

 © 2023 Tiny du Toit, Hennie Kruger and Annette Van Der Merwe. This open-access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Automated Terrain Classification with a Bayesian

Hyperparameter Optimized Deep Supervised Autoencoder

Model

Tiny Du Toit, Hennie Kruger and Annette Van Der Merwe

School of Computer Science and Information Systems, Faculty of Natural and Agricultural Sciences,

North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa

Article history

Received: 22-04-2023

Revised: 28-06-2023

Accepted: 07-07-2023

Corresponding Author:

Tiny Du Toit

School of Computer Science

and Information Systems,

Faculty of Natural and

Agricultural Sciences, North-

West University, Private Bag

X6001, Potchefstroom, 2520,

South Africa
Email: Tiny.DuToit@nwu.ac.za

Abstract: Terrain classification according to specific terrain attributes, has

become increasingly important in certain decision-making scenarios.

Automated robots are often utilized to traverse a specific surface to collect

data that can be used in classification models to identify a specific terrain. In

this study, a supervised autoencoder model (i.e., an autoencoder combined

with a supervised learner such as a multilayer perceptron) is proposed to

perform the classification of different terrains. Furthermore, a Bayes

hyperparameter optimization approach is employed to determine optimum

hyperparameter values. The dataset used for model building and training was

obtained by driving a Lego Mindstorm EV3 mobile robot, fitted with a

Raspberry Pi computer and a Sense HAT inertial measurement unit over six

different terrain surfaces, i.e., asphalt, dirt, epoxy, grass, paving, and stone

surfaces. The final dataset contains 281 232 data points which were used for

model building. The results of the proposed supervised autoencoder were

compared and contextualized with three other models, i.e., an SVM model, a

logistic regression model, and an XGBoost model. Results indicate that it is

not only feasible but also desirable to consider the use of a supervised

autoencoder model when there is a need for terrain classifications.

Keywords: Bayesian Optimization, Hyperparameter Optimization,

Supervised Autoencoder, Terrain Classification

Introduction

Autoencoders (AEs) are simple unsupervised

learning-based models which transform model inputs into

outputs with the least possible distortion of the inputs

(Eddahmani et al., 2023). This type of model is essential

in machine learning, although it has a conceptually simple

structure. According to Xu and Ren (2022), AEs were first

created by Rumelhart et al. (1986) to perform

backpropagation with the inputs used for supervision and

are classified as one of the fundamental paradigms of

unsupervised learning. They comprise a central building

block of many deep learning approaches which train

stacked AEs in an unsupervised bottom-up manner

(d'Avila Garcez and Lamb, 2020). To enhance the

performance of neural network modeling, a supervised

learning architecture is often employed in combination

with an AE which is then used to train the final layers and

fine-tune the complete neural network architecture (Le et al.,

2018). The lower part of the AE is task-agnostic and may

also be used in transfer learning approaches. In this study,

the relatively new approach of a supervised autoencoder

(Jafarzadeh et al., 2021) will be applied to perform terrain

classification using a specialized robot built for this purpose.

Combining a supervised learner such as a multilayer

perceptron and an AE to simultaneously predict inputs and

outputs, is a methodology that has been applied by a few

researchers (Hanakata et al., 2020; Yang et al., 2021).

However, the application of an SAE approach for terrain

classification is a fairly new concept with little evidence of

these types of applications in the literature.
Intelligent outdoor robots are increasingly used in

environments that can be hazardous to human beings, like
military reconnaissance, disaster management, or even
remote medical examinations (Concon et al., 2021). For
obvious reasons, an autonomous robot must adapt to the
traversed domain to optimize its planned operation. This
will be possible only if a robot is equipped with the
necessary tools to perceive its environment and optimally
adapt to it. Classification techniques are generally vision,
reaction, or hybrid-based, depending on the application
for which it is required (Fritz et al., 2023).

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1074

Vision-based approaches are typically employed when

data collection is done either on-board utilizing cameras

or laser range finders, or with high-performance

electronic devices such as synthetic aperture radar

imaging technology that uses microwave sensing and is

not adversely affected by extreme weather and light

conditions (Jia et al., 2019). Chavez-Garcia et al. (2017)

implemented a supervised training approach in a

Convolutional Neural Network (CNN) to predict whether

a robot will be able to negotiate its way across a terrain

based on a single image. Improvements in accuracy were

achieved using a combined approach consisting of an

unsupervised stacked denoising AE feeding into a

supervised learning neural network with backpropagation

while optimizing the entire network through error

backpropagation (Liang et al., 2017). Vision-based

classification often results in three-dimensional maps that

indicate navigability, vegetation, etc., and are adequate

for predicting specific terrains like gravel, grass, or tar.

Mobile robots need to timeously maintain performance

throughout their operation, necessitating advanced

techniques that will enable dynamic terrain classification

for more accurate domain adaptation.

Proprioceptive sensors like Inertial Measurement

Units (IMUs) are critical equipment in terrain

classification and can measure a vehicle's slip, sinkage, or

vibrations in reaction-based terrain classification, with a

high degree of accuracy (Fritz et al., 2023). The

motivation, collection, and data type are essential factors

influencing the choice of algorithms and methods for

classifying the terrain and subsequent domain adaptation.

IMUs present the option of combining deep learning

techniques such as Long Short-Term Memory (LSTM)

and CNNs to benefit from both temporal and spatial

advantages of reaction-based classification (Concon et al.,

2021). Ahmadi et al. (2021) investigated a semi-

supervised model consisting of a gated Recurrent Neural

Network (RNN) that used raw and variable-length time-

series data to perform terrain classification.

Challenges identified when performing terrain

classification have inspired hybrid-based approaches.

Apart from combining different data acquisition techniques

like visual and reaction-based surveillance, combinations

of classification methods have been developed. Ding et al.

(2022) mathematically modeled the interaction between a

robot's movement sensor and the terrain and adopted a

combination of the support vector machine, Gaussian

discriminant analysis, logistic regression, and K-nearest

neighbor algorithms for classification. Accuracy was,

however, not very high for mixed terrain areas due to

insufficient characteristic observation. An LSTM trained

on time series data from an actuator that measured the

difference between a robot's center-of-pressure and leg

forces partially addressed this challenge (Allred et al.,

2021). Another mixed approach involved combining 2D

images with 3D photogrammetric data in a CNN

architecture supplemented with a depth pooling layer to

create a simulation of the environment (Chen et al., 2021).

Varying approaches deliver success and, consequently,

bring about some challenges but it is clear that

incorporating soft computing techniques into intelligent

classification strategies will only improve terrain

classification procedures (Nampoothiri et al., 2021).

The motivation for this study is to determine the

accuracy with which a Bayesian hyperparameter-

optimized deep SAE model can identify the terrain type

from IMU sensor data. The main contribution of the

study is the development of a supervised autoencoder

(combined with a supervised learner such as a multilayer

perceptron) that can be utilized for terrain classification

purposes. This approach has not been used previously

for terrain classification problems. The remainder of the

paper is structured as follows. The next two sections

present background information on AEs and the

Bayesian hyperparameter optimization methodology.

The material and methodology section details the data

used and the experimental setup while the results section

describes the result of the model-building process, the

accuracies achieved, and contextualization with three

other comparable modeling techniques. The penultimate

section of the paper presents a discussion of the proposed

model and the modeling process, as well as further

insight into the modeling and classification results. The

paper is then concluded in the conclusion section with

some final remarks.

Autoencoders

An AE is an unsupervised artificial neural network

that typically consists of three layers, i.e., an input layer,

a hidden layer, and an output layer (Bao et al., 2017). AEs

have become a popular way of reducing the

dimensionality of large datasets and are often mentioned

together with Principal Component Analysis (PCA),

which is another technique used for dimensionality reduction

(Witanowski et al., 2023). Reducing the number of features

in a dataset has specific advantages such as increasing the

computational efficiency of a modeling process, removing

highly correlated features, eliminating noise in the data, and

reducing the baseline drift (Kensert et al., 2021). Both

techniques may be used for dimensionality reduction,

however, Witanowski et al. (2023) argue that although

PCA is a popular way of dimensionality reduction, an AE

is more effective in reducing the number of features.

Abdulhammed et al. (2019) list some differences between

the two approaches. A fundamental distinction is that an

AE can model linear and nonlinear structures, while PCA

can only work with linear structures. Other differences

include modeling aspects such as run time (PCA has a fast

run time and AE, has a slow run time), computational

complexity, and memory complexity. Care should also be

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1075

taken to prohibit overfitting when making use of an AE. In

this study, an AE will be implemented to reduce the

dimensionality of a given dataset, therefore, a brief

introduction to AE is provided in the subsequent discussion.

The objective of an AE is to reconstruct an input vector x

into an output vector y in such a way that the error between

the input and reconstructed vectors is minimized. To do

this, the AE contains two distinct parts called an encoder

function and a decoder function. The encoder maps a

given input vector into a compressed form, the bottleneck,

in a latent space. The decoder function then maps the

latent representation back onto a reconstructed output

vector (Abdulhammed et al., 2019). An example of a

typical AE is illustrated in Fig. 1.

After the input vector is mapped to the hidden layer, it

is reconstructed by mapping the hidden vector to the

reconstruction or output layer. These two actions can

mathematically be expressed as follows (Bao et al., 2017):

() ()1 1
a x = f W x+b (1)

()()2 2
y = f W a x +b (2)

where, nx,y  (n is the dimensionality of the input and

output layers). The hidden layer is denoted by a(x) while

W1 and W2 represent the weight of the hidden and output

layers, respectively. The biases of these two layers are

indicated by b1 and b2 respectively, while f is an activation

function. To minimize the reconstruction error between

the input vector x and the reconstructed output vector y,

the following function is optimized:

 1 2 1 2 1 2 1 2

1
1 2

n

i i wd spi=

argminW ,W ,b ,b J = argminW ,W ,b ,b

x - y + J + J 
 

 (3)

In this function, J is the squared reconstruction

error, and xi and yi are the ith value of x and y,

respectively. A weighted decay (Jwd) and sparse penalty

term (Jsp) are included in the objective function. These

terms are required to avoid overfitting and ensure that

the model generalizes effectively. The two terms are

formulated as follows:

() ()2 2

1 2
1 2

wd F F
J = λ W + W (4)

()1

n

sp tt=
J = β KL ρ p̂ (5)

where, .
f is the Frobenius norm. The weight decay and

sparse penalty are controlled by parameters  and  while

KL (.) denotes the Kullback-Leibler divergence, a

standard function to measure the difference between two

distributions (Nielsen, 2022). A sparsity parameter and

the average activation of the tth hidden layer are denoted

by 
t

p̂ and, respectively. The average activation ()t
p̂

for input i is formulated as follows:

() ()
1

1
k

t t ii=
p = m a xˆ  (6)

where, at (xi) denotes the kth unit of the tth hidden layer.

Although the above description refers to three layers

(input, hidden, and output), the AE is referred to as a single

layer AE (Bao et al., 2017). A sequence of single-layer AEs

may be stacked to form a stacked AE (Bao et al., 2017;

Bengio et al., 2006). In a stacked AE, the reconstructed

layer of the first single-layer AE is removed and the hidden

layer then acts as the input layer for the second single-layer

AE. This process is repeated for each layer within the

stacked AE so that each subsequent one is the hidden layer

of the one preceding it. Bao et al. (2017) provides details of

a stacked AE, where an example of a five-layer stacked AE

is described. There are several other variations of AEs that

do not form part of this study. Examples include a sparse

AE (Hu et al., 2019), deep AE (Farahnakian and

Heikkonen, 2018), denoising AE (Tagawa et al., 2015),

under-complete AE (Buongiorno et al., 2019) and

variational AE (Liu et al., 2020).

This research models terrain classification, a supervised

learning scenario in which the goal is to learn a function for

a vector of inputs dx to predict a vector of targets
my  (Le et al., 2018). The function is trained on a finite

batch of independent and identically distributed data, (x1,

y1), …,(xt, yt), to accurately predict new samples generated

from the same distribution. To perform well in prediction,

a typical goal is representation learning, in which the input

xi is transformed into a new representation from which a

simple predictor like a linear predictor may be learned. AEs

are known for their ability to perform representation

learning-see, for example, Yang et al. (2022).

Fig. 1: Typical AE structure

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1076

An SAE, which is proposed in this study, is a kind of

neural network that jointly predicts inputs

(reconstruction) and targets (Le et al., 2018). This

essentially implies that a supervised loss is added to the

output layer for a single hidden layer, i.e., the supervised

loss is introduced to the innermost (lowest) layer of a deep

AE. Following the AE training, the layer is typically

handed off to the supervised learner. In this study, the AE

and supervised learner training is performed

simultaneously. By including a supervised loss in the AE,

representation learning is more directed toward successful

representations for the targeted tasks. In contrast, training

a representation purely on supervised tasks, such as

learning hidden layers in a neural network, is likely to be

an under-constrained problem, yielding solutions that

match the data well but do not uncover underlying

patterns or generalize well. Thus, the combination of the

two losses has the potential to achieve both a balance in

terms of extracting underlying structure and accurate

prediction performance. Furthermore, it has been

demonstrated empirically (Le et al., 2018) that adding the

reconstruction error has no adverse effect on

performance compared to the matching neural network

model. In some instances, it may improve classification

accuracy significantly. To be able to evaluate the results

in a structured manner and draw reasonable conclusions,

the results obtained by three other models are compared

to the proposed SAE. The three models used for

comparative purposes and which are briefly introduced

in the subsequent paragraphs are a Support Vector

Machine (SVM), a logistic regression model, and a

gradient tree boosting model.

Support Vector Machines (SVMs) are a subset of

kernel methods that have been successfully used to

classify terrains (Liu et al., 2022). A separating

hyperplane is constructed between two classes of

points so that the margin between the hyperplane and the

points closest to it becomes maximal. Nonlinear

classification may be accomplished by first mapping the

original data in a nonlinear form to a high-dimensional

feature space. Typically, this computation is performed

implicitly using a kernel function that defines the dot

product between points in a feature space. Allowing for

a small number of training errors is also feasible via a

so-called soft margin parameter which regularizes the

trade-off between maximizing the margin and

minimizing the training error.

Logistic regression is an efficient supervised machine

learning algorithm used for binary classification problems

which can also be generalized to multiclass classification

problems. The technique employs a non-linear sigmoidal

function and models the probability of a discrete outcome

by building, what is generally known as a logit model.

This type of model does not require a linear relationship

between inputs and outputs and the model's range is

bounded to the interval [0,1] (Subasi, 2020). Logistic

regression models are widely used by decision-makers to

solve classification problems and in the context of this

study, the work of Wang et al. (2021) stands out as an

example where the technique was applied to a terrain

classification problem.

Tree boosting is a commonly used and very

successful machine-learning method (Chen and

Guestrin, 2016). Among the current machine-learning

techniques, gradient tree boosting consistently produces

excellent results in various applications, including

terrain classification (Zhang et al., 2021). Rather than

parallelizing the process of decision tree construction,

gradient tree boosting obtains predictions in a sequential

approach in which each decision tree predicts the error

of the preceding tree, therefore boosting (improving) the

error (gradient) (Ayyadevara, 2018).

Bayesian Hyperparameter Optimization

Hyperparameters are internal model parameters not

determined or learned by a machine learning algorithm, but

rather set by the user prior to training (Stuke et al., 2021).

They directly influence the performance of a training

algorithm and are responsible for the efficiency of machine

learning models. Examples of hyperparameters include the

number of hidden layers, the number of neurons per layer,

the learning rate, and momentum. The best or optimal

settings for hyperparameters depend on the size and type of

dataset, making the model usually relevant to only one

problem. Hyperparameter tuning or optimization involves

finding the optimal hyperparameter set that will optimize

the performance of a model (Karl et al., 2022). When

initializing a machine learning model, it is customary to use

a rule-of-thumb approach for the initial values of

hyperparameters and improve them through trial and error.

However, automated optimization techniques can save a

considerable amount of processing time. Popular

optimization algorithms include grid search, random search,

and Bayesian optimization (Masood and Sherif, 2021).

Algorithm 1: The Bayes optimization algorithm (Guo et al.,

2020)

Input: f(x), T, a(x, H)

Output: H

1: H ← θ

2: Random initialization of Gaussian processes, calculate

p(f(x)| x, H)

3: for t←1 to T do

4: x'← argmaxx a(x, H)

5: evaluate y'= f(x')

6: H ← H∪(x', y')

7: Remodel Gaussian processes according to H,

calculate p(f(x)| x, H)

8: end for

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1077

The grid search approach passes all combinations of

hyperparameters through the model and selects the one

with the best result. This is an exhaustive and time-

consuming technique, especially in models with very

large datasets. Random search involves the selection and

use of random combinations of hyperparameter values

and returning the mix that produced the best result. It is

useful when the possible ranges for hyperparameters are

relatively large and the method requires less time than

grid search. As not all the possible combinations are

tested in such a case, the resulting hyperparameter set

may not be the optimal one. Both methods evaluate

numerous unsuitable combinations without considering

the results from previous iterations. In this study,

Bayesian optimization is utilized for hyperparameter

tuning. The technique is a probabilistic approach that

uses Bayesian inference to model the uncertainty in the

hyperparameters, rather than relying on other

deterministic methods.

Bayesian optimization is an informed method that

learns from previous iterations to have an improved

subspace in the subsequent iterations (Owen, 2022).

The technique consists of two key elements namely a

probabilistic surrogate model (i.e., a regression model

to create simpler objective functions) and an

acquisition function that is used for updating

probabilities in a step-by-step manner to gauge how a

group of hyperparameters may affect their

performance, considering data that has been observed

in the past. New hyperparameters that can be

experimented with are recommended while the

acquisition function determines which subspace should

be tested next. The next set of hyperparameters to

evaluate is selected based on the posterior distribution,

such as by sampling from it. This process is then

repeated multiple times until a satisfactory set of

hyperparameters is found.

Algorithm 1 presents the pseudo-code for the Bayes

optimization approach and is constructed as follows

(Guo et al., 2020). Let f (x) be a function that obeys a

Gaussian process, then  ()()p f x x is a normal distribution.

Furthermore, assume that N experiments are performed and

let  
1

N

n n
n=

H = x ,y represent the training set consisting of the

N observations of f (x). The posterior distribution of f (x) is

then calculated as ()()p f x x,H . Following the calculation

of the posterior distribution, an acquisition function a (x, H)

is defined to determine the next sample point by

maximizing the acquisition function. These two key

elements of the technique are defined in Algorithm 1 in

Step 4 (the acquisition function is maximized) and Steps

5-7 (the updating of the posterior distribution).

For further details and a mathematical review of the

Bayes optimization technique, the work of (Shahriari et al.

2015; Wu et al., 2019) may be consulted.

Materials and Methods

An experiment was performed to acquire

representative training data and then build the SAE model

to accurately classify the terrain on which a purpose-built

mobile robot travels. To ensure a proper and valid data-

gathering process, a Lego Mindstorm EV3 mobile robot

was chosen to collect the required data. Lego Mindstorms

(Valk, 2014) is a low-cost robotic platform that has been

used for various real-world applications, including data

logging (Abdullah et al., 2014), remote control (Chin et al.,

2009), navigation (Kwon et al., 2023) and localization

(Liu et al., 2018). The mobile robot shown in Fig. 2 was

constructed with a Raspberry Pi computer and a Sense

HAT IMU (Chatterjee and Debnath, 2018) mounted on

top. This IMU included a variety of integrated circuit-

based sensors that are suitable for different types

of experiments and applications. The mobile robot moved

on rubber wheels and is battery-operated.

A robot's functional abilities are highly dependent on

its sensing capabilities (Chin et al., 2009). Therefore, the

Sense HAT IMU was chosen since it includes six sensors

that measure the dynamic performance of the vehicle

which is of particular significance in terrain classification

problems. These sensors include the following:

• Accelerometer-used to detect the acceleration force

acting along the x-, y- and z-axes in a local frame

• Barometer-a pressure sensor that also determines the

altitude

• Gyroscope-this sensor detects angular velocity in a

local frame along the x-, y- and z-axes

• Humidity-a device that detects and measures the

amount of water vapor in the air

• Magnetometer-a sensor that senses the magnetic field

of the earth and provides the heading of the sensor; and

• Temperature-used to determine the ambient

temperature

Fig. 2: Lego Mindstorms robot used in the data acquisition

experiments

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1078

The sensors measured eight quantities, viz

acceleration intensity, orientation, rotational intensity,

relative humidity, humidity-based temperature,

magnetic intensity, pressure, and pressure-based

temperature. Since the planned data acquisition

experiment was conducted on several terrains, of which

each composition has different properties and

characteristics, it was advantageous to include all the

sensor measurements to classify the terrain. In

addition, when deep learning models are developed an

effective method for improving classification accuracy

is to train them on more, or better data (Chollet, 2021;

Hasib et al., 2022; 2023).

Data

Data for the model-building experiment was

obtained by driving the mobile robot on six different

surfaces, i.e., asphalt, dirt, epoxy, grass, paving, and

stone surfaces, respectively. These diverse surfaces

were selected to improve the robustness of the

proposed SAE model. The robot was driven for 30 min

on two different samples of each of the six terrains

while simultaneously gathering measurements from all

the IMU sensors at 13.02 Hz. This driving time and

sampling rate resulted in 46872 data points recorded for

each terrain. According to a heuristic proposed by

Goodfellow et al. (2016), a supervised learning

algorithm will generally achieve acceptable

performance with around 5000 labeled examples per

category (terrain). Therefore, the assumption was made

that the IMU sensor measurements represented a

signature that could be used to classify the terrain

accurately. The IMU sensor measurements are

described in Table 1.

The complete dataset had 16 inputs (Table 1), six

one-hot encoded outputs corresponding to the different

terrains, and 281 232 data points with no missing

values (the complete dataset is available on request

from the corresponding author). An extraction of the

dataset is presented in the Appendix. In many practical

applications, the pre-processing technique applied to

the data will critically affect the performance of the

final system (Bishop, 1995). The input values differed

by several orders of magnitude, not reflecting their

relative importance in determining the terrain type.

Linear rescaling is one of the most common forms of

pre-processing and is often useful when the typical

values for different inputs are significantly diverse.

Consequently, all inputs were standardized to a N (0, 1)

distribution with like values.

The final step in the pre-processing was to split the

available data into three sets: Training, validation, and test

sets. This step enables the proposed SAE model to be

evaluated by a simple holdout validation protocol

(Chollet, 2021). Since the six terrains were equally

represented in the available data, the data were randomly

partitioned into training (70%), validation (20%), and test

(10%) sets, as suggested by Goodfellow et al. (2016).

Experimental Setup

The model-building experiments were performed on

an IntelR CoreTM i7-7700 CPU with a 3.60GHz

processor, 32 GB of RAM, and a 64-bit Windows 10

operating system running Python 3.9.6, TensorFlow

2.5.0 and the Keras 2.5.0 API. In addition, a GeForce

GTX 1080 GPU with 8 GB of frame buffering provided

accelerated computing. Table 2 shows the

hyperparameter lower and upper bounds of the SAE

model. These bounds define a search space of 12 096

000 possible candidate architectures. The number of

architectures was determined by performing

preliminary experiments to determine appropriate

bounds and then enumerating all the possible

architectures within these bounds.

All the hidden layers used Rectified Linear Unit

(ReLU) activation functions. Compared to other

activation functions (e.g., sigmoid and tanh), ReLUs

significantly accelerate stochastic gradient descent

convergence and avoid saturation. A linear activation

function was selected for the AE output layer and a

softmax activation function for the output layer of the

supervised learner i.e., a multilayer perceptron in this

study. The softmax function's output represents the

class probability associated with each surface. Default

Keras parameters (kernel initializer: Glorot uniform,

bias initializer: Zeros) were utilized to randomly

initialize the model's weights. The Adam adaptive

learning rate optimization algorithm (Kingma and Ba,

2014) was used for training the feature-based model

offline, utilizing a batch size of 32. To minimize

overfitting, a Keras early stopping callback was

included (patience of 250 epochs). No regularization

was performed as the best model discovered did not

overfit due to the relatively small model size. The

model-building experiment ran for 284.81 h while

conducting 108 Bayesian optimization trials. The best

model discovered was then further trained until the best

terrain classification accuracy on the validation dataset

was established. Finally, the model's performance was

evaluated using the test dataset.

Along with the SAE model, an SVM was utilized to

learn the separation between each terrain type and all

other terrain types (one versus rest classification).

Later, an unseen test pattern was assigned to the class

with the most significant distance to the decision

boundary. In addition to the SAE and SVM models,

logistic regression and gradient tree boosting models

were also used to model the data.

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1079

Table 1: IMU sensor measurements

Input Sensor Measuring Unit Description

acc_x Accelerometer ms2 Acceleration intensity of the x-axis

acc_y Accelerometer ms2 Acceleration intensity of the y-axis

acc_z Accelerometer ms2 Acceleration intensity of the z-axis

pitch Accelerometer deg Orientation

roll Accelerometer deg Orientation

yaw Accelerometer deg Orientation

gyro_x Gyroscope rads Rotational intensity of the x-axis

gyro_y Gyroscope rads Rotational intensity of the y-axis

gyro_z Gyroscope rads Rotational intensity of the z-axis

humidity Humidity % Relative humidity

temp_h Humidity °C Humidity-based temperature

mag_x Magnetometer T Magnetic intensity of the x-axis

mag_y Magnetometer T Magnetic intensity of the y-axis

mag_z Magnetometer T Magnetic intensity of the z-axis

 Pressure mb Pressure

temp_p Pressure °C Pressure-based temperature

Table 2: Hyperparameter lower and upper bounds

Hyperparameter Type Lower bound Upper bound

Encoder layers Integer 1 2

Encoder hidden layer nodes Integer 1 15

Bottleneck layer nodes Integer 2 15

Decoder layers Integer 1 2

Decoder hidden layer nodes Integer 1 15

MLP hidden layers Integer 2 3

MLP hidden layer nodes Integer 1 15

Learning rate (on a logarithmic scale) Real 10-6 10-1

Epochs Integer 64 512

Results

The architecture of the best SAE model discovered is

shown in Fig. 3. This model has 867 parameters and an

optimized learning rate of 8.87.10-4. Asymmetrical AE

was constructed with one hidden layer in the encoder and

a decoder with ten nodes each. The bottleneck of the AE

has eight nodes. The lower layers of the supervised learner

(multilayer perceptron) share the encoder's hidden layer

and bottleneck, with 13 and 11 nodes in the two

consecutive higher hidden layers.

The Bayesian optimization history in terms of the

objective value (validation set accuracy) for the 108

trials is presented in Fig. 4. Trials are numbered starting

from 0 and each trial is indicated by a blue dot.

Considering the red line, which shows the best objective

value determined so far, there was a sharp increase in the

validation set accuracy from 26.59-69.32% for the

model architecture at the 15th trial. From thereon, three

better models were determined within the 108 trials

performed. However, continued training of the best

model at the 108th trial did not improve the validation set

performance. Finally, the third-best model at the 100th

trial with a validation set accuracy of 78.83% performed

the best with continued training.

Many machine learning methods rely critically on

hyperparameter settings for the best results. However,

end-users may lack insight into the relative importance

of various hyperparameters and their interactions if

they rely only on such methods. Hutter et al. (2014)

described efficient methods that may be utilized to get

such insight by fitting random forest models to previously

collected data using Bayesian optimization. They

presented a unique, linear-time algorithm for computing

marginals of random forest predictions. Hutter et al.

(2014) then demonstrated how to use these predictions

inside a functional ANOVA (fANOVA) framework to

quantify the importance of single hyperparameters. Figure 5,

the importance of the hyperparameters towards the

objective value is based on the fANOVA hyperparameter

importance evaluation algorithm. The learning rate was

the most critical hyperparameter by a large margin

compared to the number of neurons in the second hidden

layer of the multilayer perceptron (ffnn_architecture2).

This vital importance of the learning rate is confirmed by

Goodfellow et al. (2016). In addition, the importance

of the hyperparameters regarding the duration of

training was also evaluated by the fANOVA framework.

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1080

Fig. 3: The supervised autoencoder model architecture

Fig. 4: Bayesian optimization history

Fig. 5: Importance of the hyperparameters toward the

objective value

Table 3: Average accuracy results

Model Average Accuracy %

SVM model 43.54

Logistic regression 53.94

Supervised autoencoder model 88.62

XGBoost model 95.03

Insight into the importance of hyperparameters and

duration time is used to exclude unimportant

hyperparameters from optimization, which may

dominate the training time. Of all the hyperparameters,

it was only the number of epochs that influenced the

model training time and consequently, no

hyperparameters were excluded in the proposed model.

As alluded to in the section on AEs, comparative

modeling results are needed to make meaningful

deductions from the results of the proposed model. Three

additional models were selected to compare and validate

the results of the proposed SAE model. The models

chosen are an SVM, a logistic regression model, and an

XGBoost model. The detailed modeling process for each

of these three models is omitted as it is only the average

accuracy of the models that are used for comparison

purposes. Table 3, the resulting average accuracy of the

proposed SAE, together with the three comparative

modeling techniques, is shown. The SVM model

performed the worst, with the XGBoost model

outperforming the SAE model by 6.41%.

Although the XGBoost model performs best with a

relatively small margin, the proposed SAE model

performed much better than the SVM model and the

logistic regression model. The confusion matrix (to

explain the actual and predicted values) for the proposed

SAE model is shown in Table 4. The most accurate

results of the SAE model were obtained on the paving,

epoxy, dirt, and asphalt terrains. The result for the grass

surface was also acceptable but for the stone surface, a

significant number of predictions were incorrectly

indicated as an epoxy surface.

To present a clearer picture of the proposed SAE

model, the accuracy, precision, recall, and F1 scores

were also calculated for each surface. These scores are

summarized in Table 5. The accuracy of a classification

system is a class-insensitive performance measure and

is defined as the ratio of correctly classified instances

to all instances:

TP
accuracy =

TP + FP + FN +TN'
 (7)

where, Positive (P) or Negative (N) corresponds to the

class labels predicted by the model and True (T) or

False (F) values indicate the model's accuracy (Rivera-

Lopez et al., 2021).

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1081

Table 4: Confusion matrix for the supervised autoencoder model

 Predicted

 --

Real terrain Paving Epoxy Grass Dirt Stone Asphalt

Paving 4507 0 135 0 0 46

Epoxy 168 4383 52 0 82 3

Grass 226 0 4290 2 84 86

Dirt 0 0 42 4608 38 0

Stone 366 1377 0 16 2613 316

Asphalt 74 0 86 0 2 4526

Table 5: Accuracy, precision, recall, and F1 scores for the supervised autoencoder model

 Accuracy (%) Precision (%) Recall (%) F1 (%)

Paving 96.14 84.38 96.14 89.88

Epoxy 93.49 76.09 93.49 83.90

Grass 91.51 93.16 91.51 92.33

Dirt 98.29 99.61 98.29 98.95

Stone 55.74 92.69 55.74 69.62

Asphalt 96.54 90.94 96.54 93.66

Accuracy is a good measure for this dataset since the

dataset is balanced (both negative and positive classes

have the same number of data instances). Precision and

recall performance measurements are class-sensitive

indicators that specify how well the evaluated classifier

detects the positive class correctly. Precision is defined as

the ratio of correctly classified positive cases to all

positive instances:

TP
Precision =

TP + FP
 (8)

The recall rate is the same as the True Positive rate

(TP). A good classifier's precision and recall should

ideally be 100% (high). Therefore, a metric is needed that

considers both precision and recall. As a result, the F1

score is defined as the harmonic mean of precision and

recall (Eq. 9) and becomes 100% only when precision and

recall are both 100%:

2
1

× precision×recall
F =

precision+recall
 (9)

The performance metrics in Table 5 complement and

confirm the initial results depicted in the confusion

matrix. The four accuracy measures for the epoxy

terrain are marginally lower than the others while the

accuracy of the stone surface is considerably lower than

the rest. The classification results computed for the dirt

terrain were the most accurate. In general, the results in

Tables 4-5 indicate that the implementation of an SAE

does indeed contribute satisfactorily to the

classification of various terrains. The use of a Bayes

optimization hyperparameter technique also

contributes to the good accuracy results obtained. In the

next section, a more detailed discussion will be offered.

Discussion

The implementation of the proposed technique has

provided new contributions and insights into both the

modeling approach and the actual results obtained. In the

field of terrain classification, the combination of an AE

and a supervised learner such as a multilayer perceptron

is a first and new attempt to improve and contribute to the

classification process of different surfaces.

General Remarks Related to the Proposed Model

and Modeling Process

The degree of computational complexity (amount of

computing resources required) is an aspect that should be

considered when an SAE is employed. The proposed

model required a considerable amount of time to train and

a significant number of trials were necessary to optimize

the modeling process. This, however, is not a

disadvantage if one considers the criticality of the

application area. Classifying different terrains is not time

critical and a suitable model can be developed over a

longer period. Once the model is trained, inferences can

be made in a very short time.

The introduction of a Bayes optimization method for

hyperparameter value determination proved to be more

advantageous over traditional approaches such as a grid

search. The technique ensures that the "best"

hyperparameter values are selected in terms of an

objective function that is minimized and therefore

contributes to addressing the critical aspect of finding

suitable hyperparameter values. Furthermore, the

technique facilitates the identification of the most

important hyperparameter variables which in turn

contributes to a more understandable model. In this study,

the learning rate, the number of neurons in the hidden

layer of the supervised learner, and the training time were

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1082

identified as critical. These findings concur with other

related studies in the literature-see for example

Goodfellow et al. (2016).

The results of the model are easily verifiable and

contextualized by comparing it to other classification

models. In this study, three other models were used to

compare the results of the proposed SAE. An SVM model,

a logistic regression model, and an XGBoost model were

constructed using the same dataset. The results of these

three models were then compared to the proposed SAE.

The proposed model performed much better than the SVM

and logistic regression model but was marginally worse

than the XGBoost model. This may be attributed to the

parallel processing capabilities of an XGBoost model.

Despite its good performance, it should also be noted that

XGBoost models are prone to overfitting, difficult to

fine-tune, less interpretable, and difficult to visualize

(Jafarzadeh et al., 2021). Although the three models

selected for comparative purposes are traditionally easy to

train and implement, the SAE model was equally easy to

develop and implement. However, the combination with a

supervised learner (the multilayer perceptron) does need some

initial understanding of the models and concepts involved.

Results of the Proposed Model

The actual results obtained from the SAE model

provide further insight into the proposed methodology. To

analyze the predicted cases, a confusion matrix was

constructed in Table 4. In Table 6, a summary of the

percentage of correct classifications for each of the six

terrains is shown.

From the results depicted in Table 6, it is clear that the

proposed model predicted the dirt terrain with the highest

accuracy (98.3%). The worst performance was recorded for

the stone terrain where a large number of predictions were

incorrectly indicated as epoxy surface. The accuracy for the

stone surface was only 55.7%. All the other classification

predictions were higher than 91% correct. If the stone

terrain is omitted, the confusion matrix shows an average

of 95.2% correct classification predictions for the remaining

five surfaces. It should be noted that the classification of

stone surfaces is traditionally more challenging because of

the complexity of a stone terrain. Stones are not similar in

shape and often result in uneven surfaces that are difficult

to classify. This observation is in line with findings from

other studies pertaining to the classification of stone

surfaces- see, for example, the work by Fredriksson (2022).

Four different accuracy measures were computed for

the proposed model and were summarized in Table 5.

Except for the stone surface, all accuracy measures were

high with the classification of the dirt surface showing the

highest accuracy for all four measures. The results from

both the confusion matrix and the computed four accuracy

measures are encouraging and indicate the feasibility of

employing an SAE in the field of terrain classifications.

Table 6: Correct classifications according to the confusion

matrix

 Number correctly Percentage correctly

Terrain classified classified

Paving 4507 96.1

Epoxy 4383 93.5

Grass 4290 91.5

Dirt 4608 98.3

Stone 2613 55.7

Asphalt 4526 96.5

Conclusion

The use of an SAE model for terrain classification,

using robots, is increasingly important and may be applied

in areas such as disaster management, military

reconnaissance, or inspection of hazardous areas. To

contribute to the area of terrain classification, an SAE

model is proposed in this study. Although the technique is

not entirely new, it is a first attempt at terrain

classification. As part of the model-building process, a

Bayes optimization technique was employed to determine

hyperparameter values. The Bayes approach proves to be

more advantageous than the traditional hyperparameter

identification techniques. The results of the proposed SAE

were compared with three other well-known models.

Although one of these models has marginally

outperformed the proposed model, a closer look at the

results and the modeling process indicated that definite

benefits can be derived by opting for an SAE model to

distinguish among different surfaces. As this was the first

attempt at using an SAE in terrain classification, several

future research opportunities exist. One such opportunity

may be to experiment with the construction of the dataset

(drive the robot longer on more surfaces to generate a

larger and more reliable dataset) as well as with the

bounds of the hyperparameter set (relaxing some of the

bounds to further improve the accuracy of the Bayes

hyperparameter value optimization process).

Acknowledgment

We gratefully acknowledge the funding received from

the Unit of Data Science and Computing (UDSC) at the

North-West University in South Africa and the access to

their equipment, which was instrumental in facilitating the

experimentation and analysis conducted in this study.

Funding Information

Funding for this study was provided by the UDSC.

Author’s Contributions

Tiny Du Toit: Design of research project, prepare and

perform experiments, development of model architecture,

written and finalized the manuscript.

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1083

Hennie Kruger: Design of research project, assist with

theoretical research, assist with interpretation of results

and written and finalized of manuscript.

Annette Van Der Merwe: Research of theoretical

concepts and principles used in the research project,

written and finalized the manuscript. Assist with

language edited and grammatical issues.

Ethics

This article is original work and has not been

submitted for publication elsewhere. The authors have

read and approved the manuscript.

References

Abdulhammed, R., Musafer, H., Alessa, A., Faezipour,

M., & Abuzneid, A. (2019). Features dimensionality

reduction approaches for machine learning based

network intrusion detection. Electronics, 8(3), 322.

https://doi.org/10.3390/electronics8030322

Abdullah, M. A., Ramli, F. R., & Lim, C. S. (2014).

Railway Dynamics Analysis Using Lego Mindstorms.

Applied Mechanics and Materials, 465, 13-17.

https://doi.org/10.4028/www.scientific.net/AMM.46

5-466.13

Ahmadi, A., Nygaard, T., Kottege, N., Howard, D., &

Hudson, N. (2021). Semi-supervised gated

recurrent neural networks for robotic terrain

classification. IEEE Robotics and Automation

Letters, 6(2), 1848-1855.

https://doi.org/10.1109/LRA.2021.3060437

Allred, C., Russell, M., Harper, M., & Pusey, J. (2021,

November). Improving methods for multi-terrain

classification beyond visual perception. In 2021 5th

IEEE International Conference on Robotic

Computing (IRC) (pp. 96-99). IEEE.

https://doi.org/10.1109/IRC52146.2021.00022

Ayyadevara, V. K. (2018). Gradient boosting machine.

Pro machine learning algorithms: A hands-on

approach to implementing algorithms in python and

R, 117-134.

https://doi.org/10.1007/978-1-4842-3564-5_6

Bao, W., Yue, J., & Rao, Y. (2017). A deep learning

framework for financial time series using stacked

autoencoders and long-short term memory. PloS

One, 12(7), e0180944.

https://doi.org/10.1371/journal.pone.0180944

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H.

(2006). Greedy layer-wise training of deep networks.

Advances in Neural Information Processing Systems,

19. https://doi.org/10.5555/2976456.2976476

Bishop, C. M. (1995). Neural networks for pattern

recognition. Oxford university press.

ISBN: 0198538642.

Buongiorno, D., Camardella, C., Cascarano, G. D.,

Murciego, L. P., Barsotti, M., De Feudis, I., ... &

Bevilacqua, V. (2019, July). An undercomplete

autoencoder to extract muscle synergies for motor

intention detection. In 2019 International Joint

Conference on Neural Networks (IJCNN) (pp. 1-8).

IEEE. https://doi.org/10.1109/IJCNN.2019.8851975

Chatterjee, J., & Debnath, T. (2018). Environmental

monitoring using sense hat based on IBM Watson

IOT platform. International Research Journal of

Engineering and Technology (IRJET), 5(7), 392-399.

https://doi.org/10.13140/RG.2.2.30943.56484

Chavez-Garcia, R. O., Guzzi, J., Gambardella, L. M., &

Giusti, A. (2017). Image classification for ground

traversability estimation in robotics. In Advanced

Concepts for Intelligent Vision Systems: 18th

International Conference, ACIVS 2017, Antwerp,

Belgium, September 18-21, 2017, Proceedings 18

(pp. 325-336). Springer International Publishing.

https://doi.org/10.1007/978-3-319-70353-4_28

Chen, M., Feng, A., Hou, Y., McCullough, K., Prasad, P.

B., & Soibelman, L. (2021). Ground material

classification for UAV-based photogrammetric 3D

data A 2D-3D Hybrid Approach. arXiv preprint

arXiv:2109.12221.

https://doi.org/10.48550/arXiv.2109.12221

Chen, T., & Guestrin, C. (2016, August). Xgboost: A

scalable tree boosting system. In Proceedings of the

22nd ACM Sigkdd International Conference on

Knowledge Discovery and Data Mining (pp. 785-794).

https://doi.org/10.1145/2939672.2939785

Chin, K. C. Y., Buhari, S. M., & Ong, W. H. (2009,

February). Impact of lego sensors in remote

controlled robot. In 2008 IEEE International

Conference on Robotics and Biomimetics (pp.

1777-1782). IEEE.

 https://doi.org/10.1109/ROBIO.2009.4913271

Chollet, F. (2021). Deep Learning with Python, 2nd Ed.

ISBN: 9781617296864.

Concon, M., Wong, W. K., Juwono, F. H., & Apriono, C.

(2021). Deep Learning for Terrain Surface

Classification: Vibration-based Approach. In ISIC

(pp. 237-243). https://ceur-ws.org/Vol-2786/

d'Avila Garcez, A., & Lamb, L. C. (2020). Neurosymbolic

AI: The 3rd wave. arXiv e-prints, arXiv-2012.

https://doi.org/10.48550/arXiv.2012.05876

Ding, L., Xu, P., Li, Z., Zhou, R., Gao, H., Deng, Z., &

Liu, G. (2022). Pressing and rubbing: Physics-

informed features facilitate haptic terrain

classification for legged robots. IEEE Robotics and

Automation Letters, 7(3), 5990-5997.

https://doi.org/10.1109/LRA.2022.3160833

https://ceur-ws.org/Vol-2786/
https://doi.org/10.1109/LRA.2022.3160833

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1084

Eddahmani, I., Pham, C. H., Napoléon, T., Badoc, I.,

Fouefack, J. R., & El-Bouz, M. (2023). Unsupervised

learning of disentangled representation via auto-

encoding: A survey. Sensors, 23(4), 2362.

https://doi.org/10.3390/s23042362

Farahnakian, F., & Heikkonen, J. (2018, February). A

deep auto-encoder based approach for intrusion

detection system. In 2018 20th International

Conference on Advanced Communication

Technology (ICACT) (pp. 178-183). IEEE.

https://doi.org/10.23919/ICACT.2018.8323688

Fredriksson, E. (2022). Classification of Terrain

Roughness from Nationwide Data Sources Using

Deep Learning.

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-

185560

Fritz, L., Hamersma, H. A., & Botha, T. R. (2023). Off-

road terrain classification. Journal of

Terramechanics, 106, 1-11.

https://doi.org/10.1016/j.jterra.2022.11.003

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep

learning. MIT press. ISBN: 0262337371.

Guo, H., Zhuang, X., & Rabczuk, T. (2020). Stochastic

analysis of heterogeneous porous material with

modified neural architecture search (NAS) based

physics-informed neural networks using transfer

learning. arXiv Preprint arXiv:2010.12344.

https://doi.org/10.48550/arXiv.2010.12344

Hanakata, P. Z., Cubuk, E. D., Campbell, D. K., & Park,

H. S. (2020). Forward and inverse design of kirigami

via supervised autoencoder. Physical Review

Research, 2(4), 042006.

https://doi.org/10.1103/PhysRevResearch.2.042006

Hasib, K. M., Islam, M. R., Sakib, S., Akbar, M. A.,

Razzak, I., & Alam, M. S. (2023). Depression

Detection From Social Networks Data Based on

Machine Learning and Deep Learning Techniques:

An Interrogative Survey. IEEE Transactions on

Computational Social Systems.

https://doi.org/10.1109/TCSS.2023.3263128

Hasib, K. M., Tanzim, A., Shin, J., Faruk, K. O., Al

Mahmud, J., & Mridha, M. F. (2022). Bmnet-5: A

novel approach of neural network to classify the

genre of bengali music based on audio features. IEEE

Access, 10, 108545-108563.

https://doi.org/10.1109/ACCESS.2022.3213818

Hu, C., Wu, X. J., & Shu, Z. Q. (2019). Discriminative

feature learning via sparse autoencoders with label

consistency constraints. Neural Processing Letters,

50, 1079-1091.

https://doi.org/10.1007/s11063-018-9898-1

Hutter, F., Hoos, H., & Leyton-Brown, K. (2014). An

efficient approach for assessing hyperparameter

importance. In International Conference on Machine

Learning (pp. 754-762). PMLR.

https://doi.org/10.5555/3044805.3044891

Jafarzadeh, H., Mahdianpari, M., Gill, E.,

Mohammadimanesh, F., & Homayouni, S. (2021).

Bagging and boosting ensemble classifiers for

classification of multispectral, hyperspectral and

PolSAR data: A comparative evaluation. Remote

Sensing, 13(21), 4405.

https://doi.org/10.3390/rs13214405

Jia, Z., Guangchang, D., Feng, C., Xiaodan, X.,

Chengming, Q., & Lin, L. (2019). A deep learning

fusion recognition method based on SAR image data.

Procedia Computer Science, 147, 533-541.

https://doi.org/10.1016/j.procs.2019.01.229

Karl, F., Pielok, T., Moosbauer, J., Pfisterer, F., Coors, S.,

Binder, M., ... & Bischl, B. (2022). Multi-Objective

Hyperparameter Optimization-An Overview. arXiv

Preprint arXiv:2206.07438.

https://doi.org/10.48550/arXiv.2206.07438

Kensert, A., Collaerts, G., Efthymiadis, K., Van Broeck,

P., Desmet, G., & Cabooter, D. (2021). Deep

convolutional autoencoder for the simultaneous

removal of baseline noise and baseline drift in

chromatograms. Journal of Chromatography A,

1646, 462093.

https://doi.org/10.1016/j.chroma.2021.462093

Kingma, D. P., & Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv Preprint

arXiv:1412.6980.

https://doi.org/10.48550/arXiv.1412.6980

Kwon, Y., Kim, W., & Jung, I. (2023). Neural Network

Models for Driving Control of Indoor Autonomous

Vehicles in Mobile Edge Computing. Sensors, 23(5),

2575. https://doi.org/10.3390/s23052575
Le, L., Patterson, A., & White, M. (2018). Supervised

autoencoders: Improving generalization performance
with unsupervised regularizers. Advances in neural
Information Processing Systems, 31.
https://doi.org/10.5555/3326943.3326954

Liang, P., Shi, W., & Zhang, X. (2017). Remote sensing

image classification based on stacked denoising

autoencoder. Remote Sensing, 10(1), 16.
https://doi.org/10.3390/rs10010016

Liu, W., Li, R., Zheng, M., Karanam, S., Wu, Z., Bhanu,

B., ... & Camps, O. (2020). Towards visually

explaining variational autoencoders. In Proceedings

of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition (pp. 8642-8651).

https://doi.org/10.1109/CVPR42600.2020.00867

Liu, G., Wang, L., Liu, D., Fei, L., & Yang, J. (2022).

Hyperspectral image classification based on non-

parallel support vector machine. Remote Sensing,

14(10), 2447. https://doi.org/10.3390/rs14102447

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185560
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-185560

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1085

Liu, Y., Fan, R., Yu, B., Bocus, M. J., Liu, M., Ni, H., ...

& Mao, S. (2018, December). Mobile robot

localisation and navigation using lego nxt and

ultrasonic sensor. In 2018 IEEE International

Conference on Robotics and Biomimetics (ROBIO)

(pp. 1088-1093). IEEE.

https://doi.org/10.1109/ROBIO.2018.8665350

Masood, A. (2021). Automated Machine Learning:

Hyperparameter optimization, neural architecture

search, and algorithm selection with cloud

platforms. Packt Publishing Ltd.

ISBN: 1800565526.

Nampoothiri, M. H., Vinayakumar, B., Sunny, Y., &

Antony, R. (2021). Recent developments in terrain

identification, classification, parameter estimation

for the navigation of autonomous robots. SN Applied

Sciences, 3, 1-14.

https://doi.org/10.1007/s42452-021-04453-3

Nielsen, F. (2022). The Kullback–Leibler divergence

between lattice Gaussian distributions. Journal of the

Indian Institute of Science, 102(4), 1177-1188.

https://doi.org/10.1007/s41745-021-00279-5

Owen, L. (2022). Hyperparameter Tuning with Python:

Boost Your Machine Learning Model's Performance

Via Hyperparameter Tuning. Packt Publishing

Limited. ISBN: 9781803241944.

Rivera-Lopez, R., Canul-Reich, J., Mezura-Montes, E.,

& Cruz-Chávez, M. A. (2022). Induction of

decision trees as classification models through

metaheuristics. Swarm and Evolutionary

Computation, 69, 101006.

https://doi.org/10.1016/j.swevo.2021.101006

Rumelhart, D. E., McClelland, J. L., & PDP Research

Group, C. O. R. P. O. R. A. T. E. (Eds.). (1986).

Parallel distributed processing: Explorations in the

microstructure of cognition, Vol. 1: Foundations.

MIT press.

https://dl.acm.org/doi/abs/10.5555/104279

Shahriari, B., Swersky, K., Wang, Z., Adams, R. P., & De

Freitas, N. (2015). Taking the human out of the loop:

A review of Bayesian optimization. Proceedings of

the IEEE, 104(1), 148-175.

https://doi.org/10.1109/JPROC.2015.2494218

Stuke, A., Rinke, P., & Todorović, M. (2021). Efficient

hyperparameter tuning for kernel ridge regression

with Bayesian optimization. Machine Learning:

Science and Technology, 2(3), 035022.

https://doi.org/10.1088/2632-2153/abee59

Subasi, A. (2020). Practical machine learning for data

analysis using python. Academic Press.

ISBN:0128213809.

Tagawa, T., Tadokoro, Y., & Yairi, T. (2015, February).

Structured denoising autoencoder for fault detection

and analysis. In Asian conference on machine

learning (pp. 96-111). PMLR.

https://doi.org/10.1016/j.ress.2021.107864

Valk, L. (2014). The lego mindstorms EV3 discovery

book: A beginner's guide to building and

programming robots. No Starch Press.

ISBN: 1593275323.

Wang, M., Ye, L., & Sun, X. (2021). Adaptive online

terrain classification method for mobile robot based

on vibration signals. International Journal of

Advanced Robotic Systems, 18(6),

https://doi.org/10.1177/17298814211062035

Witanowski, Ł., Ziółkowski, P., Klonowicz, P., &

Lampart, P. (2023). A hybrid approach to

optimization of radial inflow turbine with principal

component analysis. Energy, 272, 127064.

https://doi.org/10.1016/j.energy.2023.127064

Wu, J., Chen, X. Y., Zhang, H., Xiong, L. D., Lei, H., &

Deng, S. H. (2019). Hyperparameter optimization for

machine learning models based on Bayesian

optimization. Journal of Electronic Science and

Technology, 17(1), 26-40.

https://doi.org/10.11989/JEST.1674-

862X.80904120

Xu, X., & Ren, W. (2022). A hybrid model of stacked

autoencoder and modified particle swarm

optimization for multivariate chaotic time series

forecasting. Applied Soft Computing, 116, 108321.

https://doi.org/10.1016/j.asoc.2021.108321

Yang, S., Wang, Y., & Li, C. (2021). Wind turbine

gearbox fault diagnosis based on an improved

supervised autoencoder using vibration and motor

current signals. Measurement Science and

Technology, 32(11), 114003.

https://doi.org/10.1088/1361-6501/ac0741

Yang, Z., Xu, B., Luo, W., & Chen, F. (2022).

Autoencoder-based representation learning and its

application in intelligent fault diagnosis: A review.

Measurement, 189, 110460.

https://doi.org/10.1016/j.measurement.2021.110460

Zhang, Y., Ma, Z., Song, X., Wu, J., Liu, S., Chen, X., &

Guo, X. (2021). Road Surface Defects Detection

Based on IMU Sensor. IEEE Sensors Journal, 22(3),

2711-2721.

https://doi.org/10.1109/JSEN.2021.3135388

Appendix

In this appendix section, the first ten data points of

the training dataset are presented. The provided data

points proffer a preliminary insight into the

characteristics and scope of the data under analysis.

https://doi.org/10.1088/1361-6501/ac0741
https://doi.org/10.1109/JSEN.2021.3135388

Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086

DOI: 10.3844/jcssp.2023.1073.1086

1086

Appendix 1: Extract of first ten records of data file used for model development

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16

 1 1.81E-01 5.05E-01 -6.20E-01 2.06E-01 3.42E-01 -1.29E+00 -1.30E+00 1.03E+00 -1.89E-01 4.32E-01 2.90E-01 2.22E-01 5.53E-01 -9.55E-02 7.72E+03 5.93E+02
 2 -1.97E-01 1.06E-01 -1.74E-01 2.13E-01 3.42E-01 -1.34E-01 -4.17E-01 -2.58E-03 7.69E-01 -4.84E-01 -4.55E-01 -3.87E-02 1.78E-01 3.80E-01 1.59E+04 1.22E+03

 3 -2.05E-01 1.40E-01 -1.62E-01 2.19E-01 3.38E-01 -1.69E-01 -4.96E-01 -2.04E-02 8.69E-01 7.01E-01 1.00E+00 -9.60E-01 -1.39E-01 -5.14E-01 1.47E+04 1.12E+03

 4 2.96E-02 3.70E-02 8.47E-01 2.05E-01 3.54E-01 -1.78E+00 7.84E-01 8.73E-01 6.67E-02 1.34E-01 -6.16E-01 2.42E-01 1.85E-01 -6.00E-01 1.61E+04 1.23E+03
 5 1.39E-01 3.95E-02 -2.94E-01 2.06E-01 3.47E-01 -5.74E-01 -6.32E-01 1.75E+00 -3.00E-01 3.30E-01 2.31E-01 3.91E-01 4.71E-01 -4.28E-02 1.30E+04 9.96E+02

 6 1.27E-01 -7.69E-04 1.61E+00 2.24E-01 3.12E-01 -8.42E-02 1.13E+00 -4.25E-01 -1.43E+00 -1.03E+00 1.90E+00 -1.06E+00 8.08E-01 2.25E+00 3.17E+03 2.44E+02

 7 2.77E-01 3.42E-01 -1.49E+00 1.96E-01 3.16E-01 1.52E+00 -7.96E-01 1.16E+00 5.11E-01 -3.33E-02 2.39E-01 4.47E-01 3.40E-02 7.44E-01 1.62E+04 1.24E+03

 8 4.33E-02 7.71E-01 6.15E-01 2.25E-01 3.15E-01 6.25E-01 7.09E-01 1.96E-01 -2.22E-01 -3.43E-01 2.05E-02 1.57E+00 8.11E-01 4.08E-01 6.36E+03 4.88E+02
 9 2.15E-01 4.60E-01 -4.57E-01 1.91E-01 3.27E-01 -1.34E+00 -1.27E+00 1.26E+00 -4.94E-01 2.30E-01 1.35E+00 2.35E-01 7.77E-01 7.75E-01 1.47E+04 1.12E+03

10 2.20E-02 6.01E-01 -6.68E-01 1.52E-01 2.90E-01 -5.90E-01 -4.62E-01 -4.74E-01 1.25E+00 7.63E-02 2.86E-01 4.10E-01 1.78E+00 3.11E-01 4.84E+03 3.71E+02

Appendix 2: Extract of one-hot coded terrain classification variable (six terrain surfaces)

 y1 y2 y3 y4 y5 y6

 1 1 0 0 0 0 0

 2 1 0 0 0 0 0

 3 1 0 0 0 0 0

 4 0 1 0 0 0 0

 5 0 1 0 0 0 0

 6 0 0 0 1 0 0

 7 0 0 1 0 0 0

 8 0 0 1 0 0 0

 9 1 0 0 0 0 0

10 0 0 1 0 0 0

