

 © 2023 Dedy Rahman Wijaya, Aqil Athallah, Tiara Nuha Noor’afina, Patrick Adolf Telnoni and Sari Dewi Budiwati. This

open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

 Journal of Computer Science

Original Research Paper

Cargo Route Optimization Using Shortest Path Algorithms:

Runtime and Validity Comparison

Dedy Rahman Wijaya, Aqil Athallah, Tiara Nuha Noor’afina,

Patrick Adolf Telnoni and Sari Dewi Budiwati

School of Applied Science, Telkom University, Bandung, Indonesia

Article history

Received: 15-05-2023

Revised: 27-07-2023

Accepted: 04-09-2023

Corresponding Author:

Dedy Rahman Wijaya

School of Applied Science,

Telkom University Bandung,

Indonesia
Email: dedyrw@telkomuniversity.ac.id

Abstract: The Indonesian logistics industry is facing significant challenges

related to inefficiency and irregularity, particularly in the commodity cargo

route system. This issue is further exacerbated by the high logistics costs in

the country, which currently stands at 23%, higher than that of other

countries. To address this issue, this study proposes an implementation and

examination of several algorithms Greedy, Best First Search (BFS),

Dijkstra’s, A*, and Floyd-Warshall to optimize the cargo route system and

reduce logistics costs. The algorithms were compared using various

parameters, including price, distance, rating, and time. The results revealed

that the Greedy algorithm is not a reliable option for cargo route

optimization. In contrast, the A* algorithm offered the best solution

compared to other algorithms, although it was not the fastest in terms of time.

This study emphasizes the importance of considering various factors to

optimize the cargo route system effectively. The experiments conducted in

this study offer promising insights and pave the way for further research to

improve the efficiency and reliability of the logistics industry in Indonesia.

Keywords: Cargo Route, Shortest Path, Greedy, A*, Dijkstra’s, Floyd-

Warshall, Best First Search

Introduction

The presence of transportation and logistics

infrastructure has been crucial in enhancing the economy

of Indonesia, particularly during the new normal era

when mobility was restricted to adhere to health

protocols and strict supervision (Widiyanto, 2020).

Logistics efficiency is a crucial factor in developing

inter-regional trade cooperation. In many areas in

eastern Indonesia, the inadequate logistics system results

in a low level of competitiveness. The limited cargo

volume indicates the small economies of scale for these

islands, consequently leading to high transportation

costs (Amin et al., 2021). Logistics activities in

Indonesia still have problems with inefficiency and

irregularity in the logistics system, especially the

commodity cargo route system. Logistics costs in

Indonesia are generally high compared to other

countries, the ratio is quite large at 23% (Kargo, 2021).

Many countries have implemented digitalization during

the 4.0 industrial revolution in their logistics activities.

Several companies have started implementing

digitalization. Artificial Intelligence (AI) is one of the

crucial technologies that cannot be overlooked in the

context of the 4.0 industrial revolution. Examples of

technology adoption and digital automation in the use of

AI technology for logistics service work, which is

optimizing delivery routes (Raza et al., 2020). Therefore,

the application of AI technology in Indonesia's logistics

system is necessary. One application of AI technology is

to optimize delivery routes by finding the shortest path.
The shortest path algorithm is an essential tool for

finding the most efficient route between two or more

nodes in a graph. The algorithms are used in several

applications, namely, traffic routing, parcel delivery,

public transportation, and disaster response (Liu et al.,

2018). In traffic routing, the algorithm was used to

identify the fastest route between multiple points. The

road capacity, traffic volume, and speed limits can be

considered to identify the shortest path (Shan et al., 2018).

Moreover, traffic routing could help to find the fastest

route in the event of a natural disaster. Thus, the

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1370

application could minimize the disaster impact (Liu et al.,

2018). In parcel delivery, the algorithm was used to

minimize fuel consumption and delivery time. As a result,

the carbon footprint was reduced (Gbadamosi and Aremu,

2020). Whereas in public transportation, the algorithm was

planned to find the most efficient routes. Therefore, travel

time efficiency and reliability were improved (Cheng et al.,

2019). The cargo route application generates the shortest

path based on several parameters such as price, distance,

rating, and time. In distribution management, determining

schedules and shipping routes from one point to multiple

destinations is crucial for companies to minimize shipping

costs. However, transportation capacity and delivery

deadlines are other important factors that need to be

considered in the distribution process.

The current study is not a new problem. This research

does not introduce a new method but rather conducts a

unique comparative study. The authors investigate and

compare existing methods to evaluate their effectiveness

and relative advantages in a specific context. Thus, our

research provides new insights into the existing

approaches and identifies strengths and weaknesses that

can be derived from these approaches.

Many examples of shortest-path algorithms found

online are often presented in the form of pseudo-code or

program fragments that require further work to be

implemented in a specific programming language or data

structure. However, many sources provide

implementations of these algorithms in various

programming languages and data structures. One example

that was found is Dijkstra's algorithm, which is often

presented in pseudo-code that can be seen in the sub-

section "Proposed Method: Dijkstra Algorithm." There is

also a website page that provides implementations of

shortest-path algorithms in various programming

languages and data structures

(https://www.geeksforgeeks.org/).

In this study, a fresh method for route optimization is

presented, employing a combination of five distinct

algorithms to search for the shortest path. These shortest

path search algorithms consider cargo route data,

distance, price, time, and service ratings to dynamically

adapt and find the most efficient routes. Different from

previous studies that implement one or two algorithms for

comparison, our research implements five traditional

algorithms to find the algorithm that provides the best

cargo route, especially in Indonesia. Therefore, based on

the previous explanation, the contribution of this study

can be explained as follows:

1. Standard implementation of shortest path algorithms

has been developed based on Python programming

language and Representational State Transfer

Application Programming Interface (REST API)

such as Greedy, Best First Search (BFS), Dijkstra’s,

A*, and Floyd-Warshall (Wijaya, 2023)

2. The performance investigation of several shortest

path algorithms for cargo route optimization uses

several parameters: Price, distance, rating, and time.

Their performance is investigated based on runtime

and validity

Related Works

Currently, researchers or practitioners often require

examples of algorithms, especially for finding the best

route. Most examples of shortest-path algorithms are

only in the form of pseudo-code or code snippets that

may not always be executable. Many sources on the

internet only implement one algorithm in various

programming languages.

To address this issue, our research focuses on

comparing the results of five shortest path algorithms

based on runtime and validity to determine which search

algorithm is the fastest and most accurate in determining

the shortest route.

The shortest path is defined as the minimum number

of weight or distance values that must be traversed to

reach the destination point from the starting point in a

network or graph. There are several studies related to

path-finding algorithms and including them can explain

the position and importance of our research.

A case study utilizing the Genetic algorithm involved

optimizing the sequence of routes for a cargo truck,

starting from the first node and continuing to the

subsequent nodes until reaching the destination. It

resulted in 480 best generations and identified the shortest

total distance. However, the Genetic algorithm has a

significant drawback, namely the long computer time and

burden required to reproduce and generate new candidate

solutions until it achieves the goal of the problem

(Evangelista et al., 2020).

Greedy and Floyd-Warshall algorithms are two other

algorithms used to determine the shortest path. The

Greedy algorithm operates by making locally optimal

choices at each step in the hope of finding a globally

optimum solution. Meanwhile, the Floyd-Warshall

algorithm is simpler and easier to implement. The Floyd-

Warshall algorithm considers all nodes and routes to find

the best result (Azis et al., 2018a). This literature

indicates that while Dijkstra's algorithm is generally

faster for most graph classes, the Floyd-Warshall

algorithm can be competitive in some cases due to its

ability to solve dense linear systems and perform matrix

multiplication (Sao et al., 2020).

Dijkstra’s is one of the algorithms that can be modified

to produce the shortest path (Gbadamosi and Aremu,

2020). Despite the fact that Dijkstra's algorithm does not

always guarantee to find the globally optimal solution, it

can still provide a reasonably optimal solution, and in

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1371

certain cases, the globally optimal solution can be obtained

with some probability (Qian and Yinfa, 2018). In addition

to Dijkstra’s, the A* algorithm can find the shortest path

more efficiently than other algorithms (Ju et al., 2020). A*

algorithm's ability to find the shortest path with a heuristic

function makes it a suitable choice for generating

personalized route recommendations in PRR tasks through

machine learning and neural networks (Wang et al., 2021).

Additionally, there is also the Best First Search (BFS)

algorithm, which is a heuristic search algorithm that

combines the advantages of both breadth-first search and

depth-first search by taking the strengths of each algorithm

(Liana and Nudin, 2020).

A combination modification of Chemical Reaction

Optimization (CRO) and the BFS algorithm can also

produce high-quality shortest paths compared to the CRO

metaheuristic algorithm (Khattab et al., 2022). Path-

finding algorithms can also be used to efficiently calculate

the number of shortest paths in large highway networks

(Qiu et al., 2022). Developing the shortest path-finding

algorithms can help optimize transportation infrastructure

systems to find the best routes between origin and

destination (Shan et al., 2018). The GraphX shortest path

algorithm's efficiency in finding the shortest path is

limited as it only considers the number of edges without

using their weights, resulting in a longer computation time

compared to other algorithms (Phan and Do, 2018).

There is a study on traditional navigation systems that

compute the quantitatively shortest or fastest route

between two locations in a spatial network. This study

used the k-shortest path algorithm to find vehicle routes

in Washington DC using a single parameter and

encountered some failures when attempting to find routes,

but its runtime was still reasonable (Cheng et al., 2019).

The traditional method for calculating the shortest path

distance is no longer suitable for large graphs with

millions of nodes and billions of edges (Rizi et al., 2018).

Nevertheless, the traditional method can still be used and

performs well in determining the shortest routes. The

authors also utilized several sources from the journal of

computer science to strengthen their research. First, a study

finding the shortest path for public transportation to solve

single-source using Dijkstra’s algorithm (Wongso et al.,

2018) and calculate the most efficient route for COVID-19

transmission within extensive community networks,

aiming to analyze and forecast the progression of the

transmission chain (Mavakala et al., 2023).

Materials and Methods

Materials

To build the graph data structure in Python, a

dictionary can be used (Ireland and Martin, 2020). The

dictionary data structure is commonly used to represent

graphs, where each node is represented as a key in the

dictionary, and its corresponding value is a list or set

containing the neighboring nodes or edges connected to

that node. The keys in the dictionary represent the nodes,

while the values represent the connections or edges

between nodes. Cost is calculated based on several

parameters, such as price, distance, rating, and time.

Several shortest path algorithms are implemented to find

the best route. Finally, performance of algorithms is

evaluated based on runtime and validity. The authors

evaluated the algorithm with several jump (hop) values:

1, 2, and 3. In addition, the specification of the hardware

and software used in this experiment is as follows:

• Operation system: Windows 11

• Processor: AMD Ryzen 5

• Memory: 8GB

• Programming language: Python 3.10

• Libraries: Python3.10, MySQL-connector-

Python8.0, numpy1.23, pandas1.5, scikit-learn1.2,

Flask2.2, Git2.33

• Database: MySQL

• Web service: Flask

Proposed Method

In this study, several shortest-path algorithms were

implemented to find the best cargo route, especially in

Indonesia. Greedy, Best First Search (BFS), Dijkstra’s,

A*, and Floyd-Warshall are implemented, and the

performances are investigated based on runtime and

validity of results. A more detailed explanation of each

algorithm can be seen in the following explanation.

Weighting and Performance Metrics

To find the weights need to do normalization or

feature scaling, then calculate the weights with the basic

formula as follows:

 (1)

where,

distance: Distance between nodes in kilometers.

price: Travel price between nodes

rating: Review rate of the route

duration: Travel time in hours

g: Actual cost

w: Weight

These parameters are customizable, so users can

easily increase or decrease them for more flexible

weighting implementation. In this implementation, the

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1372

main objective of shortest path algorithms is to find the

best path according to the lowest cost value. Distance,

price, and duration are parameters that affect the higher

cost. Therefore, a lower value means better. For

example, in the real world, people will prefer routes with

shorter distances, lower prices, and lower duration.

Hence, the higher value of w1, w2, and w4 will make

them lower. In contrast, a high rating value means a

favorite route or cargo service. The high value of w3 can

emphasize the importance of rating parameters.

In this study, two parameters to measure the

performance of algorithms are runtime and validity.

The runtime of an algorithm is a critical factor to

consider when solving the shortest path problem in

large-scale graphs, as it determines the efficiency and

practicality of the solution. The runtime of a shortest

path algorithm is typically measured in terms of the

number of operations it performs, such as the number

of comparisons, assignments and arithmetic operations.

The runtime of a shortest path algorithm depends on

several factors, such as the size of the graph, the

complexity of the algorithm, and the specific

implementation of the algorithm. The validity of a

shortest path algorithm is determined by its ability to

accurately and consistently find the shortest path

between two nodes in a given graph. The shortest path

algorithm is valid if it always returns the shortest (best)

path from a source node to a destination node, given

the weights of the edges in the graph.

Experimental Setup

In this experiment, the process is divided into several

steps such as data collection, building graph data

structure, calculating cost, searching the best route, and

performance evaluation as shown in Fig. 1.

Fig. 1: Process of experiment

Greedy Algorithm

The Greedy algorithm is one for solving optimization

problems. The optimization problem in question is the

problem of finding the optimum solution, namely

maximization or minimization. The Greedy algorithm

finds the shortest path by selecting the locally best step at

each iteration. At each step, many choices need to be

evaluated so that this algorithm will choose the best step

(Azis et al., 2018a):

• Getting the best choice (local optimum)

• Unable to change a decision or return to the

previous step

• The selection of local optimum must result in

global optimum

The greedy algorithm operates under the

assumption that selecting the locally optimal choice at

each step will lead to a globally optimal solution. There

are the following six elements of the Greedy algorithm

(Azis et al., 2018a):

Candidate the Association (C): The set contains the

elemental solutions of the various candidates that will take

the next step.

Set of Solution (S): The set consists of a group of

candidate solutions that have been selected as potential

solutions to a problem, and it forms an integral part of the

candidate's pool.

Selection Function: This function is to select the

candidate who has a high chance of getting the optimal

solution. Candidates who have already been selected will

not be reconsidered at the next step.

Feasible Function: The purpose of this function is to

verify that the selected candidate is capable of providing

a suitable solution, thereby preventing any violation of the

constraints in the candidate and solution set. Candidates

that satisfy the criteria will be included in the solution set,

while those that fail to meet the specified requirements

will be rejected.

Objective Function: This function changes the value

of the solution to the maximum or minimum. The

following steps outline the process of utilizing the Greedy

algorithm to determine the shortest route:

• Begin by verifying that the current node is the starting

node. If it is, proceed to step (3), but if it is not, then

proceed to step (2)

• Next, verify whether the destination node is the most

recently visited node. If it is, proceed to step (3), but

if it is not, then go to step (3)

• Check to determine which side is connected to the

next node as well as the current node

• To go to the next node (local optimum), find the side

that has the lowest weight

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1373

• After according to the local optimum that has been

determined, proceed to the next node

• So that the desired destination node can be found, go

back to step (1)

The pseudo-code of the BFS algorithm can be seen as

follows:

Algorithm 1 (Januantoro et al., 2021): Pseudo-code

Greedy algorithm

1 Declaration:

2 int J[n]

3 local:

4 int result // shortest route distance

5 result ← 0

6 for x ← 1 to n do:

7 if (result < J[x]) then

8 result ← J[x]

9 endif

10 end

Best First Search (BFS) Algorithm

BFS is a shortest path algorithm using heuristic values

where node expansion depends on the evaluation function

f(v). This function estimates how far the distance is between

node v and the destination node by utilizing the heuristic

function h(v) (ie f (v) = h(v)). A node that has a lower value

has a greater chance of leading to the destination node. In

general, estimating f(v) depends on information about node

v and the destination node. Information that has a

significant effect and depends on f(v) is information taken

from the problem domain (Khattab et al., 2022). The BFS

algorithm also aims to find the shortest path by prioritizing

the steps that are closest to the destination. This makes BFS

a suitable algorithm for the comparison shortest path in

finding cargo routes.

The pseudo-code of the BFS algorithm can be seen as

follows:

Algorithm 2 (GBFSF, 2023): Pseudo-code BFS

algorithm

1 procedure GreedyBFS (startNode, targetNode):

2 mark startNode as visited

3 add startNode to nodeQueue

4 while nodeQueue is not empty do:

5 currentNode ← vertex of nodeQueue

with min distance to targetNode

6 remove currentNode from nodeQueue

7 foreach neighborNode n of currentNode

do:

8 if n not in visited then:

9 if n is targetNode:

10 return n

11 else:

12 mark n as visited

13 add n to nodeQueue

14 return failure

Dijkstra’s Algorithm

Dijkstra’s is one of the shortest path algorithms that is

used to find the optimal path length between two nodes in

a graph. Optimal here can mean distance, cost, time, and

others. Below includes an explanation of how to step by

step Dijkstra’s algorithm (Thareja, 2018):

1) Choose a starting point, also known as the A* node,

from which the A* algorithm will begin its search

2) Create an empty set N that will be used to store the

vertices with the shortest paths that have been

discovered

3) Label the starting node and add it to set N

4) If the destination node has been entered or there are

no more nodes labeled N, then repeat steps 5 to 7

5) Consider each vertex connected by the edge of the

new vertex and the added vertex is not in N

6) (a) If a node not in set N does not have a label, then

assign the label of the newly inserted node plus the

length of the edge to that node. (b) Otherwise, if a

node not in set N already has a label, then set its

label to the minimum value between the sum of the

newly inserted node's label and the edge length, and

the old label

7) Choose a node that is not in set N and has the smallest

assigned label, and then include it in set N

Dijkstra considers the weights of the edges, resulting

in accurate shortest path calculations. In Dijkstra's

algorithm, every vertex in the graph is assigned a label,

which can either be temporary or permanent. Nodes that

have not yet been visited are assigned temporary labels in

Dijkstra's algorithm. In contrast, visited nodes whose

distance (weight) is known are given the label details. A

node in Dijkstra's algorithm can only be assigned either a

permanent or a temporary label, but not both. The

algorithm is executed as follows (Thareja, 2018):

1) In Dijkstra's algorithm, the destination node is

assigned a label that represents the shortest distance

from the source node to the destination node

2) In Dijkstra's algorithm, if the destination node does

not have a label assigned to it, then it indicates that

there is no shortest path from the source node to the

destination node

The pseudo-code of Dijkstra’s algorithm can be seen as

follows:

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1374

Algorithm 3 (Mehlhorn and Sanders, 2008):

Pseudo-code Dijkstra’s algorithm

1 function Dijkstra’s (Maps, origin):

2 foreach vertex i in Maps.Vertices:

3 dist[i] ← INFINITY

4 prev[i] ← UNDEFINED

5 add i to G

6 dist[source] ← 0

7 while G is not empty:

8 u ← vertex in G with min dist[u]

9 remove u from G

10 foreach neighbor v of u still in G:

11 alt ← dist[u] + Graph.Edges(u, v)

12 if alt < dist[i]:

13 dist[i] ← alt

14 prev[i] ← u

15 return dist[], prev[]

A* Algorithm

A* algorithm is a popular and effective method that is

often recommended as a solution to the problem of finding

optimal paths between nodes in a graph or network. The

A* algorithm is designed to search for the most efficient

or shortest path between a starting node and a destination

node in a graph or network. This simulation employs the

A* algorithm with a heuristic function as its search

technique (Budiman et al., 2018). By utilizing a suitable

heuristic function, A* efficiently finds the shortest path.
Applying the shortest path, A* implies the

maintenance of two lists, namely an OPEN list and a

CLOSED list. OPEN contains nodes apprised by the

heuristic function but has not yet been extended to its

successors, whereas CLOSED contains nodes that have

been visited. The A* shortest path algorithm is one of the

best algorithms but does not always produce the shortest

path because it relies on heuristics (Budiman et al., 2018).

By combining the advantages of uniform cost search

and Greedy search, the A* algorithm is regarded as the

Best First Search (BFS) algorithm. The considered price

is obtained from the actual price plus the estimated price.

In mathematical notation, it is written:

 (2)

(by using f'(n), the A* algorithm is complete and optimal)

where,

f'(n): lowest estimated cost

g(n): cost from the initial node to node

h'(n): estimated cost from node n to the final node

Some of the functions of A* are as follows:

1. The A* algorithm maintains a tree structure that

represents all possible paths originating from the

starting node

2. Extend the path one side at a time

3. Continue until the termination criteria are listed

The pseudo-code of the A* algorithm can be seen as

follows:

Algorithm 4 (Hadi Nuryoso, 2020): Pseudo-code A*

algorithm

1 Function A* (start, destination)

2 closedset ← empty sets

3 openset ← {start}

4 origin← empty map

5 q_value [start] := 0;

6 f_value ← q_value + estimation_value_heuristic

(start, destination)

7 While openset is not empty:

8 current ← node in lowest openset f_value[]

9 if current ← destination

10 Return path_construction

(Origin, destination)

11 Remove current from openset

12 Add current to closedset

13 Foreach inner neighbor node_neighbor(current):

14 if neighbor is inside closedset:

15 Continue q_temporary_value ←

q_value[current_node]+

dist_between(current_node)

16 if the neighbors not in openset:

17 q_value_temporary < ← q_value[neighbor]

18 origin[neighbor] ← current

19 q_value[neighbor] ← q_temporary_value

Floyd-Warshall Algorithm

The Floyd-Warshall algorithm is a classic algorithm

for solving the all-pairs shortest path problem, which

computes the shortest path between every pair of vertices

in a weighted graph (Azis et al., 2018b). The way this

algorithm solves the problem is to choose a solution based

on the previous solution with conditions that must be

related to each other, then it will produce a lot of solutions

(Azis et al., 2018a). The Floyd-Warshall algorithm is a

straightforward and efficient algorithm used to find the

shortest path between all pairs of nodes in a graph. The

Floyd-Warshall algorithm takes as input a weighted graph

that is directed, and this graph is usually represented as a

list of edges and vertices. The Floyd-Warshall algorithm

computes the minimum distance between all pairs of

vertices in a weighted graph by considering all

intermediate vertices along the way, until the final shortest

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1375

distance between any two pairs of vertices is obtained

(Azis et al., 2018a). The Floyd-Warshall algorithm

compares all possible paths between every pair of vertices

in a graph and selects the shortest path at each stage,

resulting in an optimal estimate for the shortest path

between each pair of vertices. However, the processing

time can be slow and may not be suitable for cases with

large data due to the long graph initialization process.

Although it has a higher time complexity compared to

other algorithms, the Floyd-Warshall algorithm is still a

popular choice for calculating the shortest path due to its

ease of implementation and practicality. It can efficiently

determine the shortest paths, albeit with slightly higher

time complexity compared to other algorithms:

The pseudo-code of the Floyd-Warshall algorithm can be

seen as follows:

Algorithm 5 (Algorithms Notes for Professionals,

n.d.): Pseudo-code Floyd-Warshall algorithm

1 Let dist be a |X|× |X| array of minimum

distances initialized to ∞ (infinity)

2 foreach edge (x, y) do:

3 dist[x][y] ← w (x, y)

4 foreach vertex v do:

5 dist[y][y] ← 0

6 for u from 1 to |X|:

7 for v from 1 to |X|:

8 for z from 1 to |X|:

9 if dist[v][z] > dist[v][u] + dist[k]

10 dist[v][z] ← dist[v][u] +

dist[u][z]

11 endif

12 end for

13 end for

14 end for

Results and Discussion

In this section, the experimental setup is discussed,

and the results based on the utilization of five algorithms

are presented. A cargo route optimization application was

developed using the following algorithms: Greedy,

Dijkstra's, Best First Search (BFS), A*, and Floyd-

Warshall. Table 1 provides a comparison of the shortest

path algorithms. The execution time of each algorithm

was measured in milliseconds. In Table 1, the execution

times of the algorithms can be directly compared,

indicating which algorithm performs the fastest. If there

is a significant difference in execution time between two

algorithms, it can be concluded that one algorithm is more

efficient than the other.

The BFS algorithm demonstrated the best

performance with the shortest average execution time.

The BFS algorithm achieves the shortest runtime by

performing a horizontal search on the levels of nodes in

the graph. It starts by examining all nodes connected to

the starting node, then checks the nodes connected to

those nodes on the next level, and continues until it

reaches the target node. Since this algorithm examines all

nodes at each level, BFS can quickly find the shortest path

on a less complex graph. Interestingly, some of the

shortest execution times resulted in false recommendation

routes. Despite having the shortest execution time, search

algorithms have the potential to produce inaccurate

routes. Finding the shortest execution time solution does

not always mean finding the best solution. This can be due

to a large search space or the algorithm not being suitable

for the specific case study. In such cases, the algorithm

may not be able to explore all possible paths. Table 1 also

shows that the Greedy algorithm has the longest execution

time. This is because the Greedy algorithm makes choices

based solely on the information available at the current

step of the search. It selects the shortest path to the next

intersection without considering other factors such as

traffic conditions, road capacity, or potential congestion.

This can result in suboptimal or even inappropriate routes

that take longer to traverse than other routes. Additionally,

the Greedy algorithm generates false recommendation

routes, with some results producing looping routes. Based

on the weight optimization and dataset used, it can be

concluded that the BFS and Greedy algorithms are not the

most effective options.

The Dijkstra's, A*, and Floyd-Warshall algorithms are

compared. These algorithms can be more effective in

finding the shortest or best path and still have reasonable

execution times. Interestingly, the A* algorithm achieved

the shortest execution time while providing better

recommendation routes compared to the other three

algorithms. The A* algorithm is a heuristic search

algorithm that uses a heuristic function to guide the search

towards the goal state, resulting in a more efficient search

for the shortest path. The heuristic function estimates the

distance from the current node to the goal node and uses

this estimate to prioritize the search towards the goal. In

contrast, other algorithms such as Dijkstra's algorithm do

not use a heuristic function and consider all possible paths

from the starting node to the goal node, which can be

computationally expensive. Therefore, the A* algorithm

often finds the shortest path more quickly, especially in

larger graphs. Additionally, the recommendation routes

provided by the A* algorithm may be more suitable

because the heuristic function considers factors such as

distance, traffic, or other constraints that can affect the

actual travel time.

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1376

Table 1: The optimization results from five algorithms. ASP means according to the shortest path. N-ASP means the path does not

use the shortest path

Algorithm Hops Status Runtime (ms) Average runtime (ms) Description

Greedy 1 ASP 9,089 11,072.5 -Some results do not match the route

 2 ASP 8,574 and there is a possible route not found

 2 ASP 9,224 or looping forever

 3 N-ASP 17,403 -Longest average runtime

BFS 1 N-ASP 6,959 6,734.67 -Some results do not match the route

 2 ASP 6,288 -Shortest average runtime

 3 N-ASP 6,957

Dijkstra’s 1 ASP 6,986 7,404.34 -All recommendations are the best route

 2 ASP 8,106 -Longer average runtime than A*star

 3 ASP 7,121

A* 1 ASP 6,049 7,056.67 -All recommendations are the best route

 2 ASP 8,067 -Shortest average runtime

 3 ASP 7,054

Floyd-Warshall 1 ASP 10,971 8,978.67 -All recommendations are the best route

 2 ASP 8,363 -Longer average runtime than A*star

 3 ASP 7,602

Fig. 2: Visualization map of A* algorithm

The utilization of Dijkstra's, A*, and Floyd-Warshall

algorithms resulted in the shortest paths, consistent with

prior research findings (Mehlhorn and Sanders, 2008).

This supports previous studies that have shown the

effectiveness of these algorithms in determining the

shortest routes in similar problem contexts. However, it is

worth noting that the A* algorithm demonstrated better

performance in terms of execution time compared to the

other algorithms, making it a more efficient choice for

determining the shortest path.

Furthermore, it was found that the Greedy algorithm

generated looping or incorrect routes. This finding aligns

with previous research highlighting the limitations of the

Greedy algorithm in finding the best routes.

Overall, this research confirms previous findings and

demonstrates that the use of algorithms such as Dijkstra's,

A*, and Floyd-Warshall can provide more optimal

solutions for finding the shortest paths in this research

context. These results are consistent with existing

literature and do not present significant novelty. However,

it is important to consider that the specific implementation

and context of this research contribute to the advancement

of knowledge in this field.

Figure 2 shows an example of a visualization map. The

line is a directional connector between nodes. While

numbers are weights calculated from the algorithms. The

shortest route recommendations are represented with

green nodes. In addition, g is actual cost used in Eq. (1).

For example, this scenario is to find the best cargo route

from Jakarta to Jayapura. According to A* algorithm, the

best route is Jakarta-Surabaya-Sabah-Jayapura. Testing

was performed on the aforementioned algorithms utilizing

a self-created dataset obtained through web scraping from

the browser. Among them, there is a dataset of cities that

contains columns for id, city name, latitude, and longitude

that will be used in the sample table. Furthermore, a

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1377

sample dataset was available, comprising columns for id,

origin, and destination, which included city IDs from the

city table. It also featured several parameter columns for

storing data related to distance, price, rate, and duration.

The more detailed dataset can be downloaded in this link:

https://github.com/JstKhalid/DoRoute/blob/main/dataset

_cargo_route.xlsx.

Conclusion

The novelty of this research lies in the investigation

and comparison of five different shortest path algorithms

(Greedy, Dijkstra's, Best First Search, A*, and Floyd-

Warshall) for cargo route optimization. While previous

studies may have focused on one or two algorithms, our

research expands the scope by considering multiple

algorithms and evaluating their performance in terms of

runtime and route validity.

Furthermore, the inclusion of the Greedy algorithm in

the evaluation is a unique aspect of our study. This

algorithm, although widely used in various applications, is

known to have limitations in terms of finding the best route

and potential issues such as looping or failure to find a

route. By incorporating the Greedy algorithm into the

analysis, the study sheds light on its limitations and presents

a comprehensive comparison with alternative algorithms.

Additionally, the evaluation is conducted in different

test scenarios with 1, 2, and 3 hops. This allows us to

assess the performance of the algorithms under varying

network complexities and distances. The results indicate

that while some algorithms may perform well in terms of

runtime, it may not always yield the best route.

Conversely, algorithms such as Dijkstra's, A*, and Floyd-

Warshall consistently provide the optimal route, with A*

standing out as the fastest among them.

In conclusion, our research contributes to the field of

cargo route optimization by providing a thorough

investigation and comparison of multiple shortest path

algorithms. The inclusion of the Greedy algorithm and the

evaluation in different scenarios add novelty to the study.

The findings highlight the strengths and weaknesses of

each algorithm, ultimately concluding that A* is the most

suitable algorithm for cargo route optimization.

With this research, some of the problems that can be

addressed by the developed and compared model include:

1. Route optimization: The model can assist in

optimizing the routes for cargo delivery or

transportation by finding the shortest or best paths

that minimize time, distance, cost, and ratings

2. Logistics efficiency: The model can help improve

efficiency in the supply chain and logistics processes

by enhancing delivery processes and optimizing

resource utilization

3. Schedule planning: The model can be used to plan

delivery or distribution schedules by considering

optimal delivery times
4. Strategic decision-making: The model can provide

essential information for strategic decision-making
in logistics

By addressing these problems, the proposed model

offers potential solutions to enhance various aspects of
logistics operations.

Limitations and Future Research

This research only implements 5 traditional
algorithms. Therefore, for future research, it may be
possible to implement more than 5 search algorithms.

Acknowledgment

Authors would like to thank Telkom University for its

research funding.

Funding Information

This research is funded by Telkom University.

Author’s Contributions

Dedy Rahman Wijaya: Methodology, project
administration, investigation, validation, conceptualization,
formal analysis, written reviewed and edited, supervision,
funded acquisition, resources.

Aqil Athaliah: Software, data curation, validation,
investigation, written original drafted visualization.

Tiara Nuha Noor’afina: Written original drafted,
software, validation, investigation, data curation,
visualization.

Patrick Adolf Telnoni: Methodology, investigation.
Sari Dewi Budiwati: Written, reviewed and edited.

Ethics

The corresponding author affirms that the manuscript
is original and contains unpublished material and that all

co-authors have reviewed and approved it. The authors
also confirm that the research adheres to ethical principles
and guidelines, and that no ethical issues are involved in
the study. In addition, all authors should have contributed
significantly to the research and agreed to the publication
of the manuscript.

References

Algorithms Notes for Professionals. (n.d.).

goalkicker.com
Amin, C., Mulyati, H., Anggraini, E., & Kusumastanto, T.

(2021). Impact of maritime logistics on archipelagic

economic development in eastern Indonesia. Asian
Journal of Shipping and Logistics, 37(2), 157-164.
https://doi.org/10.1016/j.ajsl.2021.01.004

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1378

Azis, H., Lantara, D., & Salim, Y. (2018a, November).

Comparison of Floyd-Warshall algorithm and greedy

algorithm in determining the shortest route. In 2018

2nd East Indonesia conference on computer and

information technology (EIConCIT) (pp. 294-298).

IEEE.

https://doi.org/10.1109/EIConCIT.2018.8878582

Azis, H., Mallongi, R. dg., Lantara, D., & Salim, Y.

(2018b). 2018 2nd East Indonesia Conference on

Computer and Information Technology (EIConCIT).

IEEE. ISBN: 10-1538680505; 9781538680506.

Budiman, V., Agung, H., & Leksmono, Y. S. H. (2018).

Aplikasi Berbasis Android Untuk Mencari Lokasi

Puskesmas Terdekat Dengan Algoritma a-Star Di

Provinsi Dki Jakarta. JUST IT: Jurnal Sistem

Informasi, Teknologi Informasi dan Komputer, 9(1),

39-48. https://doi.org/10.24853/justit.9.1.39-48

Cheng, D., Gkountouna, O., Züfle, A., Pfoser, D., &

Wenk, C. (2019, November). Shortest-path

diversification through network penalization: A

washington DC area case study. In Proceedings of the

12th ACM SIGSPATIAL International Workshop on

Computational Transportation Science (pp. 1-10).

https://doi.org/10.1145/3357000.3366137

Evangelista, D. G. D., Vicerra, R. R. P., & Bandala, A. A.

(2020, December). Approximate Optimization

Model on Routing Sequence of Cargo Truck

Operations through Manila Truck Routes using

Genetic Algorithm. In 2020 IEEE 12th International

Conference on Humanoid, Nanotechnology,

Information Technology, Communication and

Control, Environment, and Management (HNICEM)

(pp. 1-5). IEEE.

https://doi.org/10.1109/HNICEM51456.2020.9400044

Gbadamosi, O. A., & Aremu, D. R. (2020, March).

Design of a Modified Dijkstra’s Algorithm for

finding alternate routes for shortest-path problems

with huge costs. In 2020 International Conference in

Mathematics, Computer Engineering and Computer

Science (ICMCECS) (pp. 1-6). IEEE.

https://doi.org/10.1109/ICMCECS47690.2020.240873

GBFSF. (2023). Greedy Best-First Search when EHC

Fails.

https://www.cs.cmu.edu/afs/cs/project/jair/pub/volu

me28/coles07a-html/node11.html#modifiedbestfs

Hadi Nuryoso, P. Y. (2020). Penerapan Algoritma A*

pada Pencarian Rute Terpendek pada Rute Angkot Di

Kota Sukabumi. Jurnal Sarjana Teknik Informatika,

8(1), 21-35.

Ireland, S. M., & Martin, A. C. R. (2020). Atomium-a

Python structure parser. Bioinformatics, 36(9),

2750-2754.

https://doi.org/10.1093/bioinformatics/btaa072

Januantoro, A., Septiyanto, A. F., & Hapantenda, A. K. W.

(2021). konvergensi_volume_17_nomor_1_januari_20.

jurnal konvergensi untag surabaya, 17, 47–55

Ju, C., Luo, Q., & Yan, X. (2020). Path Planning Using an

Improved A-star Algorithm. Proceedings 11th

International Conference on Prognostics and System

Health Management, PHM-Jinan 2020, 23-26.

https://doi.org/10.1109/PHM-

Jinan48558.2020.00012

Khattab, H., Mahafzah, B. A., & Sharieh, A. (2022). A

hybrid algorithm based on modified chemical

reaction optimization and best-first search algorithm

for solving minimum vertex cover problem. Neural

Computing and Applications, 34(18), 15513-15541.

https://doi.org/10.1007/s00521-022-07262-w

Liana, L. I., & Nudin, S. R. (2020). Implementasi

Algoritma Best-First Search untuk Aplikasi Mesin

Pencari Handphone pada E-commerce (Apenphone).

Journal of Informatics and Computer Science

(JINACS), 2(01), 67-73.

https://doi.org/10.26740/jinacs.v2n01.p67-73

Liu, F., Tang, X., & Yang, Z. (2018, November). An

encoding algorithm based on the shortest path

problem. In 2018 14th International Conference on

Computational Intelligence and Security (CIS) (pp.

35-39). IEEE.

https://doi.org/10.1109/CIS2018.2018.00016

Mavakala, A. W., Adoni, W. Y. H., Aoun, N. Ben,

Nahhal, T., Krichen, M., Alzahrani, M. Y., & Kalala,

F. M. (2023). COV19-Dijkstra: A COVID-19

Propagation Model Based on Dijkstra’s Algorithm.

Journal of Computer Science, 19(1), 75-86.

https://doi.org/10.3844/jcssp.2023.75.86

Mehlhorn, K., & Sanders, P. (2008). Chapter 10. Shortest

Paths" (PDF). Algorithms and Data Structures: The

Basic Toolbox. https://doi.org/10.1007/978-3-540-

77978-0

Kargo. (2021). Peranan Penting Transportasi Logistik di

Indonesia Kargo.

https://kargo.tech/blog/transportasi-logistik-di-

indonesia/

Phan, T., & Do, P. (2018, February). Improving the

shortest path finding algorithm in apache spark

graphx. In Proceedings of the 2nd International

Conference on Machine Learning and Soft

Computing (pp. 67-71).

https://doi.org/10.1145/3184066.3184083

Qian, L., & Yinfa, Z. (2018, August). A Shortest Path

Algorithm Under Specified Nodes Constraint. In

2018 International Conference on Sensing,

Diagnostics, Prognostics, and Control (SDPC) (pp.

686-689). IEEE.

https://doi.org/10.1109/SDPC.2018.8664822

Dedy Rahman Wijaya et al. / Journal of Computer Science 2023, 19 (11): 1369.1379

DOI: 10.3844/jcssp.2023.1369.1379

1379

Qiu, Y. X., Wen, D., Qin, L., Li, W., Li, R. H., & Ying, Z.

(2022). Efficient shortest path counting on large road

networks. Proceedings of the VLDB Endowment.

https://doi.org/10.14778/3547305.3547315

Raza, E., Sabaruddin, L. O., & Komala, A. L. (2020).

Manfaat dan Dampak Digitalisasi Logistik di Era

Industri 4.0. Jurnal Logistik Indonesia, 4(1), 49-63.

http://ojs.stiami.ac.id

Rizi, F. S., Schloetterer, J., & Granitzer, M. (2018,

August). Shortest path distance approximation using

deep learning techniques. In 2018 IEEE/ACM

International Conference on Advances in Social

Networks Analysis and Mining (ASONAM) (pp.

1007-1014). IEEE.

https://doi.org/10.1109/ASONAM.2018.8508763

Sao, P., Kannan, R., Gera, P., & Vuduc, R. (2020,

February). A supernodal all-pairs shortest path

algorithm. In Proceedings of the 25th ACM SIGPLAN

Symposium on Principles and Practice of Parallel

Programming (pp. 250-261).

https://doi.org/10.1145/3332466.3374533

Shan, D., Zhou, W., & Wang, J. (2018, July). A novel

personalized dynamic route recommendation

approach based on pearson similarity coefficient in

cooperative vehicle-infrastructure systems. In 2018

IEEE 8th Annual International Conference on CYBER

Technology in Automation, Control, and Intelligent

Systems (CYBER) (pp. 1270-1275). IEEE.

https://doi.org/10.1109/CYBER.2018.8688301

Thareja, R. (2018). Data Structures Using C (2nd Ed.).

Oxford University Press. pp: 560. ISBN: 10-

0198099304.

Wang, J., Wu, N., & Zhao, W. X. (2021). Personalized

route recommendation with neural network enhanced

search algorithm. IEEE Transactions on Knowledge

and Data Engineering, 34(12), 5910-5924.

https://doi.org/10.1109/TKDE.2021.3068479

Widiyanto, P., & Nashrullah, N. (2020). The role of

transportation and logistics infrastructure in

increasing MSMEs in Indonesia (study in the new

normal era). Sustainable Competitive Advantage

(SCA), 10(1), 558-567.

http://www.jp.feb.unsoed.ac.id/index.php/sca-

1/article/view/1918

Wijaya, D. R. (2023). DoRoute (1.0). Zenodo.

https://zenodo.org/records/7677821

Wongso, R., Cin, C., & Suhartono, J. (2018). TransTrip:

A Shortest Path Finding Application for Jakarta

Public Transportation using Dijkstra Algorithm. J.

Comput. Sci., 14(7), 939-944.

https://doi.org/10.3844/jcssp.2018.939.944

