increase in hit rate and throughput

 Hit Rate Throughput

 --------------------------- --------------------------

Input Read (%) Write (%) Read (%) Write (%)

403.gcc 87 1750 1.45 1.66

447.dealII 32 240 0.47 0.84

464.h264ref 70 74 7.46 7.40

481.wrf 60 219 0.05 0.05

tpch6 33 66 3.44 3.42

tpch2 20 39 10.16 10.21

tpch17 21 49 10.90 10.73

tpcc64 9 79 4.85 5.11

Average 42 314 4.85 4.93

Table 4: Latency reduction

 Read Write

Input Read (%) queue (%) Write (%) queue (%)

03.gcc 32.2 50.1 35.9 42.9

447.dealII 22.8 44.1 43.3 51.4

464.h264ref 22.5 40.9 79.8 83.4

481.wrf 30.7 55.5 55.0 63.9

tpch6 14.3 17.5 18.8 19.0

tpch2 9.8 11.9 15.5 15.7

tpch17 11.9 14.5 17.4 17.5

tpcc64 7.4 10.9 22.1 22.5

Average 18.9 30.7 36.0 39.5

Table 5: Decrease in activation energy reduction

Input Activation energy (%)

403.gcc 52.6

447.dealII 48.9

464.h264ref 58.0

481.wrf 54.5

tpch6 47.1

tpch2 41.8

tpch17 47.2

tpcc64 18.2

Average 50.0

With k counters, the number of times that a discard and/or

decrement can occur is at most an n/k fraction of the total

stream length (n). Hence, X + Y ≤ n/k; then we have:

/r r rF n k C F

Performance Evaluation

Even though DEACT was designed to prevent

Rowhammer, it also improves the performance of DRAM.

Experimental results of 1 billion cycles simulation time show

very high hit rates and lower access latencies. As a result of

the increased hit rate, DEACT has performed more reads and

more writes than the standard DRAM. Memory requests that

would otherwise have caused row buffer conflict in standard

DRAM are immediately served by DEACT buffers without

the need for row activation; hence higher throughput.

Table 3 shows the increase in hit rate and throughput of

CPU2006 benchmarks (Henning, 2006; TPC, 2023)

workloads. The read/write throughput has increased by more

than 10% for the TPC (2023) workload.

While the write-hit rate of 403. gcc workload has

increased by more than 1700% (from 0.02-0.37%), and

the average increase in hit rate, for all workloads, is

41.16% for reads and 314.35% for writes.

The average latency for both read and write requests

have decreased significantly. Table 4 shows the average

memory access latency and the average latency of each

request on the queue. The average write latency for the

464. h 264 ref workload has decreased by 79.8%. The

average write queue latency for the same workload has

decreased by 83.4%. For all workloads, the average

decrement in read or write latency is 18.9 and 36%

respectively while the queuing latency, for read queue

and write queue, has on average decreased by 30.7 and

39.5% respectively.

The activation energy of DEACT for each workload

is significantly lower than standard DRAM. Yet

DEACT was able to perform more reads and more

writes with fewer activation when compared to

standard DRAM during the 1 billion simulation cycle.

Table 5 shows an average of 50% reduction of

activation energy.

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

869

Area Overhead

The counter table is maintained at the RCD and the

number of bits required per rank is equal to log2Nbanks +

log2Nrows. For a DRAM configuration (8) specified in

Table 1, a rank with 16 banks and 64 k rows per bank, the

total number of bits required per entry is given by

log216+log264k = 20 bits. We also set the table reset interval

at ½ of the refresh interval which is 32 ms and 8

DRAM configuration. The number of LRU bits depends on

the number of row buffers per bank. Eight-row buffers

require 3 bits per bank. Therefore, for a DDR4 rank

with 16 banks, the total number of LRU bits is then log2

(8×16) = 7. We also need 1 additional bit to indicate if a row

is buffered or is moved to a safe area.

Counter Overhead

For evaluation purposes, like most existing

mitigation (Park et al., 2020; Seyedzadeh et al., 2016,

2018; Yağlıkçi et al., 2021), we set the Rowhammer

threshold at 32 K. Using Eq.2, the maximum number of

activation per rank than can be conducted during one

refresh period is 5,906,784. Setting the value of to 2 in

Eq. 3 yields, ATH = 5.33 k. To count up to 5.33 k, we need

13 bits; a total of 34 bits are required per single entry.

Using Eq. 3 and 5, we get a table size of 1108 entries. As

each entry requires 34 bits, the total size required per rank

is therefore (37656 bits + 7 LRU bits) (4.71 kB).

Overall DEACT needs 4.71kB at the RCD for 32 k

activation threshold. This is very low compared to other

counter-based mitigation. Table 6 shows a detailed

comparison between DEACT and existing works. When

compared to the block hammer (Yağlıkçi et al., 2021), for

the same activation threshold, DEACT reduces the

storage requirements by a factor of 11.64.

Recent studies show that the minimum activation

required to induce bit flips is 10 k (Hassan et al., 2021) which

is significantly lower than 32 k. Using Eqs. 2, 3, and 5, the

size of the counter table increases to 113,417 bits (14.18 kB).

Therefore, the total area overhead at the RCD using a

29.2 Mb/mm2 SRAM fabricated using 7 nm CMOS FinFET

technology (Yokoyama et al., 2020) is approximately

109,895/29.2 Mb/mm2 = 0.0039 mm2 for 10 k activation

threshold. However, DEACT is implemented using a 1.8

Mb/mm2 TCAM (Tsukamoto et al., 2015) which increases

the area overhead at the RCD by around 0.063 mm2.

Table 6: Comparison of space overhead per memory rank

 Overhead (kB) Ratio

DEACT 4.57 -

Graphene. Park et al. (2020) 7.62 1.67

Block hammer. Yağlıkçi et al. (2021) 53.21 11.64

TWiCe. Lee et al. (2019) 37.12 8.12

CBT. Seyedzadeh et al. (2016; 2018) 24.50 5.36

Overhead at DRAM Bank

Typically, a bank consists of 32 sub-arrays where each sub-

array contains 32 MATs; each mat is composed of 512512

memory cells and one local row buffer (Zhang et al., 2014b).

For this particular example, the total number of memory cells

per bank is 5125123232 = 268,435,456. Similarly, the

total number of sense amplifiers per row buffer is 51232.

The total number of sense amplifiers per bank is therefore

equivalent to 5123232 = 524,288.

DEACT implements 256 memory rows and 8-row

buffers per bank. That is 8-row buffers 51232 (131,

072) sense amplifiers per row buffer. As a row contains

51232 memory cells, a total of 256 512 32 which is

equal to 4,194,304 cells are implemented. A sense

amplifier is 100 larger than a memory cell (Chang et

al., 2016), Eq. 9 computes the estimated area head per

DRAM bank which is 5.39%. Data movement within a

bank is performed by implementing LISA (Chang et al.,

2016) at a cost of only 0.8% DRAM area overhead. In

total, DEACT consumes 6.2% of the DRAM area and

an area of 0.0603 mm2 at the RCD:

 100

100

SA MC

MC SA

DEACT DEACT
Overhead

DRAM DRAM

 (9)

where:

DEACTSA = The number of sense amplifiers

implemented by DEACT

DEACTMC = The number of memory cells implemented

by DEACT

DRAMMC = The number of memory cells within a

DRAM bank

DRAMSA = The total number of sense amplifiers within

a DRAM bank

Energy Overhead

The static energy overhead on 1.8 Mb/mm2 TCAM

(Tsukamoto et al., 2015) during a 64 ms (refresh interval)

is 3.072 µJ. This is 0.25% of 1.18 mJ (Micron, 2017)

that DRAM spends for refresh operations. Additional

energy is also consumed when searching and updating

the counter table. The cost of this dynamic energy

which is consumed when searching and updating the

counter table is 15 pJ per activate command. Compared to

the 13.89 nJ (Micron, 2017) that a DRAM consumes for

ACT and PRE, 15 pJ is insignificant.

Sensitivity Study

By default, DEACT keeps a list of activated rows and

moves highly activated (hot rows) to a row buffer. How

many activations make a row hot is determined by the

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

870

maximum activation permitted. The number of extra

row buffers, the size of the activation counter, the

maximum number of activation permitted, and the

validation interval are the variables that impact the

performance of DEACT. For each parameter, we use

four sets of values as shown in Table 7. A total of 256

(44) experiments were conducted for sensitivity

analysis; each experiment was run for 150 million

simulation cycles.

The objective of this analysis is to study the effects

of the aforementioned parameters on performance and

energy consumption. Hence, we have implemented a

simple counter table where old entities which are least

activated are replaced with new entries when the table

is full. In this study, we analyze the efficacy of DEACT

by varying the size of the activation counter and

expiration time of the list. We also analyze the effects

of varying the activation thresh hold and the impact of

extra row buffers on performance.

Activation Threshold

We have analyzed the impact of the activation

threshold on performance on the 403.gcc workload of the

CPU2006 benchmark. Figure 5 shows that a lower

activation threshold yields a better hit rate.

Size of Activation Counter

The size of the activation counter should be large

enough to track as many row activation as possible. A

smaller size results in a record being overwritten by

new records. On the other hand, a very big table may

end up having unused space. Figure 7 shows the impact

of varying the entry size of the counter table on

performance. As can be seen in the figure, for the

403.gcc workload, 64 is the optimal value.

Fig. 5: Sensitivity analysis of the activation threshold on the

performance of the 403.gcc workload

Fig. 6: Sensitivity analysis of the number of row buffers on the

performance of the 403.gcc workload

Fig. 7: Sensitivity analysis of the size of the counter table on the

performance of the 403.gcc workload

Fig. 8: Sensitivity analysis of the rest interval on the

performance of the 403.gcc workload

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

871

Table 7: Parameters used in the sensitivity study of DEACT performance

Parameter Case values

Activation threshold:

Maximum number of activation a row should experience before it is declared hot and is moved to a row buffer 2, 4, 16, 128

Number of row buffers:

Maximum number of extra row buffers per bank dedicated for keeping hot rows 2, 4, 8, 16

Size of activation counter:

Number entries activation counter 16, 32, 64, 128

Reset interval:

The time period that DEACT waits before resetting contents of the counters 8, 16, 32, 64

Reset Interval

Keeping old entries in the activation counter

consumes space that would have been used by new

entries. The counter table is cleared at a fixed interval.

We test the effect of varying the validation interval on

performance and the results of the study Fig. 8 show

that the effect of this parameter is negligent. The reason

could be attributed to the fact that frequently activated

rows are always detected no matter what the reset

window is. However, reducing the validation (reset)

interval by a factor of x reduces the number of entries

(space requirement) of the counter table by a factor of

2x/(x + 1).

Number of Row-Buffers

Theoretically, having many row buffers increases

the hit rate. We analyzed the effects of additional two,

four, eight, and sixteen-row buffers on performance.

Figure 6 confirms that the hit rate increases with the

number of row buffers.

Conclusion

Rowhammer is one of the big threats to computer

security. Counter-based mitigation that detects

excessive row activation, and tries to mitigate the

effects of the Rowhammer problem by activating

victim rows or by throttling DRAM operation.

However, the associated performance and/or energy

overhead of such implementations is significant.

We propose DEACT which solves all security

vulnerabilities that are related to Rowhammer. Unlike

existing mitigation, DEACT does not perform extra

refreshes nor throttles any DRAM operation; it simply

buffers a hot row in one of the row buffers dedicated

for this purpose. DEACT is a counter based mitigation

that keeps track of row activation at the RCD. We have

shown the effect of using Four Activation Window

(FAW) or Row Cycle (RC) timing parameters to

estimate the size of the counter estimating the area

overhead. FAW-based estimation reduces the storage

overhead by a factor of 1.67 when compared to RC-

based estimation.

DEACT not only eliminates Rowhammer, but it also

performs better than standard DRAM. We tested DEACT

using TPC and CPU-2006 benchmarks; it improves the hit

rate on average by 41.16% for reads and 314.35% for writes

for all workloads. The memory access latency has decreased

by more than 18% for reads and 36% for writes on average.

The queuing latency has also dropped by 30.7% for memory

reads and 39.5% for memory writes.

Acknowledgment

We thank the publisher for allowing us to publish

our research article. We would also like appreciate Mr.

Jeffery Daniels, head of technology of Science

Publications, for his relentless support during the

publication process.

Funding Information

The authors have not received any financial support or

funding to report.

Author’s Contributions

Tesfamichael Gebregziabher Gebrehiwot: Wrote

the paper and analyzed the simulation results.

Fitsum Assamnew Andargie: Provided critical

feedback and helped shape the article.

Mohammed Ismail: Supervised the work.

Ethics

This article is original and is not published elsewhere.

The corresponding author confirms that all of the other

authors have read and approved the manuscript.

Conflicts of Interest

The authors declare that there is no conflict of interest

regarding the publication of this study.

References

Apple. (2015). About the security content of mac efi

security update 2015-001.

 https://support.apple.com/en-us/HT204934

https://support.apple.com/en-us/HT204934
https://support.apple.com/en-us/HT204934

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

872

Aweke, Z. B., Yitbarek, S. F., Qiao, R., Das, R., Hicks, M.,

Oren, Y., & Austin, T. (2016). ANVIL: Software-

based protection against next-generation rowhammer

attacks. ACM SIGPLAN Notices, 51(4), 743-755.

https://doi.org/10.1145/2954679.2872390

Bains, K. S., & Halbert, J. B. (2016). Distributed row

hammer tracking. U.S. Patent No. 9,299,400B2.

Washington, DC: U.S. Patent and Trademark Office.

 https://patents.google.com/patent/US9299400B2/en

Bains, K. S., Halbert, J. B., Sah, S., & Greenfield, Z.

(2015). U.S. Patent No. 9,030,903. Washington, DC:

U.S. Patent and Trademark Office.

https://patents.google.com/patent/US9030903B2/en

Bennett, T., Saroiu, S., Wolman, A., & Cojocar, L. (2021).

Panopticon: A complete in-dram rowhammer

mitigation. In Workshop on DRAM Security

(DRAMSec).

 https://alecw.azurewebsites.net/work/papers/dramse

c-2021-panopticon.pdf

Bhattacharya, S., & Mukhopadhyay, D. (2016). Curious

case of rowhammer: flipping secret exponent bits

using timing analysis. In Cryptographic Hardware

and Embedded Systems-CHES 2016: 18th

International Conference, Santa Barbara, CA, USA,

August 17-19, 2016, Proceedings 18, (pp. 602-624).

Springer Berlin Heidelberg.

 https://doi.org/10.1007/978-3-662-53140-2_29

Bock, C., Brasser, F., Gens, D., Liebchen, C., & Sadeghi,

A. R. (2019, July). Rip-rh: Preventing rowhammer-

based inter-process attacks. In Proceedings of the

2019 ACM Asia Conference on Computer and

Communications Security, (pp. 561-572).

 https://doi.org/10.1145/3321705.3329827

Bosman, E., Razavi, K., Bos, H., & Giuffrida, C. (2016,

May). Dedup est machina: Memory deduplication as an

advanced exploitation vector. In 2016 IEEE Symposium

on Security and Privacy (SP), (pp. 987-1004). IEEE.

 https://ieeexplore.ieee.org/abstract/document/7546546

Brasser, F., Davi, L., Gens, D., Liebchen, C., & Sadeghi,

A. R. (2017). CAn’t touch this: Software-only

mitigation against Rowhammer attacks targeting

kernel memory. In 26th {USENIX} Security

Symposium ({USENIX} Security 17), (pp. 117-130).

https://www.usenix.org/system/files/conference/usen

ixsecurity17/sec17-brasser.pdf

Chang, K. K., Nair, P. J., Lee, D., Ghose, S., Qureshi, M.

K., & Mutlu, O. (2016, March). Low-cost inter-

linked subarrays (LISA): Enabling fast inter-subarray

data movement in DRAM. In 2016 IEEE

International Symposium on High Performance

Computer Architecture (HPCA), (pp. 568-580).

IEEE.

https://ieeexplore.ieee.org/abstract/document/7446095

Cheng, Y., Zhang, Z., Nepal, S., & Wang, Z. (2019).

CATTmew: Defeating software-only physical kernel

isolation. IEEE Transactions on Dependable and

Secure Computing, 18(4), 1989-2004.

 https://ieeexplore.ieee.org/abstract/document/8865632

Cormode, G., & Muthukrishnan, S. (2005). An improved

data stream summary: The count-min sketch and its

applications. Journal of Algorithms, 55(1), 58-75.

https://doi.org/10.1016/j.jalgor.2003.12.001

de Ridder, F., Frigo, P., Vannacci, E., Bos, H., Giuffrida,

C., & Razavi, K. (2021, August). SMASH:

Synchronized Many-sided Rowhammer Attacks from

JavaScript. In USENIX Security Symposium, (pp.

1001-1018).

https://www.usenix.org/system/files/sec21fall-

ridder.pdf

Devaux, F., & Ayrignac, R. (2021). U.S. Patent No.

10,885,966. Washington, DC: U.S. Patent and

Trademark Office.

 https://patents.google.com/patent/US10885966B1/en

Fisch, D. E., & Plants, W. C. (2017). U.S. Patent No.

9,812,185. Washington, DC: U.S. Patent and

Trademark Office.

 https://patents.googledd.com/patent/US9812185B2/en

Frigo, P., Giuffrida, C., Bos, H., & Razavi, K. (2018,

May). Grand pwning unit: Accelerating

microarchitectural attacks with the GPU. In 2018

IEEE Symposium on Security and Privacy (sp), (pp.

195-210). IEEE.

 https://ieeexplore.ieee.org/abstract/document/8418604

Frigo, P., Vannacc, E., Hassan, H., Van Der Veen, V.,

Mutlu, O., Giuffrida, C., ... & Razavi, K. (2020,

May). TRRespass: Exploiting the many sides of

target row refresh. In 2020 IEEE Symposium on

Security and Privacy (SP), (pp. 747-762). IEEE.

https://ieeexplore.ieee.org/abstract/document/9152631

Gans, D. D. (2021). Methods for Rowhammer mitigation

and memory devices and systems employing the

same. US Patent US20210280236A1.

Gautam, S. K., Kumar, A., & Manhas, S. K. (2018).

Improvement of Rowhammering using metal

nanoparticles in DRAM-A simulation study. IEEE

Electron Device Letters, 39(9), 1286-1289.

https://ieeexplore.ieee.org/abstract/document/8423650

Gautam, S. K., Manhas, S. K., Kumar, A., & Pakala, M.

(2020). Mitigating the passing word line induced soft

errors in saddle fin DRAM. IEEE Transactions on

Electron Devices, 67(4), 1902-1905.

 https://ieeexplore.ieee.org/abstract/document/9025775

Gautam, S. K., Manhas, S. K., Kumar, A., Pakala, M., &

Yieh, E. (2019). Rowhammering mitigation using metal

nanowire in saddle fin DRAM. IEEE Transactions on

Electron Devices, 66(10), 4170-4175.

 https://ieeexplore.ieee.org/abstract/document/8798869

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

873

Gebrehiwot, T. G., Andargie, F. A., and Ismail, M. (2023).

DDRSharp: A fast and extensible dram simulator.

Journal of Computer Science, 19(7): 836-846.

 https://thescipub.com/abstract/jcssp.2023.836.846

Gomez, H., Amaya, A., & Roa, E. (2016, November).

DRAM row-hammer attack reduction using dummy

cells. In 2016 IEEE Nordic Circuits and Systems

Conference (NORCAS), (pp. 1-4). IEEE.

 https://ieeexplore.ieee.org/abstract/document/7792886

Google. (2014). Security: Nacl sandbox escape via dram

“rowhammer” memory corruption.

 https://bugs.chromium.org/p/chromium/issues/detail

?id=421090

Google. (2017). Rewrite non-temporal instructions.

https://codereview.chromium.org/1269113003/

Greenfield, Z., & Tomer, L. E. V. Y. (2016). U.S. Patent

No. 9,251,885. Washington, DC: U.S. Patent and

Trademark Office.

 https://patents.google.com/patent/US9251885B2/en

Greenfield, Z., Bains, K. S., Schoenborn, T. Z., Mozak, C.

P., & Halbert, J. B. (2015). U.S. Patent No.

8,938,573. Washington, DC: U.S. Patent and

Trademark Office.

 https://patents.google.com/patent/US8938573B2/en

Greenfield, Z., Halbert, J. B., & Bains, K. S. (2014). U.S.

Patent Application No. 13/626,479.

 https://patents.google.com/patent/US20140085995A

1/en

Gruss, D. (2018). Software-based microarchitectural

attacks. it-Information Technology, 60(5-6), 335-341.

https://doi.org/10.1515/itit-2018-0034

Gruss, D., Lipp, M., Schwarz, M., Genkin, D., Juffinger,

J., O'Connell, S., ... & Yarom, Y. (2018, May).

Another flip in the wall of rowhammer defenses.

In 2018 IEEE Symposium on Security and Privacy

(SP), (pp. 245-261). IEEE.

 https://ieeexplore.ieee.org/abstract/document/8418607

Gruss, D., Maurice, C., & Mangard, S. (2016).

Rowhammer. js: A remote software-induced fault

attack in javascript. In Detection of Intrusions and

Malware and Vulnerability Assessment: 13th

International Conference, DIMVA 2016, San

Sebastián, Spain, July 7-8, 2016, Proceedings

13, (pp. 300-321). Springer International

Publishing. https://doi.org/10.1007/978-3-319-

40667-1_15

Hassan, H., Tugrul, Y. C., Kim, J. S., Van der Veen, V.,

Razavi, K., & Mutlu, O. (2021, October). Uncovering

in-dram rowhammer protection mechanisms: A new

methodology, custom rowhammer patterns and

implications. In MICRO-54: 54th Annual IEEE/ACM

International Symposium on Microarchitecture, (pp.

1198-1213).

https://doi.org/10.1145/3466752.3480110

Henning, J. L. (2006). SPEC CPU2006 benchmark

descriptions. ACM SIGARCH Computer Architecture

News, 34(4), 1-17.

 https://dl.acm.org/doi/pdf/10.1145/1186736.1186737

Hong, S., Frigo, P., Kaya, Y., Giuffrida, C., & Dumitras,

T. (2019, August). Terminal Brain Damage: Exposing

the Graceless Degradation in Deep Neural Networks

Under Hardware Fault Attacks. In USENIX Security

Symposium, (pp. 497-514).

 https://www.usenix.org/system/files/sec19-hong.pdf

Hong, S., Kim, D., Lee, J., Oh, R., Yoo, C., Hwang, S., &

Lee, J. (2023). DSAC: Low-Cost Rowhammer

Mitigation Using In-DRAM Stochastic and

Approximate Counting Algorithm. arXiv preprint

arXiv:2302.03591.

https://doi.org/10.48550/arXiv.2302.03591

HP. (2015). Hp moonshot component pack version

2015.05.0.

http://h17007.www1.hp.com/us/en/enterprise/server

s/products/ moonshot/component-pack/index.aspx

Irazoqui, G., Eisenbarth, T., & Sunar, B. (2018, March).

Mascat: Preventing microarchitectural attacks before

distribution. In Proceedings of the Eighth ACM

Conference on Data and Application Security and

Privacy, (pp. 377-388).

 https://doi.org/10.1145/3176258.3176316

Jang, Y., Lee, J., Lee, S., & Kim, T. (2017, October). SGX-

Bomb: Locking down the processor via Rowhammer

attack. In Proceedings of the 2nd Workshop on System

Software for Trusted Execution, (pp. 1-6).

https://doi.org/10.1145/3152701.3152709

JEDEC. (2021). Jedec standard-jesd79-4d. 4d.

https://www.jedec.org/sites/default/files/docs/J

ESD79-4D.pdf

Kim, D. H., Nair, P. J., & Qureshi, M. K. (2014a).

Architectural support for mitigating Rowhammering

in DRAM memories. IEEE Computer Architecture

Letters, 14(1), 9-12.

 https://ieeexplore.ieee.org/abstract/document/6840960

Kim, Y., Daly, R., Kim, J., Fallin, C., Lee, J. H., Lee, D.,

... & Mutlu, O. (2014b). Flipping bits in memory

without accessing them: An experimental study of

DRAM disturbance errors. ACM SIGARCH

Computer Architecture News, 42(3), 361-372.

 https://doi.org/10.1145/2678373.2665726

Kim, M. J., Park, J., Park, Y., Doh, W., Kim, N., Ham, T.

J., ... & Ahn, J. H. (2022, April). Mithril: Cooperative

Rowhammer protection on commodity dram

leveraging managed refresh. In 2022 IEEE

International Symposium on High-Performance

Computer Architecture (HPCA), (pp. 1156-1169).

IEEE.

https://ieeexplore.ieee.org/abstract/document/9773219

https://codereview.chromium.org/1269113003/
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx
http://h17007.www1.hp.com/us/en/enterprise/servers/products/moonshot/component-pack/index.aspx

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

874

Kim, Y., Yang, W., & Mutlu, O. (2015). Ramulator: A fast

and extensible DRAM simulator. IEEE Computer

Architecture Letters, 15(1), 45-49.

 https://ieeexplore.ieee.org/abstract/document/7063219

Konoth, R. K., Oliverio, M., Tatar, A. andriesse, D., Bos,

H., Giuffrida, C., & Razavi, K. (2018). Zebram:

Comprehensive and compatible software protection

against rowhammer attacks. In 13th {USENIX}

Symposium on Operating Systems Design and

Implementation ({OSDI} 18), (pp. 697-710).

 https://www.usenix.org/system/files/osdi18-

konoth.pdf

Kwong, A., Genkin, D., Gruss, D., & Yarom, Y. (2020,

May). Rambleed: Reading bits in memory without

accessing them. In 2020 IEEE Symposium on

Security and Privacy (SP), (pp. 695-711). IEEE.

https://ieeexplore.ieee.org/abstract/document/9152687

Lanteigne, M. (2016). How rowhammer could be used to

exploit weaknesses in computer hardware.

http://www.thirdio.com/rowhammer.pdf

Lee, E., Kang, I., Lee, S., Suh, G. E., & Ahn, J. H. (2019,

June). TWiCe: Preventing row-hammering by

exploiting time window counters. In Proceedings of

the 46th International Symposium on Computer

Architecture, (pp. 385-396).

 https://doi.org/10.1145/3307650.3322232

Lipp, M., Schwarz, M., Raab, L., Lamster, L., Aga, M. T.,

Maurice, C., & Gruss, D. (2020, September).

Nethammer: Inducing rowhammer faults through

network requests. In 2020 IEEE European

Symposium on Security and Privacy Workshops

(EuroS&PW), (pp. 710-719). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9229701

Liu, J., Jaiyen, B., Kim, Y., Wilkerson, C., & Mutlu, O.

(2013). An experimental study of data retention

behavior in modern DRAM devices: Implications for

retention time profiling mechanisms. ACM

SIGARCH Computer Architecture News, 41(3), 60-71.

https://doi.org/10.1145/2508148.2485928

Liu, J., Jaiyen, B., Veras, R., & Mutlu, O. (2012). RAIDR:

Retention-aware intelligent DRAM refresh. ACM

SIGARCH Computer Architecture News, 40(3), 1-12.

https://doi.org/10.1145/2366231.2337161

Marazzi, M., Jattke, P., Solt, F., & Razavi, K. (2022, May).

PROTRR: Principled yet optimal in-DRAM target

row refresh. In 2022 IEEE Symposium on Security

and Privacy (SP), (pp. 735-753). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9833664

Metwally, A., Agrawal, D., & El Abbadi, A. (2005).

Efficient computation of frequent and top-k elements

in data streams. In Database Theory-ICDT 2005: 10th

International Conference, Edinburgh, UK, January

5-7, 2005. Proceedings 10, (pp. 398-412). Springer

Berlin Heidelberg.

 https://doi.org/10.1007/978-3-540-30570-5_27

Micron. (2015). 8gb: x4, x8, x16 DDR4 SDRAM features

excessive row activation. https://www.micron.com/-

/media/client/global/documents/products/data-

sheet/dram/ddr4/8gb_ddr4_sdram.pdf

Micron. (2017). System power calculators.

https://www.micron.com/support/tools-and-

utilities/power-calc

Misra, J., & Gries, D. (1982). Finding repeated

elements. Science of Computer Programming, 2(2),

143-152. https://doi.org/10.1016/0167-6423(82)90012-0

Mutlu, O. (2013, May). Memory scaling: A systems

architecture perspective. In 2013 5th IEEE

International Memory Workshop, (pp. 21-25). IEEE.

https://ieeexplore.ieee.org/abstract/document/6582088

Mutlu, O., Olgun, A., & Yağlıkcı, A. G. (2023, January).

Fundamentally understanding and solving

rowhammer. In Proceedings of the 28th Asia and

South Pacific Design Automation Conference, (pp.

461-468). https://doi.org/10.1145/3566097.3568350

Nair, P. J., Sridharan, V., & Qureshi, M. K. (2016). XED:

Exposing on-die error detection information for

strong memory reliability. ACM SIGARCH

Computer Architecture News, 44(3), 341-353.

https://doi.org/10.1145/3007787.3001174

Park, Y., Kwon, W., Lee, E., Ham, T. J., Ahn, J. H., & Lee,

J. W. (2020, October). Graphene: Strong yet

lightweight Rowhammer protection. In 2020 53rd

Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO), (pp. 1-13). IEEE.

https://ieeexplore.ieee.org/abstract/document/9251863/

Rakin, A. S., Chowdhuryy, M. H. I., Yao, F., & Fan, D.

(2022, May). Deepsteal: Advanced model extractions

leveraging efficient weight stealing in memories.

In 2022 IEEE Symposium on Security and Privacy

(SP), (pp. 1157-1174). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9833743

Razavi, K., Gras, B., Bosman, E., Preneel, B., Giuffrida,

C., & Bos, H. (2016, August). Flip Feng Shui:

Hammering a Needle in the Software Stack.

In USENIX Security symposium (Vol. 25, pp. 1-18).

https://www.usenix.org/system/files/conference/usen

ixsecurity16/sec16_paper_razavi.pdf

Ryan, W., & Lin, S. (2009). Channel codes: Classical and

modern. Cambridge university press. ISBN-10:

9781139483018.

Ryu, S. W., Min, K., Shin, J., Kwon, H., Nam, D., Oh, T.,

... & Hong, S. (2017, December). Overcoming the

reliability limitation in the ultimately scaled DRAM

using silicon migration technique by hydrogen

annealing. In 2017 IEEE International Electron

Devices Meeting (IEDM), (pp. 21-6). IEEE.

https://ieeexplore.ieee.org/abstract/document/8268437

https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/dram/ddr4/8gb_ddr4_sdram.pdf
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

875

Seaborn, M., & Dullien, T. (2015). Exploiting the DRAM

rowhammer bug to gain kernel privileges. Black

Hat, 15, 71.

 https://www.cs.umd.edu/class/fall2019/cmsc818O/p

apers/rowhammer-kernel.pdf

Seyedzadeh, S. M., Jones, A. K., & Melhem, R. (2016).

Counter-based tree structure for Rowhammering

mitigation in DRAM. IEEE Computer Architecture

Letters, 16(1), 18-21.

Seyedzadeh, S. M., Jones, A. K., & Melhem, R. (2018,

June). Mitigating wordline crosstalk using adaptive

trees of counters. In 2018 ACM/IEEE 45th Annual

International Symposium on Computer Architecture

(ISCA), (pp. 612-623). IEEE.

 https://ieeexplore.ieee.org/abstract/document/8416859

Shutemov, K. A. (2015). Pagemap: Do not leak physical

addresses to non-privileged

userspace. https://lwn.net/Articles/642074/

Son, M., Park, H., Ahn, J., & Yoo, S. (2017, June). Making

DRAM stronger against Rowhammering.

In Proceedings of the 54th Annual Design Automation

Conference 2017, (pp. 1-6).

 https://doi.org/10.1145/3061639.3062281

Taouil, M., Reinbrecht, C., Hamdioui, S., & Sepúlveda,

J. (2021, July). LightRoAD: Lightweight

Rowhammer Attack Detector. In 2021 IEEE

Computer Society Annual Symposium on VLSI

(ISVLSI), (pp. 362-367). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9516766

Tatar, A., Konoth, R. K., Athanasopoulos, E., Giuffrida,

C., Bos, H., & Razavi, K. (2018). Throwhammer:

Rowhammer attacks over the network and defenses.

In 2018 {USENIX} Annual Technical Conference

({USENIX}{ATC} 18), (pp. 213-226).

 https://www.usenix.org/system/files/conference/atc1

8/atc18-tatar.pdf

Ting, D. (2018, July). Count-min: Optimal estimation and

tight error bounds using empirical error distributions.

In Proceedings of the 24th ACM SIGKDD

International Conference on Knowledge Discovery &

Data Mining (pp. 2319-2328).
 https://doi.org/10.1145/3219819.3219975
Tobah, Y., Kwong, A., Kang, I., Genkin, D., & Shin, K. G.

(2022, May). Spechammer: Combining spectre and
rowhammer for new speculative attacks. In 2022
IEEE Symposium on Security and Privacy
(SP), (pp. 681-698). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9833802
TPC. (2023). TPC benchmark standards.

https://www.tpc.org/
Tsukamoto, Y., Morimoto, M., Yabuuchi, M., Tanaka, M., &

Nii, K. (2015, June). 1.8 Mbit/mm 2 ternary-CAM

macro with 484 ps search access time in 16 nm Fin-FET

bulk CMOS technology. In 2015 Symposium on VLSI

Circuits (VLSI Circuits), (pp. C274-C275). IEEE.

https://ieeexplore.ieee.org/abstract/document/7231286

Van Der Veen, V., Fratantonio, Y., Lindorfer, M., Gruss,

D., Maurice, C., Vigna, G., ... & Giuffrida, C. (2016,

October). Drammer: Deterministic rowhammer

attacks on mobile platforms. In Proceedings of the

2016 ACM SIGSAC Conference on Computer and

Communications Security, (pp. 1675-1689).

https://doi.org/10.1145/2976749.2978406

Van der Veen, V., Lindorfer, M., Fratantonio, Y.,

Padmanabha Pillai, H., Vigna, G., Kruegel, C., ... &

Razavi, K. (2018). GuardION: Practical mitigation of

DMA-based rowhammer attacks on ARM.

In Detection of Intrusions and Malware and

Vulnerability Assessment: 15th International

Conference, DIMVA 2018, Saclay, France, June 28-29,

2018, Proceedings 15, (pp. 92-113). Springer

International Publishing.

 https://doi.org/10.1007/978-3-319-93411-2_5

Vig, S., Bhattacharya, S., Mukhopadhyay, D., & Lam, S.

K. (2018, June). Rapid detection of Rowhammer

attacks using dynamic skewed hash tree.

In Proceedings of the 7th International Workshop on

Hardware and Architectural Support for Security and

Privacy (pp. 1-8).

 https://doi.org/10.1145/3214292.3214299

Weissman, Z., Tiemann, T., Moghimi, D., Custodio, E.,

Eisenbarth, T., & Sunar, B. (2019). Jackhammer:

Efficient Rowhammer on heterogeneous fpga-cpu

platforms. arXiv preprint arXiv:1912.11523.

https://doi.org/10.13154/tches.v2020.i3.169-195

Wu, X. C., Sherwood, T., Chong, F. T., & Li, Y. (2019,

April). Protecting page tables from rowhammer

attacks using monotonic pointers in dram true-cells.

In Proceedings of the Twenty-Fourth International

Conference on Architectural Support for

Programming Languages and Operating

Systems, (pp. 645-657).

 https://doi.org/10.1145/3297858.3304039

Xiao, Y., Zhang, X., Zhang, Y., & Teodorescu, R. (2016,

August). One Bit Flips, One Cloud Flops: Cross-VM

Rowhammer Attacks and Privilege Escalation.

In USENIX Security Symposium, (pp. 19-35).

https://www.usenix.org/system/files/conference/usen

ixsecurity16/sec16_paper_xiao.pdf

Yağlıkçı, A. G., Kim, J. S., Devaux, F., & Mutlu, O.

(2021). Security Analysis of the Silver Bullet

Technique for RowHammer Prevention. arXiv

preprint arXiv:2106.07084.

 https://doi.org/10.48550/arXiv.2106.07084

Yağlikçi, A. G., Patel, M., Kim, J. S., Azizi, R., Olgun, A.,

Orosa, L., ... & Mutlu, O. (2021, February).

Blockhammer: Preventing rowhammer at low cost by

blacklisting rapidly-accessed dram rows. In 2021 IEEE

International Symposium on High-Performance

Computer Architecture (HPCA), (pp. 345-358). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9407238

https://lwn.net/Articles/642074/
https://www.tpc.org/
https://www.tpc.org/

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 861.876

DOI: 10.3844/jcssp.2023.861.876

876

Yang, C. M., Wei, C. K., Chang, Y. J., Wu, T. C., Chen, H.

P., & Lai, C. S. (2016). Suppression of Rowhammer

effect by doping profile modification in saddle-fin

array devices for sub-30-nm DRAM

technology. IEEE Transactions on Device and

Materials Reliability, 16(4), 685-687.

 https://ieeexplore.ieee.org/abstract/document/7563821

Yao, F., Rakin, A. S., & Fan, D. (2020, August).

Deephammer: Depleting the intelligence of deep

neural networks through targeted chain of bit flips.

In 29th {USENIX} Security Symposium ({USENIX}

Security 20).

 https://www.usenix.org/system/files/sec20-yao.pdf

Yokoyama, Y., Tanaka, M., Tanaka, K., Morimoto, M.,

Yabuuchi, M., Ishii, Y., & Tanaka, S. (2020, June). A

29.2 Mb/mm 2 Ultra High Density SRAM Macro

using 7nm FinFET Technology with Dual-Edge

Driven Wordline/Bitline and Write/Read-Assist

Circuit. In 2020 IEEE Symposium on VLSI

Circuits, (pp. 1-2). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9162985

You, J. M., & Yang, J. S. (2019, June). MRLoc: Mitigating

Row-hammering based on memory Locality.

In Proceedings of the 56th Annual Design Automation

Conference 2019, (pp. 1-6).

 https://doi.org/10.1145/3316781.3317866

Zhang, Q., Pell, J., Canino-Koning, R., Howe, A. C., &

Brown, C. T. (2014a). These are not the k-mers you are

looking for: Efficient online k-mer counting using a

probabilistic data structure. PloS One, 9(7), e101271.

https://doi.org/10.1371/journal.pone.0101271

Zhang, T., Chen, K., Xu, C., Sun, G., Wang, T., & Xie, Y.

(2014b). Half-DRAM: A high-bandwidth and low-

power DRAM architecture from the rethinking of

fine-grained activation. ACM SIGARCH Computer

Architecture News, 42(3), 349-360.

 https://doi.org/10.1145/2678373.2665724

Zhang, Z., Cheng, Y., Liu, D., Nepal, S., Wang, Z., &

Yarom, Y. (2020a, October). Pthammer: Cross-user-

kernel-boundary rowhammer through implicit

accesses. In 2020 53rd Annual IEEE/ACM

International Symposium on Microarchitecture

(MICRO), (pp. 28-41). IEEE.

 https://ieeexplore.ieee.org/abstract/document/9251982

Zhang, Z., Zhan, Z., Balasubramanian, D., Li, B.,

Volgyesi, P., & Koutsoukos, X. (2020b, May).

Leveraging em side-channel information to detect

rowhammer attacks. In 2020 IEEE Symposium on

Security and Privacy (SP), (pp. 729-746). IEEE.

https://ieeexplore.ieee.org/abstract/document/9152769

Zhang, Z., Cheng, Y., Wang, M., He, W., Wang, W.,

Nepal, S., ... & Wu, C. (2022). {SoftTRR}: Protect

Page Tables against Rowhammer Attacks using

Software-only Target Row Refresh. In 2022

USENIX Annual Technical Conference (USENIX

ATC 22), (pp. 399-414).

 https://www.usenix.org/conference/atc22/presentatio

n/zhang-zhi

