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Abstract: Dynamic Random-Access Memory (DRAM) is a crucial component 

of modern computing systems and there exist a variety of DRAM standards. The 

variance in DRAM architecture calls for an extensible simulator to accommodate 

current and future DRAM standards. Moreover, as every researcher may not be 

an expert in programming, choosing an easier programming language to construct 

a simulator would reduce the efforts of a researcher who seeks to reuse/modify 

existing code to meet the demands of his/her work. Performance bottleneck is 

another challenge of cycle-accurate simulators; some researchers even suggest 

statistical modeling to achieve higher speed by sacrificing accuracy. We present 

DDRSHARP, a cycle-accurate DRAM simulator written entirely in C#. It 

provides simplified configuration and evaluation of different DRAM standards. 

It includes both the performance and power/energy models of DRAM. In order 

to improve the performance of DDRSHARP, we skipped infeasible iterations on 

queued requests, minimized the number of branch instructions, saved repetitive 

calculations for later use, and minimized code execution paths. Since our 

simulator is constructed using C# and the garbage collector consumes a big 

amount of CPU time, we worked on minimizing heap allocation of immutable 

objects such as strings. Our approach has enabled more than 1.8 times speedup in 

performance compared to contemporary simulators. 
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Introduction 

Dynamic Random Access Memory (DRAM) has 

become the primary choice of memory in modern 

computer systems. Improvement of DRAM standards and 

technology, and decreasing prices are the major reasons 

for its wide adoption. As computations are becoming 

data-intensive, there is also a drive for more and more fast 

and efficient memory. In order to satisfy these 

requirements, researchers use DRAM simulators to study 

the performance and energy consumption of new DRAM 

designs. There exist Several DRAM simulators 

(Alakarhu and Niittylahti, 2002; Binkert et al., 2011; 

Chatterjee et al., 2012; Healy and Hong, 2017; Kim et al., 

2015; Rosenfeld et al., 2011; Mirosanlou et al., 2020; 

Steiner et al., 2020) and most of these simulators are 

amalgamated with CPU simulators and majority of them 

are designed to be cycle accurate to ensure timing accuracy. 

Simulation performance has been the driving factor 

behind many simulators. Thus, most developers worked 

hard to outperform previously constructed simulators. 

Some of them even advocate the importance of sacrificing 

accuracy for speed. Li et al. (2019) criticize the 

importance of cycle-accurate simulation and proposed 

statistical DRAM modeling which sacrifices a 2% error 

for a 400 times speedup gain (Li and Jacob, 2019). 

However, this approach may not be applicable to 

situations where 100% accuracy is required. Hansson et al. 

(2014) proposed an event-based memory model and 

achieved 7 times the performance speed. However, they 

implemented a few DRAM timing parameters that they 

regard as most important and ignore to enforce the 

remaining timing parameters. They claim to have 

maintained the accuracy of the simulation. However, Li et al. 

(2019) compared the accuracy of this event-based 

memory model (Hansson et al., 2014) with a cycle-

accurate simulator, DRAMsim3 (Li et al., 2020). The 

study reveals, without enforcing all timing parameters, it 

is difficult to claim that such an approach would always 

provide correct simulation for all workloads. 
Besides the performance and accuracy of simulation, 

we should also consider simplicity, extensibility, 
scalability, and code productivity when designing a new 
simulator. A simulator model should be extensible enough 
to include both existing DRAM and future standards. For 
example, DRAMSim2 (Rosenfeld et al., 2011) supports a 
few DRAM standards (DDR2 and DDR3). Similarly, 
USIMM (Chatterjee et al., 2012) is limited to DDR3. 



Tesfamichael Gebregziabher Gebrehiwot et al. / Journal of Computer Science 2023, 19 (7): 836.846 

DOI: 10.3844/jcssp.2023.836.846 

 

837 

Ramulator (Kim et al., 2015), DRAMsys (Steiner et al., 
2020), and DRAMsim3 (Li et al., 2020) support 
DDR2/DDR3/DDR4 standards. Ramulator can also be 
extended to support many academic memory models. 

If an extensible simulator could not handle all future 

DRAM standards, a future researcher is forced to 

customize an existing simulator or design a new simulator 

from scratch. The time and effort needed to customize an 

existing software depends on the architecture of the 

software. Software components should be loosely coupled 

for a simplified customization process. 

We propose DDRSHARP, a cycle-accurate DRAM 

simulator that models both the performance and 

power/energy parameters of DRAM. We followed an 

object-oriented design methodology to decompose 

basic components of the memory system into 

minimally coupled objects. It enables run-time 

configuration of different DRAM specifications; 

avoids the hard-coding of the parameters of different 

DRAM standards to simplify the evaluation of various 

memory systems. Our contribution includes 1) a high-

performance DRAM simulator 2). Extensible simulator 

that can be configured to support many DRAM standards. 

We chose C# to construct the simulator to exploit the 

features of automatic memory management and minimize 

the chance of memory leaks. As compared to C/C++, C# 

helps you reduce programming errors by ensuring code 

safety, performing reference checking, performing automatic 

garbage collection, and ensuring code security by preventing 

buffer overflows. These features, however, come at a 

considerable performance penalty and could significantly 

degrade the speed of the simulator. 

Having studied the coding techniques of contemporary 

simulators, we applied some code optimization 

techniques in order to improve the performance of the 

simulation. We employed a smart iteration technique that 

skips unnecessary iterations on queued requests; that is all 

requests queued to a busy bank are skipped. We also 

reduced the number of branch instructions in the simulator 

to avoid the penalty of CPU's branch mispredictions. We 

pre-computed and saved some computations which are 

implemented within frequently called functions. We also 

worked on minimizing the path of code executions as 

much as possible. 

Since our simulator is constructed using C# and the 

Garbage Collector (GC) consumes a big amount of CPU 

time when activated, we worked on minimizing heap 

allocation of immutable objects such as strings. In order 

to prevent multiple allocations and avoid performance 

degradation, strings are allocated on the stack, and 

manipulation is done by directly accessing slices of the 

data; Sub-portion (s) of the data are not allocated on the 

heap. A combination of all these optimizations has 

enabled DDRShap to achieve at least 1.8 times speedup 

over existing simulators. 

DDRSHARP models both the CPU and the memory 

subsystem. The CPU models consist of the CPU core, 

ROB (reorder buffer), and the MSHR (miss status 

holding register). The memory subsystem models all 

DRAM components. Some of which are the channel, 

rank, bank group, and bank objects. DDRSHARP 

accepts both CPU and memory traces that are sent to 

the memory controller object by the CPU core or the 

memory system. DDRSHARP uses a memory 

controller which does not contain complex logic. It 

simply delegates basic functionalities to other 

dependencies; dependencies such as refresher, scheduler, 

queue manager and read/write mode selector. 

The queue manager keeps track of every read and 

every write request. If DDRSHARP is in read mode, the 

read queue is served otherwise the write queue is served. 

The transition from read mode to write mode or vice versa 

is performed by the Read/Write mode selector and is 

decided at every memory cycle as per chosen policy. 

According to the selected mode, the scheduler selects the 

best command to be issued from either the read queue or 

the write queue. The scheduler uses the scheduling policy, 

the timing constraints, and the DRAM state to pick a 

command to issue. 

DRAM Background 

DRAM is hierarchically organized into channels, 

ranks, bank groups, and banks. A channel is connected to 

one or more ranks; a rank is a 64-bit wide module that 

contains a set of DRAM chips. A DRAM is configured as 

4, 8, or 16. In 8 configurations, 8 physical chips 

each with a bit-width of 8 (8) are connected together 

as shown in Fig. 1. Other configurations include, 4 

configurations (16 chips) or 16 (4 chips). All ranks 

work independently. However, full parallelism is 

limited as all ranks connected to the same channel share 

the same data lines. 

Each chip contains several banks which are grouped 

into one or more bank groups. A typical DDR5 rank 

contains 32 banks. Fig. 2 shows the functional block 

diagram of DDR4 SDRAM; in this configuration, a total 

of 16 banks are grouped into 4 bank groups. 

 

 
 
Fig. 1: Memory hierarchy: 8 configuration 
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Fig. 2: DDR4 SDRAM functional block diagram 
 

 
 
Fig. 3: DRAM Bank structure 
 

 
 

Fig. 4: Simplified State Diagram of SDRAM (reproduced from 

JEDEC (2022)) 

 

In a typical DRAM configuration, a bank contains 32 

subarrays where each subarray is composed of 32 MATs 

(multiple cell matrices). Each MAT contains 262,144 

memory cells (512 rows and 512 columns. A memory cell is 

composed of an access transistor and a capacitor as shown in 

Fig. 3. The capacitor of the memory cell stores a single bit. 

The transistor serves as a switch that connects/disconnects 

the capacitor to/from the bit line. Each bit line is connected 

to a set of sense amplifiers (row buffer). Activating a word 

line enables access to all memory cells of a row; this copies 

the contents of a row to the row buffer. The row buffer keeps 

recently accessed rows. 

Subsequent read requests for data located on the same 

row are served from the row buffer. Otherwise, before any 

new read/write operation, an open bank must be closed 

before activating a new row; a bank is called open if it 

contains a row that is open in the row buffer. Closing a bank 

involves rewriting back the contents of the row buffer back 

to the target row. This restores the lost charges of the 

capacitors during the sensing process to the original level. 

Modeling DRAM 

Vendors provide data sheets (JEDEC, 2022) that contain 

the specifications of a given DRAM model. The design of 

the performance/power model of DRAM requires an 

understanding of these architectural, timing, and power 

parameters. The timing parameters are constraints that need 

to be satisfied before a command is allowed to be issued. 

Similarly, the power parameters determine the current 

needed to execute a DRAM command. In this section, we 

also discuss DRAM parameters with respect to 

performance/power model design. 

DRAM Commands and Memory States 

The memory states and the commands that dictate 

state transitions will be discussed in this section. The 

simplified state diagram shown in Fig. 4 shows is based 

on the default read/write burst length of 16 (BL16). 

However, DDR5 (JEDEC, 2022) provides a 32-bit burst 

read/write operation (BL32 mode) for 4 devices only. 

The DRAM could be, at any given time, in one of the valid 

memory states; it could be in a power down state, standby 

state, pre-charging, activating, refreshing, reading, or 

writing. DRAM enters power down mode when the Clock 

Enables signal (CKE), which enables output drivers and 

other components such as input buffers and internal 

clocks signals, is set to low. The PDE (power down entry) 

command sends the device to PDN (power down mode). 

With CKE set to low, a bank transitions from the active 

state to active power down; it could also transition to a 

precharge power down state from an idle. 

The memory leaves the power down state when a PDX 

command is issued. The bank may return to an idle state or 

active state depending on whether it contains an active row. 

As shown in Fig. 4, a bank can in an idle state directly 

transition to a refreshing state or activating state via ACT 

and REF commands respectively. When the CKE is set to 

low, it can also transition to a self-refresh state via SRE 

command; during this period the DRAM can perform self-

refreshes without the help of the memory controller and the 

processor. The memory exits a self-refresh state using the 

SRX command. 
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When the memory is in activating state, it can only 

transition to an active state after a period of time 

specified by RCD is elapsed. Once it is in an active 

state, however, it can transition to a reading state using 

the RD command; it can also transition to a writing 

state using the WR command. If RDA/WRA (RD/WR 

then auto precharge) command is issued, the bank 

transitions automatically to a precharging state after a 

successful read/write; it then returns to an idle state at 

the end of the PRE (precharge) command. 

Address bits that identify the bank and row to be 

accessed are registered along with the ACT command 

JEDEC (2021). The starting column location for the burst 

operation is also determined by the address bits 

registered along with the RD or WR command. 

Moreover, these bits determine whether the auto 

precharge command is to be issued after a successful 

RD/WR command. 

When decoding a read/write request, a single 

memory access can trigger the issuance of one or more 

additional DRAM commands depending on the 

device's current state. For example, a read request can 

be translated to RD command if the row to be accessed 

is already active. It could also be translated into a 

sequence of ACT and RD commands if the bank is in 

an idle state. However, if a different row is open, a 

sequence of PRE, ACT, and RD commands are executed. 

Performance Model 

Understanding the timing specification is crucial in 

designing the performance model of DRAM as it defines 

the latency of every DRAM command that is associated 

with any read/write memory request. A brief description 

of key timing parameters is shown in Table 1. 

Before any row activation (issuing ACT command), 

the rank checks that no more than four activations can be 

performed within the time frame specified by FAW; the 

request for activation during a FAW window is denied if four 

activations are already performed. The rank also checks if the 

time gap between any two consecutive activations obeys the 

RRD timing constraint. On the other hand, the activation gap 

between two activations within a bank is limited by the RC 

time constraint. Usually, RRD is shorter than RC. This 

parameter is checked at the rank to keep track of the 

activations of all banks within the rank. 

The read process requires moving column bits into 

the bus. First, a row that contains the data is activated 

using ACT followed by data sense during which the 

contents of the row are copied to the row buffer. The 

time between the issuance of the ACT command and 

the availability of data on the row buffer is specified by 

the timing parameter RCD. 

The time needed to make the first bit available on the 

bus after the data is copied to the row buffer is specified 

by the CAS/CL parameter. The CWD parameter defines 

the same constraint for a write command. The CCD 

parameter defines the time gap between any two 

consecutive column accesses for both read and write 

operations. The maximum number of column accesses is 

limited by the burst length of the device. The time gap 

between the end of a write burst and the start of a read 

operation is specified by the WTR parameter. 

A READ command, as shown in Fig. 5 uses the column 

address and bank/group address to copy the data to the DQ 

(data) pins. This operation requires a time of CL (column 

latency) cycles. For the 16-bit read burst operation (BL16) 

shown in Fig. 5, Dn (0, D1, D2,...D13, D14, D15) represents the 

data-out from column n. the figure shows the DES (Device 

DESelect, CS# false) for the purpose of simplicity. 

As charges stored in capacitors may leak or decrease 

due to other reasons, the DRAM needs to be periodically 

refreshed at specific time intervals. The task of refreshing 

a memory involves reading and rewriting the contents of 

a memory cell. The REFI parameter specifies the interval 

between two refresh commands; a time specified by the 

RFC parameter specifies the time needed to complete the 

task of refreshing memory cells. Before a refresh 

operation starts, open banks are closed using the PRE 

command. This operation needs a time equivalent to RP 

(row precharge). 

 

Table 1. Description of key timing parameters (reproduced from JEDEC (2022)) 

Parameter  Explanation 

FAW Four activation window time limit between the first and fourth activation of any four consecutive activation 

RCD Row to column delay time needed to move data from DRAM cells (row) to the row buffer 

RAS Row access strobe minimum time gap between activate command and precharge command 

RP Row precharge time needed to close/precharge a bank for next-row accesses 

RC Row cycle time gap between two-row activation (same bank, different rows) 

CCD Column-to-column delay time needed for column read; bursts are used for multiple column reads 

CAS Column access strobe time between issuance of column access command and availability of the first bit 

RFC Refresh cycle time gap between the refresh command and the next command 

WTR Write to read time between the end of write and the start of a read command 

CWD Column write delay time between issuance of the write command and placement of data on the bus 

REFI Refresh interval time interval between refresh commands 

RRD Row-to-row delay time interval between activities that are not in the same bank 
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Fig. 5: READ burst operation (BL16) 
 

During a refresh or any read/write operation, the 

minimum time gap between ACT and PRE commands 

should not be violated. This gap is specified by the RAS (row 

access strobe) timing parameter. In DRAM devices that 

contain more than one bank group, some timing parameters 

have both a longer and shorter version. For example, CCD is 

defined as CCDL (long) and CCDS (short); RRDL/RRDS and 

WTRL/WTRS are also timing parameters with 2 versions. 

The longer version specifies the duration between consecutive 

commands which are executed on the same bank group; 

otherwise, the timing is determined by the shortest version. 

Power Model 

We use both the power parameters and timing 

parameters of a given memory to design the power 

model of DRAM. We employ Micron (2017b) power 

calculator to determine the maximum power 

consumption for basic DRAM operations and the 

background power when DRAM is in standby or 

power-down mode. Table 2 describes basic DRAM 

power parameters. If the memory is in power-down 

mode, the active current and precharge current are 

IDD3P and IDD2P respectively. Otherwise, IDD2N and 

IDD3N are background currents. 

 
Table 2: Description of key current parameters (reproduced 

from Micron (2020)) 

Current Explanation 

IDD0 Average activate-to-precharge current 

IDD2N Precharge standby current 

IDD2P Precharge power-down current 

IDD3N Active standby current 

IDD3P Active power-down current 

IDD4R Burst read current 

IDD4W Burst writes current 

IDD5R Distributed refresh current (1X REF) 

For example, the current due to activate command 

(over a period of tRC) is calculated by subtracting 

background currents; IDD3N (over a period of tRAS) and 

IDD2N (over a period of tRC-tRAS) as shown in Eq. 1. 

Similarly, for RD, WR, and REF commands, IDD3N is 

deducted from IDD4R, IDD4W, and IDD5, respectively. List 

of all equations used in our power model: 

 

 3 2

0

N RAS N RC RAS

ACT DD

IDD t IDD t t
I I

tRC

 
   (1) 

 

DDRSHARP 

DDRSHARP, which is implemented in C#, models 

both the performance and power of DRAM devices. It is 

composed of two projects; the simulation library and the 

User Interface (UI). The UI component enables the user 

to select and set up the parameter of a DRAM, CPU, or 

Memory Controller. Configuration files can be added to a 

folder so as to avoid the laborious hard coding of different 

configurations of many standards. At the core of the 

simulation library is the simulator object which is 

responsible for the construction of the Memory System 

and the CPU core. As an input, DDRSHARP accepts 

DRAM trace as well as cache-filtered CPU trace. The 

implementation of the trace reader and address translator 

(address mapping) is injected into the Simulator object. 

DRAM traces are managed by the Memory System while 

the Core object of the CPU takes the same responsibility 

of fetching and dispatching of cache filtered traces to the 

memory controller. Once a trace record is decoded into a 

valid memory request, a delegate function that will be 

executed upon successful completion of the request is 

attached to it. Fig. 6 shows basic DDRSHARP components. 

For simplicity and maintainability, the memory 

controller does not contain complex logic. Key 
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functionalities such as scheduling, refreshing, queuing 

system, and read/write mode switching are not 

implemented by the controller. They are implemented by 

dependencies that are injected into the memory controller. 

In case the user fails to select a scheduling policy or any 

other option, DDRSHARP implements default settings. 

At every cycle, the memory controller delegates the task 

of scheduling, refreshing, read mode, or write mode 

switching to the injected dependencies. If a refresher 

determines a REF command should be issued, the REF 

command is given priority over other commands. 

Otherwise, the read/write mode selector decides if the 

DRAM should be in read mode or write mode. If the 

simulator is in read mode, the scheduler selects the best 

request from the read queue; else, the best request is 

selected from the write queue. The criteria for selecting 

the best request is determined by the implemented 

scheduling policy. If the selected request fails to meet the 

timing constraints or if the device, in its current state, is 

not ready for this request, the next best is selected. Once 

the best request is selected and the state of the target bank 

is active, the active row is compared with the row address 

of the request. If they are equal (row hit), the RD or WR 

command is issued based on the request type. Otherwise, 

if a row conflict happens, a PRE command is issued to 

close the bank and the request remains in the queue. 

However, if the target bank is idle (already closed bank), 

the ACT command is issued to activate the row address of 

the request and the request remains in the queue. A request 

remains in a queue until an RD/RDA or WR/WRA 

command associated with that request is issued. 

Enforcing Timing Constraints 

DDRSHARP updates the state of the target bank 

and computes the minimum time the system should 

wait before transitioning to the next state. When a 

command is successfully issued, the state of the bank 

is updated to one of the valid states shown in Fig. 4. A 

bank object maintains four variables; the NextRD, 

NextWR, NextACT, and NextPRE variables store the 

minimum amount of time that the bank should wait 

before issuing an RD, WR, ACT or a PRE command. 

Similarly, a countdown variable holds the number of 

cycles required before the state of the bank can 

transition to a state specified by the NextSate variable. 

In other words, it holds the time needed for the issued 

command to complete. At every cycle, the value of the 

countdown variable is decremented. When the value of 

the countdown reaches zero, the state of the bank is 

changed to the next valid state. 
Statistical data for every issued command is collected 

by the bank, rank, and channel objects. Every command is 

implemented differently on the Channel, Rank, and 

BankGroup classes. Every memory component follows its 

own implementation as per DRAM specification. 

 

 
Fig. 6: DDRSHARP components 

 

 

 

Fig. 7: Conceptual flowchart showing how timing constraints 

are updated. This does not reflect the actual 

implementation 

 

For example, before the executing ACT command, the 

activate function has to pass several layers of validation 

checks. First, the bank must be idle; secondly, the rank 

should confirm the time constraint specified by the FAW 

parameter is obeyed; the rank also checks if the RRDS 

constraint is fulfilled. The bank group that contains the bank 

also validates if the RRDL constraint is not violated. Finally, 

the bank itself should check if the Row Cycle (RC) time limit 

is not broken. Figure 7 provides a conceptual overview. 

As DDRSHARP follows an objected oriented design 

methodology, the channel, the rank, the bank groups, and 

the bank are designed to be separate objects. Each object 

manages its own state and timing constraints 

independently. Hence, once a scheduler selects a 

command, the command needs to be propagated from the 

channel of the memory controller all the way to the target 

bank. The propagation of command execution through the 

channel, rank, bank group, and bank are described below: 

 

1. The scheduler selects a request to be issued and calls 

a method on the memory controller which in turn 

calls an appropriate method on the channel. The 

called function in the channel iterates through all of 
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its ranks and calls a proper function on the target rank 

(the rank that contains the address of the request) and 

its siblings (all other ranks that do not match the 

requested address)  

2. The target rank and sibling ranks update their time 

constraints differently as per DRAM specifications. 

Moreover, the target rank decodes the address of the 

request and calls the appropriate method on the target 

bank-group object. The target bank group object, in 

turn, calls a function on the target bank  

3. Upon completion of the read/write task, the delegate 

function attached to the request is executed to notify 

the CPU (for CPU traces) or the memory system (for 

DRAM traces) 
 

Computing Power Consumption 

The power and energy consumption are calculated 

using collected data and power parameters of the DRAM. 

Some of the power equations that we used, based on the 

Micron power calculator (Micron, 2017b) to estimate the 

power consumption of read, write, activate, or refresh 

operations are shown below: 
 

 4 3RD DD R DD N DDP I I V RDCP    (2) 

 
where: 
 
 RDCP is the percent of read cycles  
 

 4 3WR IDD W IDD N DDP I I V WRCP     (3) 

 
where: 
 
 WRCP is the percent of write cycles 
 

 23
0 .

N RC RASN RAS
ACT DD

RC RC

IDD t tIDD t
P IDD V

t t


  


 (4) 

 

 5 3
RFC

REF IDD IDD N DD

REFI

t
P I I V

t
     (5) 

 

At any moment in time, the memory can enter a 

power-down mode by setting the CKE to low. During this 

period of time, the current that causes power dissipation 

is IDD2P if all banks are closed. If there exists a single 

bank that is open, however, the power consumption is due 

to IDD3P, the active standby current. Equations 6-7 show 

the power-down background power: 
 

2PRE DD P DDPDN I V PPC    (6) 
 
where: 
 
 PDNPRE is the precharge power in down mode 

 PPC is the percent of precharge cycles in down mode 
 

3ACT DD P DDPDN I V PAC    (7) 

where: 
 

 PDNACT is the activation power in down mode 

 PAC is the percent of active cycles in down mode 
 

When the CKE is high, the memory to standby mode 

and the background power consumption is by IDD2N if all 

banks are closed and IDD3N otherwise: 
 

2PRE IDD N DDPSTBY I V SPC    (8) 

 
where: 
 

 PSTBYPRE is the precharge power in standby mode 

 SPC is the percent of the precharge cycle in standby 

mode 
 

3ACT DD N DDPSTBY I V SAC    (9) 

 
where: 

 

 PSTBYACT is the active power in standby mode 

 SAC is the percent of active cycle in standby mode 

 

The total power is the sum of all the aforementioned 

consumptions plus I/O power. The I/O power, which 

depends on the density and form factor of the system, 

includes the output driver or ODT power, the power needed 

to drive the bus, and the power consumed terminating a write 

operation. It also includes the power used to terminate a 

write/read operation to/from another rank. 

Code Optimization 

DDRSHARP is constructed using managed code 

namely, C#. We chose C# to delegate the responsibility of 

garbage collection, code safety, reference checking, and 

code security. The GC, garbage collector, however, 

consumes a big portion of CPU time. To compensate for 

the performance penalty that is brought by GC and other 

features, we followed a profile-guided optimization 

technique to pinpoint key code blocks that contribute to a 

very high-performance bottleneck. The top 4 sources of 

latency and the optimization technique that we 

implemented are listed below. 

Zero copying: Sometimes, operation on some portion of 

an object triggers the creation of a new temporary object (s). 

A good example is a string object. In C# strings are 

immutable; code blocks that allocate and manipulate strings 

will end up having extra string object (s) allocated on the 

heap which puts an extra burden on the garbage collector. 

We used a stack-allocated reference window to manipulate 

immutable objects; it allows us to work on slices of the data 

without copying. Moreover, Span¡char¿ is allocated on the 

stack, and values are deleted by default when the function 

goes out of scope; this relieves the garbage collector. 
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Pre-computation: Whenever a command is issued, 

timing constraints are updated; some simulators 

repeatedly perform unnecessary computations. For 

example, after issuing an RD command, USIM 

(Chatterjee et al., 2012) updates the time constraint for 

the next write as Cycle + TCAS + TBL + TRTRS -TCWL. 

However, except for the Cycle variable which is 

incremented at every cycle, the sum of constant values 

(TCAS + TBL + TRTRS - TCWD) should have been calculated 

during initialization and saved for later use. 

DDRSHARP avoids repetitive computation by pre-

computing the values of these calculations during the 

initialization process. 

Minimum Iterations: Iterating on queued requests at 

every cycle takes a large chunk of the simulation time. At 

every memory cycle, most simulators (Li et al., 2020; 

Kim et al., 2015) iterate through every request in the queue 

in order to find the best request that satisfies the scheduling 

policy; all requests are visited even if the target bank is 

busy. For example, USIM (Chatterjee et al., 2012) 

performs a double iteration on the request queue; one to 

mark the request obeys timing constraints and another to 

select the command that is going to be issued. DDRSHARP 

skips iterations if the target bank is busy; that is, a request 

is visited and decoded if and only if the target bank is not 

busy doing some other activity. We employed a bank-based 

queueing system that allows us to skip all requests queued 

to a busy bank at once. 

Minimum Branches: If a branch instruction is 

mispredicted by the CPU, the performance penalty will 

increase and the cumulative penalty of every cycle 

would magnify the simulation latency. For example, 

Listing 1 is a code fragment from the Controller class 

of DRAMsim3 (Li et al., 2020), reportedly the fastest 

cycle-accurate simulator. We can see that the Isvalid 

method is called twice inside of an if-block. Moreover, 

the implementation of the GetCommandToIssue 

function in line 10 also calls the IsValid method inside 

an if-block. It also calls another function named 

GetFirstReadyInQueue which calls the IsValid method 

inside an if-block by iterating on each command in the 

queue. Even though the implementation of 

DDRSHARP differs from most contemporary 

simulators, we worked on minimizing branches as 

much as possible; we removed many and allowed only 

those which we couldn't. 

Evaluation 

In this section, we validate the correctness of the 

simulator by testing if the synchronous 

communications between the memory controller and 

DRAM obey the rules of DRAM standards. We also 

compare the performance of DDRSHARP with other 

DRAM simulators.  

 
 
Listing 1: A code snippet from DRAMsim3 simulator 

 

Validation and Verification 

Every memory command that is issued by DDRSHARP 

must obey the timing constraints and state transition rules of 

DRAM standards. To evaluate its accuracy, we compared the 

simulation results of DDRSHARP with that of Ramulator 

(Kim et al., 2015). In validating our memory model, we used 

the same DRAM device (DDR3 4Gb 8) for both simulators. 

We used a single-channel organization with one rank. We 

also employed the same address mapping and applied the 

same policy for paging and command scheduling. For each 

simulator, we used a sequence of 403.gcc workload of the 

CPU2006 benchmark as an input and we run both simulators 

for 20 million CPU cycles. We recorded the time-stamp of 

every command that is issued to respective banks and then 

compared the timestamped records of our simulator with that 

of the Ramulator.  

The results were found to be identical; the sequence of 

commands, the execution cycle of every command, and the 

channel, rank, and bank where the commands were executed 

are found to be the same. We have observed that 

DDRSHARP obeys the timing constraints and state 

transition rules of standard DRAM. Its memory controller, 

channel, rank, and bank state machines acted according to 

DRAM specifications. 

Performance Comparison with Existing DRAM 
Simulators 

We have selected DRAMsim3 (Li et al., 2020) and 

Ramulator (Kim et al., 2015), among those shown in 

Table 3, to evaluate the performance of DDRSHARP; we 

compared the performance of each simulator using stream 

trace and random trace. Each trace contains 25 million 

read/write requests. The number of generated read requests 

is double the number of write requests. Each trace is 

formatted to match the trace reader of each simulator. Stream 

requests have higher row-buffer hit probability as they access 

continuous memory blocks compared to random requests 

which access random memory locations. 
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Table 3: Description of current DRAM simulators 

The author details Approach Limitation 

Li and Jacob (2019) Statistical DRAM modeling Lacks accuracy 

 • uses synthetic traces to train the model • Unusable in situations where100% 

 • Sacrifices accuracy for speed which makes accuracy is required 

Feldmann et al. (2020) Performance-optimized DRAM model lacks accuracy 

 • Uses lookup tables for latency estimation • Unusable in situations where  

 • Uses GPU to accelerate offline trace analysis  100% accuracy is required 

 using neural network 

  allows 5% error in accuracy Sacrifices speed for code simplicity 

Mirosanlou et al. (2020) An extensible memory controller • The generalization feature of  

 • Provides a simple interface that minimizes effects on the speed of simulation

  

 LOC (lines-of-code) 

 • On average, it reduces the LOC by 11% 

Kim et al. (2015) Ramulator: Cycle-accurate open-source simulator Speed 

 • Supports many DRAM models 

 • Provides support for extensibility 

 • Last updated on May 11, 2021 

Li et al. (2020) DRAMsim3: Cycle-accurate open-source simulator 

 • Supports many DRAM models 

 • Last updated on Apr 5, 2021 Speed 

 

Materials and Methods 

For the experiment, we have used the same 

configuration; DDR3 4Gb 8 1600 K memory model, 

same gage policy (open gape policy), same refresh policy 

(rank refresh) and same scheduling policy that is First 

Ready, First Come First Served (FRFCS). 

Results and Discussion 

Fig. 8 shows the experimental results for the input of 

random traces. DDRSHARP is 1.88 times faster than 

DRAMsim3 and 2.84 times faster than Ramulator. As 

illustrated in Fig. 9, experimental results for a trace of 

stream requests show that DDRSHARP is more than 

twice (2.88) faster than Ramulator and 2.1 times faster 

than DRAMsim3. 
 

 
 
Fig. 8: Comparing the simulation time of 25 million random 

requests 

 

 

Fig. 9: Comparing simulation time of 25 million streams of requests 

 

Conclusion 

In this study, we have introduced DDRSHARP, a 

flexible and extensible memory simulator that supports 

a wide range of commercial DRAM standards. 

Compared to contemporary open-source simulators, 

DDRSHARP is at least 1.88 times faster for a trace of 

random requests and 2.1 times faster for a trace of 

stream requests. 

DDRSHARP is developed using C#. Although C# 

code runs slower than native codes such as C/C++, we 

implemented code optimization techniques to speed it 

up. We minimized the burden of the garbage collector 

by allocating some data on the stack rather than the 

heap, minimized the number of branches (if blocks) in 

source code, precomputed repetitive calculations and 
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saved them for later use, skipped unnecessary iterations 

on requests queued to a busy bank. These optimization 

techniques have enabled better performance making 

DDRSHARP faster than contemporary cycle-accurate 

simulators which are written in C/C++. 

The extensibility and performance of DRSHARP 

would help DRAM researchers achieve their goals. It 

reduces the efforts of a researcher who seeks to 

reuse/modify existing code to meet the demands of 

his/her work; especially for those who are not 

comfortable with pointers of C/C++ and would like to 

reduce programming errors and ensure code safety. 
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