

 © 2023 Bruno Bevilaqua and Marco Aurelio Spohn. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

Self-Managed Federation of MQTT Brokers with Dynamic

Topology Control

Bruno Bevilaqua and Marco Aurélio Spohn

Department of Computer Science, Federal University of Fronteira Sul, Brazil

Article history

Received: 17-03-2023

Revised: 30-05-2023

Accepted: 07-08-2023

Corresponding Author:

Marco Aurélio Spohn

Department of Computer

Science, Federal University of

Fronteira Sul, Brazil
Email: marco.spohn@uffs.edu.br

Abstract: The Message Queuing Telemetry Transport (MQTT) protocol is

most used in Internet of Things (IoT) applications. The protocol implements

the Publish/Subscribe (P/S) communication model. Publishers are entities

providing data to a server (broker), and subscribers are those showing interest

in such data. The standard MQTT scenario relies on a single broker, a

potential bottleneck, and a single point of failure. The best way to scale

MQTT systems is through horizontal approaches like clustering and

federation. In particular, this study focuses on improving the capabilities of

a self-managed federation of brokers. We present the first solution to address

the dynamic management of an overlay network for the federation of

autonomous brokers. The system provides the primary mechanisms for

building and self-healing the federation network. We develop a new variant

for the original federation protocol integrating the dynamic topology

management. We present a case study as a proof of concept, showing that all

designed features work as expected.

Keywords: Publish/Subscribe Communication, MQTT, Federation of

MQTT Brokers, Network Topology Management

Introduction

The term Internet of Things (IoT) often refers to

scenarios where network, connectivity, and computing

capacity extend to objects, sensors, and everyday items

not considered computers, allowing these devices to

manage, exchange, and consume data with minimal

human intervention (Al-Fuqaha et al., 2015). This

technology is available in a broad spectrum of networked

products, systems, and sensors, which leverage advances

in computing power, electronics miniaturization, and

network interconnections to deliver new features that

were impossible a few years ago (Rose et al., 2015).

These technologies’ application fields are diverse

and increasingly expand to all areas of day-to-day life.

The most prominent application areas include, for

example, homes or buildings, which incorporate systems

for monitoring electricity, gas, or water expenditures and

even security systems for the environment in general.

The health area has a high application in tracking

patients’ chronic diseases through sensors, usually part

of wearable devices. One can also find IoT-based

intelligent city projects focused on vehicle traffic

control, lighting, and parking space control, among

others (Wortmann and Fluchter, 2015).

The development of IoT-oriented applications brings

the need to employ efficient communication protocols

since the capacity of connected devices is often scarce

both in terms of processing power and network

availability. Therefore, asynchronous approaches such as

the Message Queuing Telemetry Transport (MQTT)

protocol (MQTT, 2023), which makes use of the

Publish/Subscribe (P/S) mechanism, where publishing

devices send data to a server known as a broker, which in

turn distributes received messages to devices interested in

receiving these messages (consumers), end up becoming

critical parts in producing these applications.

As application demand grows, the need arises to scale

the infrastructure. In its most straightforward

implementation, MQTT uses only one broker; hence,

ensuring high performance and availability become

constraints since there is a single point for failures. To

achieve large scale and availability, techniques such as

clustering, where a load balancer works to direct

requests to a set of servers, are typical. Emerging as an

option for clustering, the federation of brokers, initially

proposed by Spohn (2020), aims to be a self-organizing

model where subscribers in different brokers

interconnect employing meshes so that it is possible to

do the routing of messages from publishers.

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1399

There are two recent new federation variants, the first

conceived by Spohn (2021) and the second by Ribas and

Spohn (2022). These solutions introduce new strategies to

circumvent requirements imposed by the original

approach, including an entity, the federator, that

cooperates with the broker and provides all the necessary

mechanisms for the self-managed federation without

requiring changes in the broker.

So far, federation solutions have been built on static

virtual topologies. It is possible to define any topology;

however, it does not allow changes once specified,

besides not handling connectivity failures from

federators. This study aims to present the first solution for

the dynamic treatment of the federation virtual topology.

The topology management service is treated separately as

a microservice to provide a scalable solution, and its

coupling to the federator is minimally intrusive.

The current approach for the self-managed federation

of autonomous brokers has the potential to assist its

introduction to other P/S protocols, not only MQTT. The

main potential federation advantage is its increased

reliability when compared to clustering. Depending on the

application/client, it can still be functional, even when

facing node and communication failures. To this end, we

can summarize our main contributions as follows:

• Self-managed virtual federation topology: It works as

a microservice and can address the properties of any

virtual network topology. The service provides

mechanisms for creating and maintaining the virtual

topology, providing means for detecting and

correcting malfunctioning nodes and connections

• New federation variant: We changed the original

protocol to adhere to the topology service with

minimal modifications, keeping the protocol’s essence

unmodified

Next, we present the background needed to understand

the fundamentals behind our main contribution better.

After that, we offer a glimpse into the related work. Then,

we present our solution for the federation of MQTT

brokers with the support of dynamic topology. Finally, we

give our last thoughts on the present work.

Background

MQTT Protocol

Designed to be an extremely lightweight and easy-

to-implement message transport protocol, Message

Queuing Telemetry Transport (MQTT) is ideal for IoT

applications (MQTT, 2023).

It uses the Publish/Subscribe (P/S) mechanism, in

which a publisher member sends messages to a specific

topic. Another member, called the consumer, indicates its

intention to receive messages from this topic when it

subscribes to the same topic (Soni and Makwana, 2017).

Figure 1, publishers and subscribers are unaware of each

other. They use a broker mediator, which acts as a bridge

connecting both. Its function is to filter the incoming

messages, organize them into topics, and distribute them to

their subscribers (Soni and Makwana, 2017).

The MQTT protocol provides three Quality-of-

Service (QoS) levels, which act as an arrangement

between the two parties (producers and consumers)

concerning message delivery guarantees. The levels are:

• QoS 0: Sends every message at most once, with no

delivery guarantee (i.e., best effort). It is also known

as “At most once”

• QoS 1: Sends every message at least once, and

duplicate deliveries are possible. It is also known as

“At least once”

• QoS 2: Known as Exactly Once, uses a four-way

handshake to send a message exactly once

When data traffic between publishers and subscribers

is noteworthy and increasing, a simple deployment

containing one broker may configure a bottleneck besides

being a single point of failure. Vertical and horizontal

scalability can ensure system operation within the

minimum quality standards.

Vertical scalability resorts to increasing a server’s

computing resources, allowing more simultaneous clients.

In addition to boosting machine resources, multiple

brokers can be started on the same machine to increase

message transmission flow.
This scalability does not provide high availability

because it relies on a single machine, still setting itself up
as a single point of failure. To overcome such limitations,
there is horizontal scalability. This strategy has as its
central rationale spreading client demand over multiple
machines. Its main advantage is elastic availability since
it no longer has a single point of failure.

To scale MQTT horizontally, the concept known as
clustering is an option (Fig. 2). A load balancer works as
an access point for brokers and is responsible for choosing
which server will handle new clients. Such a decision
results from applying metrics to distribute the demand
evenly among the servers.

Fig. 1: MQTT protocol

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1400

Fig. 2: MQTT cluster

In cluster formation, brokers have to communicate

with each other to keep any crucial data synchronization.

Publishers and subscribers may connect to different

brokers, requiring the proper routing of topic messages

between brokers. Despite being more effective than

vertical scaling, clustering can present two main areas for

improvement: Dependence on the load balancer and a

possible stutter in communication between brokers.

Spohn (2021) proposed a self-organizing federation

for brokers connecting through an overlay network,

building meshes for linking subscribers. Creating meshes

starts when the first subscriber for a particular topic

connects to a federated broker. If there is yet to be a mesh

for this topic, the broker advertises itself as the core for

the new mesh. Core announcements are broadcast

throughout the overlay network so that all federated

brokers learn how to reach the core. This process entitles

keeping the necessary routing information (i.e., next hop

and distance to the core) and compliance with the

required mesh redundancy (i.e., multiple paths to the

core, if the overlay topology allows that). In case

numerous nodes simultaneously announce themselves as

cores, the process converges by electing the core with

the smallest (or largest) ID.

While there is just the core itself, there has yet to be a

proper mesh. The mesh starts building when new

subscribers for the same topic connect to other nodes.

Joining the mesh happens by sending a mesh membership

toward the core. The membership message travels toward

the core by making intermediate nodes mesh members or

until it reaches a mesh member. Figure 3 depicts an

example of the mesh creation process: A subscriber at

node one makes it advertise itself as the core for the

related topic; in a second moment, a subscriber at node

five requires it to join the corresponding topic mesh.

As for the routing of messages sent by publishers,

there are two possible cases. In the first one, the

publisher’s broker is in the mesh, resulting in the broker

sending the message to all neighboring mesh members. In

the second case, the publisher’s broker sends the message

to the next hop toward the related topic’s core. Upon

reaching a mesh member, the message spreads throughout

mesh member nodes, as for the first case. Nodes avoid

looping in the mesh by keeping a local cache for recently

forwarded messages. Figure 4 depicts an example of the

routing process in the federation: In the first situation, a

client publishes at node four, which is a mesh member,

making routing straightforward through the mesh; in the

second case, a client starts publishing from a node outside

the mesh (node zero), which requires first routing the

publications towards the core (node one).

Fig. 3: Mesh creation process (Spohn, 2020)

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1401

Fig. 4: Message routing process (Spohn, 2020)

The advantages of adopting the autonomous

federation, according to the author, are:

• There is no single point of failure: Clients can choose

to join any federated brokers

• Load balancing: There is always the possibility to

choose from a set of available brokers and get what

one needs

• Exploration of virtualized topologies or network

capabilities: The complete virtualized deployment is

achievable through agents instantiated in virtual

machines or containers

System Architecture

The architecture of a system defines its structure and

behavior, allowing systems to evolve while supplying a

particular level of service throughout their lifecycle. In

software engineering, architecture is concerned with

providing a bridge between system functionality and the

quality attribute requirements that the system must meet

(Alshuqayran et al., 2016).

The monolithic architecture standard is distinguished

as an application model in which the modules cannot

execute independently. Although more typical, as an

application grows, it is more difficult to maintain and

evolve due to its complexity. Tracking bugs requires long

reads through the code base, and any external dependency

makes it a cumbersome task when adding or updating

libraries (Dragoni et al., 2017). For large projects,

rebooting may result in considerable downtime, making

project development, testing, and maintenance difficult.

In addition, monolithic applications present a

technological lock-in for developers, who must use the

same programming language and structures defined at the

beginning of development (Dragoni et al., 2017).

As the monoliths grow, the demand for machine

resources tends to grow together, thus requiring the

application of scalable solutions that often become

unfeasible due to the high complexity of the software.

Microservices were first introduced in 2011 at a

software architecture workshop to describe participants'

common ideas on architectural patterns. More recently,

leading software consulting and product design firms have

discovered that the microservices approach is a compelling

architecture that enables teams and organizations to be

more productive overall and often create more successful

software products (Alshuqayran et al., 2016). Companies

like Amazon, Netflix, eBay, and LinkedIn have used this

architecture to deploy their extensive services through

small components.

Figure 5 illustrates, compared to the monolithic

architecture, microservices must be independent

components conceptually deployed in isolation and

equipped with dedicated memory persistence tools (e.g.,

databases), resulting in a distributed application. As all

components of a microservices architecture are

microservices, their differential derives from the

composition and coordination of their components

through messages (Dragoni et al., 2017).

Resulting from a combination of Service-Oriented

Computing (SOC) and Service-Oriented Architectures

(SOA), the microservices architecture was developed by

abstracting complexity levels essential for its

predecessors so that developers can focus only on

programming simple and effective systems.

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1402

Fig. 5: Monolithic architecture versus microservices architecture

According to Alshuqayran et al. (2016); Dragoni et al.

(2017), the microservice architecture increases the team's

productivity since developers do not need to act on all

system parts, allowing each team to focus only on specific

modules. The application of automated tests and

monitoring and tracking failures can also have their

processes streamlined. The fact that the environments are

isolated and independent enables continuous integrations

and deliveries, making the system as a whole more

reliable, in addition to making it highly scalable and easy

to install and maintain. Using communication via

messages, developers can utilize multiple technologies,

employing the ones that best suit each microservice.

Adopting this architecture, on the other hand, maybe a

complex task. Decomposing a monolithic application and

identifying parts that can be modularized, especially in

applications with legacy parts, can be a significant challenge,

as it is the definition of communication standards.

Communicating parts of a monolithic system strictly

can happen through database relationships. In contrast, in

the microservices architecture, where all modules have

their database, it is necessary to connect them by operating

appropriate communication standards that can be classified

as synchronous and asynchronous (Aksakalli et al., 2021).

Using models such as REST based on HTTP, in the

synchronous approach, when a client requests the

service, it blocks the client until it gets a reply. This

model requires that the service be active; otherwise, if

the client does not receive a response, the same should

be notified (Aksakalli et al., 2021).

In asynchronous communication, message queues are

usually the option. In this model, based on event-oriented

architecture, the client sends a message that can be a

request and only blocks its processing once it receives the

answer because, most of the time, the client does not need

this response. There are still cases in which both methods

coexist, resulting in a hybrid model.

Although it is easy to deploy an application in the

monolithic approach, deploying systems based on the

microservices architecture can become a challenge,

especially when thousands of modules make up a system,

not to mention cases where the same service is scaled

numerous times due to high demand.

Cloud computing emerges as an ally to

microservices, enabling it to scale applications to virtual

servers as it can dynamically adjust its computing

resources (Aksakalli et al., 2021). Platforms such as

Amazon Web Services, Microsoft Azure, and Google

Cloud provide their resources by charging on demand,

allowing the infrastructure to scale dynamically along

with the growth of the application, thus avoiding initial

costs with proprietary infrastructures and data centers.

According to Aksakalli et al. (2021), there are

numerous deployment patterns, among which there is a

service instance per Virtual Machine (VM), where each

service is packaged as a VM image, allowing the creation

of isolated environments. Another pattern concerns

service instances per container. Containers are

virtualization mechanisms that run at the operating system

level and can be limited to consuming only selected

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1403

resources. Each server, whether physical or virtual, can

run numerous containers. This model also allows

orchestrators like Kubernetes or Docker Swarm to

automate containerized applications' deployment,

improving scalability and management.

Related Works

The original version (Spohn, 2020) for the Federation

of Autonomous Brokers requires changing the MQTT

broker. Intending to overcome this need, (Spohn, 2021)

proposed a new federation model introducing the entity

concept of federator.

In this model, an application (i.e., federator)

leveraging the P/S communication model works with a

broker to build and maintain topic meshes. Making the

changes directly in the broker could result in better

performance; however, with the possibility of virtualizing

computing and communication resources, deploying

brokers in containers connecting with each federation

would be a strategy to attain the performance needs.

Figure 6 depicts the two main layers in the federation

application. The Pub_Fed layer is responsible for publishing

control topic messages and routing messages to neighboring

brokers. In contrast, the Sub_Fed layer is responsible for

receiving and processing incoming publications of

neighboring brokers. The topic control messages are:

• CORE_ANN: Include information regarding core

announcements

• MESH_MEMB_ANN: Used for joining a mesh (i.e.,

mesh membership announcement)

• NEW_REGULAR_TOPIC: Used to inform the

federation regarding a new subscription or first

publication to a regular topic

• DATA: Include regular topic messages for routing

between neighboring brokers as payload

Fig. 6: MQTT federator (Spohn, 2021)

The federation requires application developers to

explicitly communicate the topic details through the

control topic NEW_REGULAR_TOPIC to get aware of

regular subscribers and publishers. The message contains

all the topic metadata as defined by the MQTT protocol.
A case study shows how the solution works, being

more merely a proof of concept than a performance
evaluation. The overlay network connecting the
federation is static and part of the federation
configuration. Therefore, the federation does not handle
node failures or disconnections once deployed.

Based on the federation proposed by Spohn (2021);
Ribas and Spohn (2022) proposed changes to the
original architecture, giving rise to a new federation
variant. The federation was developed using the Rust
language, the MQTT Paho client library, and the Tokio
runtime (Lerche, 2022), which manages tasks as
asynchronous processing units. Such units are much
lighter to handle than system threads.

In their implementation, (Ribas and Spohn, 2022)

introduced the concept of topic workers. Each topic

worker is responsible for managing the mesh for a

particular topic; therefore, each federated topic has an

associated worker. Thus, the federation creates workers

dynamically as it learns about new federated topics.
Figure 7 displays the federator architecture. The

federation forwards federated or control topics to a
dispatcher component, which identifies and delivers the
message to the corresponding topic worker.

To exploit all the available redundancy, publications
from a broker not participating in the mesh are forwarded
to all available parents toward the core, unlike the original
federation approach based on unicasting the message
towards the core/mesh.

Federated topics receive a federated prefix as
standard terminology. By employing the MQTT
multilevel wildcard feature, the federator needs to
subscribe to the “federated” wildcard topic to intercept
all topics in the federation context. The new variant
supplies the following control topics:

• Federator/core_ann/: To receive core announcements

• Federator/memb_ann/: To obtain mesh join

announcements

• Federator/routing/: For routing federated publications
• Federator/beacon/: For receiving beacons reporting

the existence of local subscribers

Another significant improvement of this variant is that
it employs a more subtle way to notify the federation about
new regular topic subscribers. The control topic
federator/beacon/ is the channel for such notifications by
appending the federated topic identifier to the root topic
name. For instance, the subscriber regularly publishes the
topic federator/beacon/door_sensor for a regular topic
named door_sensor. As the federator subscribes to the
control topic, it gets all the beacons regularly, having
supervision of all active subscribers.

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1404

Fig. 7: MQTT federation architecture (Ribas and Spohn, 2022)

A more recent variant of the original federation

approach is presented by de Lacerda Machado et al.

(2023). The work, implemented in Python, provides a

federation that monitors the log system of a Mosquitto

broker (Eclipse Foundation, 2023a). Upon detecting a

new client (publisher or subscriber), it proceeds to the

original federation protocol by Spohn (2020). The

federator works as a wrapper to the broker, communicating

directly to neighboring federators through UDP. The

authors present a case study showing the federation

deployment based on LXC containers. One limitation of

their proposal is that it relies on Mosquitto’s log system,

making its use with other brokers an open issue.

Materials and Methods

This section presents the main tools and the system's

architecture regarding the microservice and the

federation. The microservice, responsible for creating and

maintaining the topology of the brokers' federation,

employs algorithms for finding neighbors for an incoming

node, monitors the topology at runtime, and stores

topology information in a database. The federation, in

turn, provides the mechanisms for performing the broker

federation protocol.

Tools and Dependencies

In part, the realization of our solution resorts to existing

tools and dependencies. We summarize them as follows:

• Container: Docker (2023) is an operating system

virtualization capability providing fully isolated

environments called containers. A container groups all

the software and its dependencies, speeding up the

development and deployment processes. Meanwhile,

containers provide a safe execution environment on

different machines

• Database: MongoDB (2023) is a document-oriented

database software classified as NoSQL. Its document

model fosters its use, saving development and

maintenance time

• MQTT broker: Developed by the Eclipse

• Foundation, Mosquito (Eclipse Foundation, 2023a) is

a broker that implements the MQTT protocol. It is

light, reliable, and fit for low-performance boards and

large servers

• MQTT development library: Eclipse Paho (Eclipse

Foundation, 2023b) is a multi-language open-source

library that provides the mechanisms for clients

connecting to MQTT brokers and taking advantage of

its functionalities

• MQTT benchmark tool: With the primary function of

running benchmarks on brokers, the MQTT broker

latency measure tool (Jianhui and Xiang, 2023) has

various configurations for gathering performance

metrics. The tool is implemented in Go, making

adding it as a package to our system easier

System’s Architecture

Both microservice and federation applications were

developed using the Go programming language and are

available as Docker images.

Microservice

We employ the hybrid communication model to

implement the microservice, combining synchronous and

asynchronous communication. We use the REST API's

model to support synchronous communication. In

contrast, we use MQTT clients for asynchronous

communication that publish messages directly to the

broker federator host through the control topic

federated_topology_ann. We use a MongoDB database to

store topology information in the data layer.

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1405

The microservice uses two algorithms for creating and

maintaining the overlay topology. The first is responsible

for finding neighbors for an incoming node; the other,

named health check, is responsible for monitoring the

topology at runtime.

The microservice provides an HTTP endpoint

(/api/v1/join) to receive requests from federators: A

request comprises a POST message containing a JSON

object with the URL for the federator's broker. Listing 1

shows an example of that.

Listing 1: A federator join request

The microservice always seeks to connect new nodes

to two others; however, while there are not enough nodes

to cover this requirement, the two federations joining first

will be related. Each node receives an identifier based on

the order of entry in the topology; this identifier, together

with other data referring to the node, is stored in the

database through a document with six fields:

• ID: Identifier of the federator

• IP: URL for connection to the broker's federator host

• Neighbors: Array of objects containing each

neighbor's ID and IP address

• NeighborsAmount: Number of neighbors

• Latency: Metric collected by health check

• LatestHealthCheck: Timestamp of the last health

check run for that node

In Listing 2, it is possible to visualize a document

containing a federator's data.

Listing 2: Data for a federator with one neighbor

After inserting the first node, the health check

algorithm scans all nodes every five seconds by

computing the latency between submitting a publication

and its response. This metric works as a criterion for

inserting new federators.

From the moment at least two nodes are in the

federation overlay network, the microservice starts to

carry out the process represented in Figure 8 when

inserting new nodes. Upon receiving a join request, the

microservice searches for two candidate nodes. The first

chosen node will have the lowest latency and number of

neighbors lower than the maximum redundancy

configured for the topology. In contrast, the service

includes the second one with the smallest number of

neighbors among all nodes.
The health check service also maintains the topology

(Fig. 9). We consider a node disconnected if the metric
gathering fails twice sequentially for the same federation.
On identifying the failure, using the asynchronous
connection, the microservice sends a message to the

node's neighbors informing them that it is no longer
available. Suppose any neighbor gets disconnected from
the federation due to the failing node. In that case, the
microservice will obtain new neighbors for the
disconnected node, relocating it to resume the connection
with the federation.

Fig. 8: Insertion of a new node in the topology

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1406

Fig. 9: Reconnection of a node via the health check mechanism

Federator

In developing the federator, we used the same

structure proposed by Ribas and Spohn (2022). At this

stage, the federator underwent a translation of the original

code written in the Rust programming language to the Go

programming language. Even so, changes were made in

the federator, making it possible to integrate the

functionalities contemplated by the microservice.

Initially, we added to the federator the ability to make

HTTP requests to the microservice so that it can fetch the

necessary information for its configuration. In addition,

the federator also subscribes to the new

federated_topology_ann control topic through which the

microservice sends topology announcements. Each

advertisement contains instructions for adding or

removing a neighbor so the federator can connect or

disconnect to another federator when required.

Configuration

The configuration of both applications happens

through environment variables. For the federation, there

are only two configuration parameters:

• TOPOLOGY_MANAGER_URL: URL to connect to

the microservice

• ADVERTISED LISTENER: URL for external

connection to federation host broker

The microservice, in addition to its settings, also

centralizes the federation settings, requiring more

configuration parameters:

• MONGO_URL: MongoDB database connection URL

• CORE_ANN_INTERVAL: Time interval between

core announcements

• BEACON_INTERVAL: Defines the interval between

beacons received by subscribers

• FED_REDUNDANCY: Defines the mesh redundancy

instantiated by the federation

• TOP_MAX_REDUNDANCY: Defines the overlay

topology’s maximum node degree/redundancy

The example in Listing 3 refers to a file in YAML

format, which serves as a template for executing a

federation instance utilizing the Docker Compose tool.

The file includes data for running three containers,

referring to the database, microservice, and federation and

their configuration parameters.

Listing 3: Configuration for the deployment of the system’s

containers

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1407

Results and Discussion

Two deployment plans comprise a case study, the first

using cloud computing and the second using a local

network. For both scenarios, the microservice is

responsible for creating the federation topology.

When using cloud computing, we seek to explore

environments found in real deployments, with the primary

objective of building a scenario for experimenting with

federation availability. With this test, it is possible to

visualize how the microservice adjusts the topology when

a federation is disconnected. We build the scenario using

AWS, Azure, and Google Cloud computing resources. A

total of 10 virtual machines run on the cloud, nine for the

federation and one for the microservice, all arranged to

run in different geographic regions spanning the

continents of America, Europe, Africa, and Asia. For the

test, we initially gathered the topology rendered by the

microservice and then stopped the execution of two

federations to simulate their disconnection.

The test in a local network seeks to create a scenario

for performance testing. It is possible to obtain more

assertive metrics because it is a more controlled and

interference-free environment concerning network and

computing resources. We configured the microservice to

render topologies with a maximum redundancy of five,

while the federation mesh has a redundancy of three.

The resulting scenario contained twelve federators,

generating the topology illustrated in Fig. 10. Two

subscribers were positioned in federators 0 and 5,

respectively. A publisher responsible for sending 1000

messages, each with 64 bytes, was placed on node 11, one

hop from federation 0 and three hops from federation 5.

Fig. 10: Topology used in the LAN scenario

The topology initially obtained in the scenario using

cloud computing is apprised in Fig. 11. It is possible to

note that node 8 has the smallest number of neighbors in

the topology, which makes it an easier target for isolation;

therefore, when its neighbors (i.e., 0 and 7) stop running,

a reallocation is necessary.

As shown in Fig. 12, the microservice chooses new

neighbors for Federator 8 when reallocating. It selects

Federator 3 with the highest performance, which is

possible since it has the most significant number of

connections. Then, it designates Federator 1 to keep the

redundancy requirement.

Table 1 depicts the results for the LAN scenario

(topology shown in Fig. 10). When comparing the

average latency of publications for the two subscribers,

it is possible to notice that the federator farthest from the

publisher has a more significant latency. When

analyzing these results, the overhead of publications

rendered during retransmissions should be considered a

factor contributing to a considerable increase in latency.

Fig. 11: Topology before relocating node 8

Fig. 12: Topology after relocating node 8

Table 1: Latency of Federation publications

Messages Subs. at broker 0 Subs. at broker 5

1000 445.796 ms 1062.230 ms

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1408

Conclusion

MQTT is likely the most used protocol in the design

of IoT applications. IoT is reaching many ecosystems,

handling numerous devices and users. Therefore,

applications require a scalable MQTT service, having

clustering and federation as the best candidates to handle

an elastic demand of clients. This study focuses on a self-

managed federation of MQTT brokers, mainly in the

dynamic creation and management of the overlay network

connecting federated brokers.

We introduce the first solution for creating and

maintaining a federation of autonomous brokers in a

dynamic topology. The design follows the microservice

model, in which the topology management occurs as an

independent service. Our previous solution for the

federation evolved to adhere to the new service, keeping

the federation essence working as in the original proposal.

However, only some adjustments are in place to allow

federation nodes to join the federation overlay network.

Another improvement concerns handling failures in

the overlay network. The previous solutions used a static

overlay network, where nodes receive their

configuration relating to neighboring peers. Once

deployed, the federation network does not change,

without any mechanism for handling failing or

disconnected nodes. In our solution, a new federation

node requests its entry via the microservice, receiving all

the information necessary to start communicating with

the neighboring nodes, as defined by the microservice.

A health check mechanism is in place to detect any

disconnected nodes and rearrange the federation

topology when necessary.

We presented a case study as a proof of concept.

Results show that our solution works as planned along

with the evolved federation protocol. The topology

management is decoupled from the federation

mechanisms, requiring changes to all the topology

parameters (e.g., node insertion criteria, topology degree)

only in the microservice. We plan to explore how

topologies can adapt to particular application/client

requirements in future work.

Acknowledgment

The authors feel grateful to the anonymous reviewers

for their valuable suggestions and comments on

improving the quality of the paper. They would like to

thank the editors of the journal as well.

Funding Information

The Universidade Federal da Fronteira Sul partially

funded this work (Research Project PES-2021-0471,

under call 121/GR/UFFS/2021, and Research Project

PES-2022-0069, under call 89/GR/UFFS/2022).

Author’s Contributions

Marco Aurelio Spohn: Designed the research plan

and supervised its execution. Contributions to conception

and design. Most of the written.

Bruno Bevilaqua: Contribution to conception and

design. He performed the implementation and the case

study and contributed to the article's draft.

Ethics

This article is original and contains unpublished material.

The authors confirm that they have read and approved this

document and that no ethical issues are involved.

References

Aksakalli, I. K., Çelik, T., Can, A. B., & Teki̇nerdoğan,

B. (2021). Deployment and communication patterns

in microservice architectures: A systematic literature

review. Journal of Systems and Software, 180,

111014. https://doi.org/10.1016/j.jss.2021.111014

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari,

M., & Ayyash, M. (2015). Internet of things: A

survey on enabling technologies, protocols and

applications. IEEE Communications Surveys

Tutorials, 17(4): 2347-2376.

 https://doi.org/10.1109/COMST.2015.2444095

Alshuqayran, N., Ali, N., & Evans, R. (2016, November).

A systematic mapping study in microservice

architecture. In 2016 IEEE 9th International

Conference on Service-Oriented Computing and

Applications (SOCA) (pp. 44-51). IEEE.

 https://doi.org/10.1109/SOCA.2016.15

de Lacerda Machado, J. F., Spohn, M. A., and Granville,

L. Z. (2023). Client-transparent and self-managed

MQTT broker federation at the application layer. In

International Conference on Computing, Networking

and Communications (ICNC 2023), Honolulu, USA.

 https://doi.org/10.1109/ICNC57223.2023.10074556

Docker, (2023). Docker develop faster. Run anywhere.

https://www.docker.com

Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara,

M., Montesi, F., Mustafin, R., & Safina, L. (2017).

Microservices: Yesterday, today and tomorrow.

Present and Ulterior Software Engineering, pages

195-216.

Eclipse Foundation. (2023a). Eclipse Mosquitto, an open

source MQTT broker. https:// mosquitto.org

Eclipse Foundation. (2023b). Paho.

 https://www.eclipse.org/paho

Jianhui, & Xiang, Z. (2023). MQTT broker latency

measure tool. https://github.com/hui6075/mqtt-

bm-latency

Lerche, C. (2022). Tokio api docs.

https://www.docker.com/
https://mosquitto.org/
https://mosquitto.org/
https://www.eclipse.org/paho
https://www.eclipse.org/paho
https://github.com/hui6075/mqtt-bm-latency
https://github.com/hui6075/mqtt-bm-latency
https://github.com/hui6075/mqtt-bm-latency

Bruno Bevilaqua and Marco Aurelio Spohn / Journal of Computer Science 2023, 19 (11): 1398.1409

DOI: 10.3844/jcssp.2023.1398.1409

1409

 https://github.com/tokio-rs/tokio

MongoDB, (2023). MongoDB.

 https:// www.mongodb.com

MQTT, (2023). MQTT the standard for iot messaging.

Oriented Computing and Applications (SOCA),

pages 44-51. IEEE. https://mqtt.org/

Ribas, N. K., & Spohn, M. A. (2022). A new approach to

a self-organizing federation of MQTT brokers.

Journal of Computer Science, 18(7): 687-694.

https://doi.org/10.3844/jcssp.2022.687.694

Rose, K., Eldridge, S., & Chapin, L. (2015). The

internet of things: An overview. The Internet

Society (ISOC), 80: 150.

Soni, D., & Makwana, A. (2017). A survey on MQTT:

A protocol of Internet of Things (IoT). In

International conference on Telecommunication,

Power Analysis and Computing Techniques

(ICTPACT-2017), 20: 173-177. https://doi.org/

10.1109/ICTPACT.2017.8273112

Spohn, M. A. (2020). Publish, subscribe and federate!

Journal of Computer Science, 16(7): 863-870.

https://doi.org/10.3844/jcssp.2020.863.870

Spohn, M. A. (2021). An endogenous and self-organizing

approach for the federation of autonomous MQTT

brokers. In ICEIS (1), pages 834-841.

https://doi.org/10.5220/0010408808340841

Wortmann, F., & Fluchter, K. (2015). Internet of things.

Business & Information Systems Engineering, 57(3):

221-224. https://doi.org/10.1007/s12599-015-0383-3

https://github.com/tokio-rs/tokio
https://github.com/tokio-rs/tokio
https://www.mongodb.com/
https://www.mongodb.com/

