

 © 2023 Tesfamichael Gebregziabher Gebrehiwot, Fitsum Assamnew Andargie and Mohammed Ismail. This open-access article

is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

DDRSHARP: A Fast and Extensible DRAM Simulator

1Tesfamichael Gebregziabher Gebrehiwot, 1Fitsum Assamnew Andargie and 2Mohammed Ismail

1School of Electrical and Computer Engineering, Addis Ababa Institute of Technology, Addis Ababa, Ethiopia
2Department of Electronics and Communication Engineering, Sasi Institute of Technology and Engineering, Andhra Pradesh, India

Article history

Received: 21-02-2023
Revised: 18-04-2023

Accepted: 01-06-2023

Corresponding Author:

Tesfamichael Gebregziabher

Gebrehiwot

School of Electrical and

Computer Engineering, Addis

Ababa Institute of Technology,

Addis Ababa, Ethiopia
Email: tesfamichael.gegziabher@aait.edu.et

Abstract: Dynamic Random-Access Memory (DRAM) is a crucial component

of modern computing systems and there exist a variety of DRAM standards. The

variance in DRAM architecture calls for an extensible simulator to accommodate

current and future DRAM standards. Moreover, as every researcher may not be

an expert in programming, choosing an easier programming language to construct

a simulator would reduce the efforts of a researcher who seeks to reuse/modify

existing code to meet the demands of his/her work. Performance bottleneck is

another challenge of cycle-accurate simulators; some researchers even suggest

statistical modeling to achieve higher speed by sacrificing accuracy. We present

DDRSHARP, a cycle-accurate DRAM simulator written entirely in C#. It

provides simplified configuration and evaluation of different DRAM standards.

It includes both the performance and power/energy models of DRAM. In order

to improve the performance of DDRSHARP, we skipped infeasible iterations on

queued requests, minimized the number of branch instructions, saved repetitive

calculations for later use, and minimized code execution paths. Since our

simulator is constructed using C# and the garbage collector consumes a big

amount of CPU time, we worked on minimizing heap allocation of immutable

objects such as strings. Our approach has enabled more than 1.8 times speedup in

performance compared to contemporary simulators.

Keywords: DRAM, CPU, Simulation, Modeling

Introduction

Dynamic Random Access Memory (DRAM) has

become the primary choice of memory in modern

computer systems. Improvement of DRAM standards and

technology, and decreasing prices are the major reasons

for its wide adoption. As computations are becoming

data-intensive, there is also a drive for more and more fast

and efficient memory. In order to satisfy these

requirements, researchers use DRAM simulators to study

the performance and energy consumption of new DRAM

designs. There exist Several DRAM simulators

(Alakarhu and Niittylahti, 2002; Binkert et al., 2011;

Chatterjee et al., 2012; Healy and Hong, 2017; Kim et al.,

2015; Rosenfeld et al., 2011; Mirosanlou et al., 2020;

Steiner et al., 2020) and most of these simulators are

amalgamated with CPU simulators and majority of them

are designed to be cycle accurate to ensure timing accuracy.

Simulation performance has been the driving factor

behind many simulators. Thus, most developers worked

hard to outperform previously constructed simulators.

Some of them even advocate the importance of sacrificing

accuracy for speed. Li et al. (2019) criticize the

importance of cycle-accurate simulation and proposed

statistical DRAM modeling which sacrifices a 2% error

for a 400 times speedup gain (Li and Jacob, 2019).

However, this approach may not be applicable to

situations where 100% accuracy is required. Hansson et al.

(2014) proposed an event-based memory model and

achieved 7 times the performance speed. However, they

implemented a few DRAM timing parameters that they

regard as most important and ignore to enforce the

remaining timing parameters. They claim to have

maintained the accuracy of the simulation. However, Li et al.

(2019) compared the accuracy of this event-based

memory model (Hansson et al., 2014) with a cycle-

accurate simulator, DRAMsim3 (Li et al., 2020). The

study reveals, without enforcing all timing parameters, it

is difficult to claim that such an approach would always

provide correct simulation for all workloads.
Besides the performance and accuracy of simulation,

we should also consider simplicity, extensibility,
scalability, and code productivity when designing a new
simulator. A simulator model should be extensible enough
to include both existing DRAM and future standards. For
example, DRAMSim2 (Rosenfeld et al., 2011) supports a
few DRAM standards (DDR2 and DDR3). Similarly,
USIMM (Chatterjee et al., 2012) is limited to DDR3.

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

837

Ramulator (Kim et al., 2015), DRAMsys (Steiner et al.,
2020), and DRAMsim3 (Li et al., 2020) support
DDR2/DDR3/DDR4 standards. Ramulator can also be
extended to support many academic memory models.

If an extensible simulator could not handle all future

DRAM standards, a future researcher is forced to

customize an existing simulator or design a new simulator

from scratch. The time and effort needed to customize an

existing software depends on the architecture of the

software. Software components should be loosely coupled

for a simplified customization process.

We propose DDRSHARP, a cycle-accurate DRAM

simulator that models both the performance and

power/energy parameters of DRAM. We followed an

object-oriented design methodology to decompose

basic components of the memory system into

minimally coupled objects. It enables run-time

configuration of different DRAM specifications;

avoids the hard-coding of the parameters of different

DRAM standards to simplify the evaluation of various

memory systems. Our contribution includes 1) a high-

performance DRAM simulator 2). Extensible simulator

that can be configured to support many DRAM standards.

We chose C# to construct the simulator to exploit the

features of automatic memory management and minimize

the chance of memory leaks. As compared to C/C++, C#

helps you reduce programming errors by ensuring code

safety, performing reference checking, performing automatic

garbage collection, and ensuring code security by preventing

buffer overflows. These features, however, come at a

considerable performance penalty and could significantly

degrade the speed of the simulator.

Having studied the coding techniques of contemporary

simulators, we applied some code optimization

techniques in order to improve the performance of the

simulation. We employed a smart iteration technique that

skips unnecessary iterations on queued requests; that is all

requests queued to a busy bank are skipped. We also

reduced the number of branch instructions in the simulator

to avoid the penalty of CPU's branch mispredictions. We

pre-computed and saved some computations which are

implemented within frequently called functions. We also

worked on minimizing the path of code executions as

much as possible.

Since our simulator is constructed using C# and the

Garbage Collector (GC) consumes a big amount of CPU

time when activated, we worked on minimizing heap

allocation of immutable objects such as strings. In order

to prevent multiple allocations and avoid performance

degradation, strings are allocated on the stack, and

manipulation is done by directly accessing slices of the

data; Sub-portion (s) of the data are not allocated on the

heap. A combination of all these optimizations has

enabled DDRShap to achieve at least 1.8 times speedup

over existing simulators.

DDRSHARP models both the CPU and the memory

subsystem. The CPU models consist of the CPU core,

ROB (reorder buffer), and the MSHR (miss status

holding register). The memory subsystem models all

DRAM components. Some of which are the channel,

rank, bank group, and bank objects. DDRSHARP

accepts both CPU and memory traces that are sent to

the memory controller object by the CPU core or the

memory system. DDRSHARP uses a memory

controller which does not contain complex logic. It

simply delegates basic functionalities to other

dependencies; dependencies such as refresher, scheduler,

queue manager and read/write mode selector.

The queue manager keeps track of every read and

every write request. If DDRSHARP is in read mode, the

read queue is served otherwise the write queue is served.

The transition from read mode to write mode or vice versa

is performed by the Read/Write mode selector and is

decided at every memory cycle as per chosen policy.

According to the selected mode, the scheduler selects the

best command to be issued from either the read queue or

the write queue. The scheduler uses the scheduling policy,

the timing constraints, and the DRAM state to pick a

command to issue.

DRAM Background

DRAM is hierarchically organized into channels,

ranks, bank groups, and banks. A channel is connected to

one or more ranks; a rank is a 64-bit wide module that

contains a set of DRAM chips. A DRAM is configured as

4, 8, or 16. In 8 configurations, 8 physical chips

each with a bit-width of 8 (8) are connected together

as shown in Fig. 1. Other configurations include, 4

configurations (16 chips) or 16 (4 chips). All ranks

work independently. However, full parallelism is

limited as all ranks connected to the same channel share

the same data lines.

Each chip contains several banks which are grouped

into one or more bank groups. A typical DDR5 rank

contains 32 banks. Fig. 2 shows the functional block

diagram of DDR4 SDRAM; in this configuration, a total

of 16 banks are grouped into 4 bank groups.

Fig. 1: Memory hierarchy: 8 configuration

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

838

Fig. 2: DDR4 SDRAM functional block diagram

Fig. 3: DRAM Bank structure

Fig. 4: Simplified State Diagram of SDRAM (reproduced from

JEDEC (2022))

In a typical DRAM configuration, a bank contains 32

subarrays where each subarray is composed of 32 MATs

(multiple cell matrices). Each MAT contains 262,144

memory cells (512 rows and 512 columns. A memory cell is

composed of an access transistor and a capacitor as shown in

Fig. 3. The capacitor of the memory cell stores a single bit.

The transistor serves as a switch that connects/disconnects

the capacitor to/from the bit line. Each bit line is connected

to a set of sense amplifiers (row buffer). Activating a word

line enables access to all memory cells of a row; this copies

the contents of a row to the row buffer. The row buffer keeps

recently accessed rows.

Subsequent read requests for data located on the same

row are served from the row buffer. Otherwise, before any

new read/write operation, an open bank must be closed

before activating a new row; a bank is called open if it

contains a row that is open in the row buffer. Closing a bank

involves rewriting back the contents of the row buffer back

to the target row. This restores the lost charges of the

capacitors during the sensing process to the original level.

Modeling DRAM

Vendors provide data sheets (JEDEC, 2022) that contain

the specifications of a given DRAM model. The design of

the performance/power model of DRAM requires an

understanding of these architectural, timing, and power

parameters. The timing parameters are constraints that need

to be satisfied before a command is allowed to be issued.

Similarly, the power parameters determine the current

needed to execute a DRAM command. In this section, we

also discuss DRAM parameters with respect to

performance/power model design.

DRAM Commands and Memory States

The memory states and the commands that dictate

state transitions will be discussed in this section. The

simplified state diagram shown in Fig. 4 shows is based

on the default read/write burst length of 16 (BL16).

However, DDR5 (JEDEC, 2022) provides a 32-bit burst

read/write operation (BL32 mode) for 4 devices only.

The DRAM could be, at any given time, in one of the valid

memory states; it could be in a power down state, standby

state, pre-charging, activating, refreshing, reading, or

writing. DRAM enters power down mode when the Clock

Enables signal (CKE), which enables output drivers and

other components such as input buffers and internal

clocks signals, is set to low. The PDE (power down entry)

command sends the device to PDN (power down mode).

With CKE set to low, a bank transitions from the active

state to active power down; it could also transition to a

precharge power down state from an idle.

The memory leaves the power down state when a PDX

command is issued. The bank may return to an idle state or

active state depending on whether it contains an active row.

As shown in Fig. 4, a bank can in an idle state directly

transition to a refreshing state or activating state via ACT

and REF commands respectively. When the CKE is set to

low, it can also transition to a self-refresh state via SRE

command; during this period the DRAM can perform self-

refreshes without the help of the memory controller and the

processor. The memory exits a self-refresh state using the

SRX command.

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

839

When the memory is in activating state, it can only

transition to an active state after a period of time

specified by RCD is elapsed. Once it is in an active

state, however, it can transition to a reading state using

the RD command; it can also transition to a writing

state using the WR command. If RDA/WRA (RD/WR

then auto precharge) command is issued, the bank

transitions automatically to a precharging state after a

successful read/write; it then returns to an idle state at

the end of the PRE (precharge) command.

Address bits that identify the bank and row to be

accessed are registered along with the ACT command

JEDEC (2021). The starting column location for the burst

operation is also determined by the address bits

registered along with the RD or WR command.

Moreover, these bits determine whether the auto

precharge command is to be issued after a successful

RD/WR command.

When decoding a read/write request, a single

memory access can trigger the issuance of one or more

additional DRAM commands depending on the

device's current state. For example, a read request can

be translated to RD command if the row to be accessed

is already active. It could also be translated into a

sequence of ACT and RD commands if the bank is in

an idle state. However, if a different row is open, a

sequence of PRE, ACT, and RD commands are executed.

Performance Model

Understanding the timing specification is crucial in

designing the performance model of DRAM as it defines

the latency of every DRAM command that is associated

with any read/write memory request. A brief description

of key timing parameters is shown in Table 1.

Before any row activation (issuing ACT command),

the rank checks that no more than four activations can be

performed within the time frame specified by FAW; the

request for activation during a FAW window is denied if four

activations are already performed. The rank also checks if the

time gap between any two consecutive activations obeys the

RRD timing constraint. On the other hand, the activation gap

between two activations within a bank is limited by the RC

time constraint. Usually, RRD is shorter than RC. This

parameter is checked at the rank to keep track of the

activations of all banks within the rank.

The read process requires moving column bits into

the bus. First, a row that contains the data is activated

using ACT followed by data sense during which the

contents of the row are copied to the row buffer. The

time between the issuance of the ACT command and

the availability of data on the row buffer is specified by

the timing parameter RCD.

The time needed to make the first bit available on the

bus after the data is copied to the row buffer is specified

by the CAS/CL parameter. The CWD parameter defines

the same constraint for a write command. The CCD

parameter defines the time gap between any two

consecutive column accesses for both read and write

operations. The maximum number of column accesses is

limited by the burst length of the device. The time gap

between the end of a write burst and the start of a read

operation is specified by the WTR parameter.

A READ command, as shown in Fig. 5 uses the column

address and bank/group address to copy the data to the DQ

(data) pins. This operation requires a time of CL (column

latency) cycles. For the 16-bit read burst operation (BL16)

shown in Fig. 5, Dn (0, D1, D2,...D13, D14, D15) represents the

data-out from column n. the figure shows the DES (Device

DESelect, CS# false) for the purpose of simplicity.

As charges stored in capacitors may leak or decrease

due to other reasons, the DRAM needs to be periodically

refreshed at specific time intervals. The task of refreshing

a memory involves reading and rewriting the contents of

a memory cell. The REFI parameter specifies the interval

between two refresh commands; a time specified by the

RFC parameter specifies the time needed to complete the

task of refreshing memory cells. Before a refresh

operation starts, open banks are closed using the PRE

command. This operation needs a time equivalent to RP

(row precharge).

Table 1. Description of key timing parameters (reproduced from JEDEC (2022))

Parameter Explanation

FAW Four activation window time limit between the first and fourth activation of any four consecutive activation

RCD Row to column delay time needed to move data from DRAM cells (row) to the row buffer

RAS Row access strobe minimum time gap between activate command and precharge command

RP Row precharge time needed to close/precharge a bank for next-row accesses

RC Row cycle time gap between two-row activation (same bank, different rows)

CCD Column-to-column delay time needed for column read; bursts are used for multiple column reads

CAS Column access strobe time between issuance of column access command and availability of the first bit

RFC Refresh cycle time gap between the refresh command and the next command

WTR Write to read time between the end of write and the start of a read command

CWD Column write delay time between issuance of the write command and placement of data on the bus

REFI Refresh interval time interval between refresh commands

RRD Row-to-row delay time interval between activities that are not in the same bank

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

840

Fig. 5: READ burst operation (BL16)

During a refresh or any read/write operation, the

minimum time gap between ACT and PRE commands

should not be violated. This gap is specified by the RAS (row

access strobe) timing parameter. In DRAM devices that

contain more than one bank group, some timing parameters

have both a longer and shorter version. For example, CCD is

defined as CCDL (long) and CCDS (short); RRDL/RRDS and

WTRL/WTRS are also timing parameters with 2 versions.

The longer version specifies the duration between consecutive

commands which are executed on the same bank group;

otherwise, the timing is determined by the shortest version.

Power Model

We use both the power parameters and timing

parameters of a given memory to design the power

model of DRAM. We employ Micron (2017b) power

calculator to determine the maximum power

consumption for basic DRAM operations and the

background power when DRAM is in standby or

power-down mode. Table 2 describes basic DRAM

power parameters. If the memory is in power-down

mode, the active current and precharge current are

IDD3P and IDD2P respectively. Otherwise, IDD2N and

IDD3N are background currents.

Table 2: Description of key current parameters (reproduced

from Micron (2020))

Current Explanation

IDD0 Average activate-to-precharge current

IDD2N Precharge standby current

IDD2P Precharge power-down current

IDD3N Active standby current

IDD3P Active power-down current

IDD4R Burst read current

IDD4W Burst writes current

IDD5R Distributed refresh current (1X REF)

For example, the current due to activate command

(over a period of tRC) is calculated by subtracting

background currents; IDD3N (over a period of tRAS) and

IDD2N (over a period of tRC-tRAS) as shown in Eq. 1.

Similarly, for RD, WR, and REF commands, IDD3N is

deducted from IDD4R, IDD4W, and IDD5, respectively. List

of all equations used in our power model:

 3 2

0

N RAS N RC RAS

ACT DD

IDD t IDD t t
I I

tRC

 
  (1)

DDRSHARP

DDRSHARP, which is implemented in C#, models

both the performance and power of DRAM devices. It is

composed of two projects; the simulation library and the

User Interface (UI). The UI component enables the user

to select and set up the parameter of a DRAM, CPU, or

Memory Controller. Configuration files can be added to a

folder so as to avoid the laborious hard coding of different

configurations of many standards. At the core of the

simulation library is the simulator object which is

responsible for the construction of the Memory System

and the CPU core. As an input, DDRSHARP accepts

DRAM trace as well as cache-filtered CPU trace. The

implementation of the trace reader and address translator

(address mapping) is injected into the Simulator object.

DRAM traces are managed by the Memory System while

the Core object of the CPU takes the same responsibility

of fetching and dispatching of cache filtered traces to the

memory controller. Once a trace record is decoded into a

valid memory request, a delegate function that will be

executed upon successful completion of the request is

attached to it. Fig. 6 shows basic DDRSHARP components.

For simplicity and maintainability, the memory

controller does not contain complex logic. Key

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

841

functionalities such as scheduling, refreshing, queuing

system, and read/write mode switching are not

implemented by the controller. They are implemented by

dependencies that are injected into the memory controller.

In case the user fails to select a scheduling policy or any

other option, DDRSHARP implements default settings.

At every cycle, the memory controller delegates the task

of scheduling, refreshing, read mode, or write mode

switching to the injected dependencies. If a refresher

determines a REF command should be issued, the REF

command is given priority over other commands.

Otherwise, the read/write mode selector decides if the

DRAM should be in read mode or write mode. If the

simulator is in read mode, the scheduler selects the best

request from the read queue; else, the best request is

selected from the write queue. The criteria for selecting

the best request is determined by the implemented

scheduling policy. If the selected request fails to meet the

timing constraints or if the device, in its current state, is

not ready for this request, the next best is selected. Once

the best request is selected and the state of the target bank

is active, the active row is compared with the row address

of the request. If they are equal (row hit), the RD or WR

command is issued based on the request type. Otherwise,

if a row conflict happens, a PRE command is issued to

close the bank and the request remains in the queue.

However, if the target bank is idle (already closed bank),

the ACT command is issued to activate the row address of

the request and the request remains in the queue. A request

remains in a queue until an RD/RDA or WR/WRA

command associated with that request is issued.

Enforcing Timing Constraints

DDRSHARP updates the state of the target bank

and computes the minimum time the system should

wait before transitioning to the next state. When a

command is successfully issued, the state of the bank

is updated to one of the valid states shown in Fig. 4. A

bank object maintains four variables; the NextRD,

NextWR, NextACT, and NextPRE variables store the

minimum amount of time that the bank should wait

before issuing an RD, WR, ACT or a PRE command.

Similarly, a countdown variable holds the number of

cycles required before the state of the bank can

transition to a state specified by the NextSate variable.

In other words, it holds the time needed for the issued

command to complete. At every cycle, the value of the

countdown variable is decremented. When the value of

the countdown reaches zero, the state of the bank is

changed to the next valid state.
Statistical data for every issued command is collected

by the bank, rank, and channel objects. Every command is

implemented differently on the Channel, Rank, and

BankGroup classes. Every memory component follows its

own implementation as per DRAM specification.

Fig. 6: DDRSHARP components

Fig. 7: Conceptual flowchart showing how timing constraints

are updated. This does not reflect the actual

implementation

For example, before the executing ACT command, the

activate function has to pass several layers of validation

checks. First, the bank must be idle; secondly, the rank

should confirm the time constraint specified by the FAW

parameter is obeyed; the rank also checks if the RRDS

constraint is fulfilled. The bank group that contains the bank

also validates if the RRDL constraint is not violated. Finally,

the bank itself should check if the Row Cycle (RC) time limit

is not broken. Figure 7 provides a conceptual overview.

As DDRSHARP follows an objected oriented design

methodology, the channel, the rank, the bank groups, and

the bank are designed to be separate objects. Each object

manages its own state and timing constraints

independently. Hence, once a scheduler selects a

command, the command needs to be propagated from the

channel of the memory controller all the way to the target

bank. The propagation of command execution through the

channel, rank, bank group, and bank are described below:

1. The scheduler selects a request to be issued and calls

a method on the memory controller which in turn

calls an appropriate method on the channel. The

called function in the channel iterates through all of

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

842

its ranks and calls a proper function on the target rank

(the rank that contains the address of the request) and

its siblings (all other ranks that do not match the

requested address)

2. The target rank and sibling ranks update their time

constraints differently as per DRAM specifications.

Moreover, the target rank decodes the address of the

request and calls the appropriate method on the target

bank-group object. The target bank group object, in

turn, calls a function on the target bank

3. Upon completion of the read/write task, the delegate

function attached to the request is executed to notify

the CPU (for CPU traces) or the memory system (for

DRAM traces)

Computing Power Consumption

The power and energy consumption are calculated

using collected data and power parameters of the DRAM.

Some of the power equations that we used, based on the

Micron power calculator (Micron, 2017b) to estimate the

power consumption of read, write, activate, or refresh

operations are shown below:

 4 3RD DD R DD N DDP I I V RDCP   (2)

where:

 RDCP is the percent of read cycles

 4 3WR IDD W IDD N DDP I I V WRCP    (3)

where:

 WRCP is the percent of write cycles

 23
0 .

N RC RASN RAS
ACT DD

RC RC

IDD t tIDD t
P IDD V

t t


  


 (4)

 5 3
RFC

REF IDD IDD N DD

REFI

t
P I I V

t
    (5)

At any moment in time, the memory can enter a

power-down mode by setting the CKE to low. During this

period of time, the current that causes power dissipation

is IDD2P if all banks are closed. If there exists a single

bank that is open, however, the power consumption is due

to IDD3P, the active standby current. Equations 6-7 show

the power-down background power:

2PRE DD P DDPDN I V PPC   (6)

where:

 PDNPRE is the precharge power in down mode

 PPC is the percent of precharge cycles in down mode

3ACT DD P DDPDN I V PAC   (7)

where:

 PDNACT is the activation power in down mode

 PAC is the percent of active cycles in down mode

When the CKE is high, the memory to standby mode

and the background power consumption is by IDD2N if all

banks are closed and IDD3N otherwise:

2PRE IDD N DDPSTBY I V SPC   (8)

where:

 PSTBYPRE is the precharge power in standby mode

 SPC is the percent of the precharge cycle in standby

mode

3ACT DD N DDPSTBY I V SAC   (9)

where:

 PSTBYACT is the active power in standby mode

 SAC is the percent of active cycle in standby mode

The total power is the sum of all the aforementioned

consumptions plus I/O power. The I/O power, which

depends on the density and form factor of the system,

includes the output driver or ODT power, the power needed

to drive the bus, and the power consumed terminating a write

operation. It also includes the power used to terminate a

write/read operation to/from another rank.

Code Optimization

DDRSHARP is constructed using managed code

namely, C#. We chose C# to delegate the responsibility of

garbage collection, code safety, reference checking, and

code security. The GC, garbage collector, however,

consumes a big portion of CPU time. To compensate for

the performance penalty that is brought by GC and other

features, we followed a profile-guided optimization

technique to pinpoint key code blocks that contribute to a

very high-performance bottleneck. The top 4 sources of

latency and the optimization technique that we

implemented are listed below.

Zero copying: Sometimes, operation on some portion of

an object triggers the creation of a new temporary object (s).

A good example is a string object. In C# strings are

immutable; code blocks that allocate and manipulate strings

will end up having extra string object (s) allocated on the

heap which puts an extra burden on the garbage collector.

We used a stack-allocated reference window to manipulate

immutable objects; it allows us to work on slices of the data

without copying. Moreover, Span¡char¿ is allocated on the

stack, and values are deleted by default when the function

goes out of scope; this relieves the garbage collector.

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

843

Pre-computation: Whenever a command is issued,

timing constraints are updated; some simulators

repeatedly perform unnecessary computations. For

example, after issuing an RD command, USIM

(Chatterjee et al., 2012) updates the time constraint for

the next write as Cycle + TCAS + TBL + TRTRS -TCWL.

However, except for the Cycle variable which is

incremented at every cycle, the sum of constant values

(TCAS + TBL + TRTRS - TCWD) should have been calculated

during initialization and saved for later use.

DDRSHARP avoids repetitive computation by pre-

computing the values of these calculations during the

initialization process.

Minimum Iterations: Iterating on queued requests at

every cycle takes a large chunk of the simulation time. At

every memory cycle, most simulators (Li et al., 2020;

Kim et al., 2015) iterate through every request in the queue

in order to find the best request that satisfies the scheduling

policy; all requests are visited even if the target bank is

busy. For example, USIM (Chatterjee et al., 2012)

performs a double iteration on the request queue; one to

mark the request obeys timing constraints and another to

select the command that is going to be issued. DDRSHARP

skips iterations if the target bank is busy; that is, a request

is visited and decoded if and only if the target bank is not

busy doing some other activity. We employed a bank-based

queueing system that allows us to skip all requests queued

to a busy bank at once.

Minimum Branches: If a branch instruction is

mispredicted by the CPU, the performance penalty will

increase and the cumulative penalty of every cycle

would magnify the simulation latency. For example,

Listing 1 is a code fragment from the Controller class

of DRAMsim3 (Li et al., 2020), reportedly the fastest

cycle-accurate simulator. We can see that the Isvalid

method is called twice inside of an if-block. Moreover,

the implementation of the GetCommandToIssue

function in line 10 also calls the IsValid method inside

an if-block. It also calls another function named

GetFirstReadyInQueue which calls the IsValid method

inside an if-block by iterating on each command in the

queue. Even though the implementation of

DDRSHARP differs from most contemporary

simulators, we worked on minimizing branches as

much as possible; we removed many and allowed only

those which we couldn't.

Evaluation

In this section, we validate the correctness of the

simulator by testing if the synchronous

communications between the memory controller and

DRAM obey the rules of DRAM standards. We also

compare the performance of DDRSHARP with other

DRAM simulators.

Listing 1: A code snippet from DRAMsim3 simulator

Validation and Verification

Every memory command that is issued by DDRSHARP

must obey the timing constraints and state transition rules of

DRAM standards. To evaluate its accuracy, we compared the

simulation results of DDRSHARP with that of Ramulator

(Kim et al., 2015). In validating our memory model, we used

the same DRAM device (DDR3 4Gb 8) for both simulators.

We used a single-channel organization with one rank. We

also employed the same address mapping and applied the

same policy for paging and command scheduling. For each

simulator, we used a sequence of 403.gcc workload of the

CPU2006 benchmark as an input and we run both simulators

for 20 million CPU cycles. We recorded the time-stamp of

every command that is issued to respective banks and then

compared the timestamped records of our simulator with that

of the Ramulator.

The results were found to be identical; the sequence of

commands, the execution cycle of every command, and the

channel, rank, and bank where the commands were executed

are found to be the same. We have observed that

DDRSHARP obeys the timing constraints and state

transition rules of standard DRAM. Its memory controller,

channel, rank, and bank state machines acted according to

DRAM specifications.

Performance Comparison with Existing DRAM
Simulators

We have selected DRAMsim3 (Li et al., 2020) and

Ramulator (Kim et al., 2015), among those shown in

Table 3, to evaluate the performance of DDRSHARP; we

compared the performance of each simulator using stream

trace and random trace. Each trace contains 25 million

read/write requests. The number of generated read requests

is double the number of write requests. Each trace is

formatted to match the trace reader of each simulator. Stream

requests have higher row-buffer hit probability as they access

continuous memory blocks compared to random requests

which access random memory locations.

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

844

Table 3: Description of current DRAM simulators

The author details Approach Limitation

Li and Jacob (2019) Statistical DRAM modeling Lacks accuracy

 • uses synthetic traces to train the model • Unusable in situations where100%

 • Sacrifices accuracy for speed which makes accuracy is required

Feldmann et al. (2020) Performance-optimized DRAM model lacks accuracy

 • Uses lookup tables for latency estimation • Unusable in situations where

 • Uses GPU to accelerate offline trace analysis 100% accuracy is required

 using neural network

 allows 5% error in accuracy Sacrifices speed for code simplicity

Mirosanlou et al. (2020) An extensible memory controller • The generalization feature of

 • Provides a simple interface that minimizes effects on the speed of simulation

 LOC (lines-of-code)

 • On average, it reduces the LOC by 11%

Kim et al. (2015) Ramulator: Cycle-accurate open-source simulator Speed

 • Supports many DRAM models

 • Provides support for extensibility

 • Last updated on May 11, 2021

Li et al. (2020) DRAMsim3: Cycle-accurate open-source simulator

 • Supports many DRAM models

 • Last updated on Apr 5, 2021 Speed

Materials and Methods

For the experiment, we have used the same

configuration; DDR3 4Gb 8 1600 K memory model,

same gage policy (open gape policy), same refresh policy

(rank refresh) and same scheduling policy that is First

Ready, First Come First Served (FRFCS).

Results and Discussion

Fig. 8 shows the experimental results for the input of

random traces. DDRSHARP is 1.88 times faster than

DRAMsim3 and 2.84 times faster than Ramulator. As

illustrated in Fig. 9, experimental results for a trace of

stream requests show that DDRSHARP is more than

twice (2.88) faster than Ramulator and 2.1 times faster

than DRAMsim3.

Fig. 8: Comparing the simulation time of 25 million random

requests

Fig. 9: Comparing simulation time of 25 million streams of requests

Conclusion

In this study, we have introduced DDRSHARP, a

flexible and extensible memory simulator that supports

a wide range of commercial DRAM standards.

Compared to contemporary open-source simulators,

DDRSHARP is at least 1.88 times faster for a trace of

random requests and 2.1 times faster for a trace of

stream requests.

DDRSHARP is developed using C#. Although C#

code runs slower than native codes such as C/C++, we

implemented code optimization techniques to speed it

up. We minimized the burden of the garbage collector

by allocating some data on the stack rather than the

heap, minimized the number of branches (if blocks) in

source code, precomputed repetitive calculations and

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

845

saved them for later use, skipped unnecessary iterations

on requests queued to a busy bank. These optimization

techniques have enabled better performance making

DDRSHARP faster than contemporary cycle-accurate

simulators which are written in C/C++.

The extensibility and performance of DRSHARP

would help DRAM researchers achieve their goals. It

reduces the efforts of a researcher who seeks to

reuse/modify existing code to meet the demands of

his/her work; especially for those who are not

comfortable with pointers of C/C++ and would like to

reduce programming errors and ensure code safety.

Acknowledgment

We thank the publisher for allowing us to publish

our research article. We would also like appreciate Mr.

Jeffery Daniels, head of technology of Science

Publications, for his relentless support during the

publication process.

Funding Information

The authors have not received any financial support or

funding to report.

Author’s Contributions

Tesfamichael Gebregziabher Gebrehiwot:
Designed and constructed the simulator, he evaluated its

performance and wrote the paper.

Fitsum Assamnew Andargie: Provided critical

feedback and helped shape the article.

Mohammed Ismail: Supervised the work.

Ethics

This article is original and is not published elsewhere.

The corresponding author confirms that all of the other

authors have read and approved the manuscript.

Conflicts of Interest

The authors declare that there is no conflict of interest

regarding the publication of this study.

References

Alakarhu, J., & Niittylahti, J. (2002). DRAM simulator

for design and analysis of digital systems.

Microprocessors and Microsystems, 26(4), 189-198.

https://doi.org/10.1016/S0141-9331(02)00013-3

Binkert, N., Beckmann, B., Black, G., Reinhardt, S. K.,

Saidi, A., Basu, A., ... & Wood, D. A. (2011). The

gem5 simulator. ACM SIGARCH Computer

Architecture News, 39(2), 1-7.

https://doi.org/10.1145/2024716.2024718

Chatterjee, N., Balasubramonian, R., Shevgoor, M.,

Pugsley, S., Udipi, A., Shafiee, A., ... & Chishti, Z.

(2012). Usimm: The utah simulated memory module.

University of Utah, Tech. Rep, 1-24.

https://citeseerx.ist.psu.edu/document?repid=rep1&t

ype=pdf&doi=543a8c4fc86b539deb7b350465fe2bf

48083b155

Feldmann, J., Kraft, K., Steiner, L., Wehn, N., & Jung, M.

(2020, March). Fast and accurate DRAM simulation:

Can we further accelerate it?. In 2020 Design,

Automation & Test in Europe Conference &

Exhibition (DATE) (pp. 364-369). IEEE.
https://doi.org/10.23919/DATE48585.2020.9116275

Hansson, A., Agarwal, N., Kolli, A., Wenisch, T., &

Udipi, A. N. (2014, March). Simulating DRAM

controllers for future system architecture exploration.

In 2014 IEEE International Symposium on

Performance Analysis of Systems and Software

(ISPASS) (pp. 201-210). IEEE.

https://doi.org/10.1109/ISPASS.2014.6844484

Healy, M. B., & Hong, S. (2017, October). Cramsim:

Controller and memory simulator. In Proceedings of

the International Symposium on Memory Systems

(pp. 83-85).

https://doi.org/10.1145/3132402.3132408

JEDEC. (2021). Jesd79-4d, DDR5 SDRAM.

https://www.jedec.org/sites/default/files/docs/JESD7

9-4D.pdf

JEDEC. (2022). Jesd79-5b, DDR5 SDRAM.

https://www.jedec.org/standards-

documents/docs/jesd79-5b

Kim, Y., Yang, W., & Mutlu, O. (2015). Ramulator: A

fast and extensible DRAM simulator. IEEE

Computer Architecture Letters, 15(1), 45-49.

https://doi.org/10.1109/LCA.2015.2414456

Li, S., & Jacob, B. (2019, September). Statistical DRAM

modeling. In Proceedings of the International

Symposium on Memory Systems (pp. 521-530).

https://doi.org/10.1145/3357526.3357576

Li, S., Verdejo, R. S., Radojković, P., & Jacob, B. (2019,

September). Rethinking cycle accurate DRAM

simulation. In Proceedings of the International

Symposium on Memory Systems (pp. 184-191).

https://doi.org/10.1145/3357526.3357539

Li, S., Yang, Z., Reddy, D., Srivastava, A., & Jacob, B.

(2020). DRAMsim3: A cycle-accurate, thermal-

capable DRAM simulator. IEEE Computer

Architecture Letters, 19(2), 106-109.

https://doi.org/10.1109/LCA.2020.2973991

Micron. (2017a). System power calculators.

https://www.micron.com/support/tools-and-

utilities/power-calc

https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc
https://www.micron.com/support/tools-and-utilities/power-calc

Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846

DOI: 10.3844/jcssp.2023.836.846

846

Micron (2017b). Tn-40-07: Calculating memory power

for DDR4 SDRAM. https://www.micron.com/-

/media/client/global/documents/products/technica

l-note/dram/tn4007_ddr4_power_calculation.pdf

Micron (2020). DDR5 SDRAM features. https://media-

www.micron.com/-

/media/client/global/documents/products/data-

sheet/dram/ddr5/ddr5_sdram_core.pdf

Mirosanlou, R., Guo, D., Hassan, M., & Pellizzoni, R.

(2020). Mcsim: An extensible dram memory

controller simulator. IEEE Computer Architecture

Letters, 19(2), 105-109.

https://doi.org/10.1109/LCA.2020.3008288

Rosenfeld, P., Cooper-Balis, E., & Jacob, B. (2011).

DRAMSim2: A cycle accurate memory system

simulator. IEEE Computer Architecture Letters,

10(1), 16-19. https://doi.org/10.1109/L-CA.2011.4

Steiner, L., Jung, M., Prado, F. S., Bykov, K., & Wehn,

N. (2020). DRAMSys4. 0: A fast and cycle-

accurate systemC/TLM-based DRAM simulator.

In Embedded Computer Systems: Architectures,

Modeling and Simulation: 20th International

Conference, SAMOS 2020, Samos, Greece, July 5-

9, 2020, Proceedings 20 (pp. 110-126). Springer

International Publishing.

https://doi.org/10.1007/978-3-030-60939-9_8

https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf
https://www.micron.com/-/media/client/global/documents/products/technical-note/dram/tn4007_ddr4_power_calculation.pdf

