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Abstract: Terrain classification according to specific terrain attributes, has 

become increasingly important in certain decision-making scenarios. 

Automated robots are often utilized to traverse a specific surface to collect 

data that can be used in classification models to identify a specific terrain. In 

this study, a supervised autoencoder model (i.e., an autoencoder combined 

with a supervised learner such as a multilayer perceptron) is proposed to 

perform the classification of different terrains. Furthermore, a Bayes 

hyperparameter optimization approach is employed to determine optimum 

hyperparameter values. The dataset used for model building and training was 

obtained by driving a Lego Mindstorm EV3 mobile robot, fitted with a 

Raspberry Pi computer and a Sense HAT inertial measurement unit over six 

different terrain surfaces, i.e., asphalt, dirt, epoxy, grass, paving, and stone 

surfaces. The final dataset contains 281 232 data points which were used for 

model building. The results of the proposed supervised autoencoder were 

compared and contextualized with three other models, i.e., an SVM model, a 

logistic regression model, and an XGBoost model. Results indicate that it is 

not only feasible but also desirable to consider the use of a supervised 

autoencoder model when there is a need for terrain classifications.  

 

Keywords: Bayesian Optimization, Hyperparameter Optimization, 

Supervised Autoencoder, Terrain Classification 
 

Introduction  

Autoencoders (AEs) are simple unsupervised 

learning-based models which transform model inputs into 

outputs with the least possible distortion of the inputs 

(Eddahmani et al., 2023). This type of model is essential 

in machine learning, although it has a conceptually simple 

structure. According to Xu and Ren (2022), AEs were first 

created by Rumelhart et al. (1986) to perform 

backpropagation with the inputs used for supervision and 

are classified as one of the fundamental paradigms of 

unsupervised learning. They comprise a central building 

block of many deep learning approaches which train 

stacked AEs in an unsupervised bottom-up manner 

(d'Avila Garcez and Lamb, 2020). To enhance the 

performance of neural network modeling, a supervised 

learning architecture is often employed in combination 

with an AE which is then used to train the final layers and 

fine-tune the complete neural network architecture (Le et al., 

2018). The lower part of the AE is task-agnostic and may 

also be used in transfer learning approaches. In this study, 

the relatively new approach of a supervised autoencoder 

(Jafarzadeh et al., 2021) will be applied to perform terrain 

classification using a specialized robot built for this purpose. 

Combining a supervised learner such as a multilayer 

perceptron and an AE to simultaneously predict inputs and 

outputs, is a methodology that has been applied by a few 

researchers (Hanakata et al., 2020; Yang et al., 2021). 

However, the application of an SAE approach for terrain 

classification is a fairly new concept with little evidence of 

these types of applications in the literature.  
Intelligent outdoor robots are increasingly used in 

environments that can be hazardous to human beings, like 
military reconnaissance, disaster management, or even 
remote medical examinations (Concon et al., 2021). For 
obvious reasons, an autonomous robot must adapt to the 
traversed domain to optimize its planned operation. This 
will be possible only if a robot is equipped with the 
necessary tools to perceive its environment and optimally 
adapt to it. Classification techniques are generally vision, 
reaction, or hybrid-based, depending on the application 
for which it is required (Fritz et al., 2023).  
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Vision-based approaches are typically employed when 

data collection is done either on-board utilizing cameras 

or laser range finders, or with high-performance 

electronic devices such as synthetic aperture radar 

imaging technology that uses microwave sensing and is 

not adversely affected by extreme weather and light 

conditions (Jia et al., 2019). Chavez-Garcia et al. (2017) 

implemented a supervised training approach in a 

Convolutional Neural Network (CNN) to predict whether 

a robot will be able to negotiate its way across a terrain 

based on a single image. Improvements in accuracy were 

achieved using a combined approach consisting of an 

unsupervised stacked denoising AE feeding into a 

supervised learning neural network with backpropagation 

while optimizing the entire network through error 

backpropagation (Liang et al., 2017). Vision-based 

classification often results in three-dimensional maps that 

indicate navigability, vegetation, etc., and are adequate 

for predicting specific terrains like gravel, grass, or tar. 

Mobile robots need to timeously maintain performance 

throughout their operation, necessitating advanced 

techniques that will enable dynamic terrain classification 

for more accurate domain adaptation. 

Proprioceptive sensors like Inertial Measurement 

Units (IMUs) are critical equipment in terrain 

classification and can measure a vehicle's slip, sinkage, or 

vibrations in reaction-based terrain classification, with a 

high degree of accuracy (Fritz et al., 2023). The 

motivation, collection, and data type are essential factors 

influencing the choice of algorithms and methods for 

classifying the terrain and subsequent domain adaptation. 

IMUs present the option of combining deep learning 

techniques such as Long Short-Term Memory (LSTM) 

and CNNs to benefit from both temporal and spatial 

advantages of reaction-based classification (Concon et al., 

2021). Ahmadi et al. (2021) investigated a semi-

supervised model consisting of a gated Recurrent Neural 

Network (RNN) that used raw and variable-length time-

series data to perform terrain classification. 

Challenges identified when performing terrain 

classification have inspired hybrid-based approaches. 

Apart from combining different data acquisition techniques 

like visual and reaction-based surveillance, combinations 

of classification methods have been developed. Ding et al. 

(2022) mathematically modeled the interaction between a 

robot's movement sensor and the terrain and adopted a 

combination of the support vector machine, Gaussian 

discriminant analysis, logistic regression, and K-nearest 

neighbor algorithms for classification. Accuracy was, 

however, not very high for mixed terrain areas due to 

insufficient characteristic observation. An LSTM trained 

on time series data from an actuator that measured the 

difference between a robot's center-of-pressure and leg 

forces partially addressed this challenge (Allred et al., 

2021). Another mixed approach involved combining 2D 

images with 3D photogrammetric data in a CNN 

architecture supplemented with a depth pooling layer to 

create a simulation of the environment (Chen et al., 2021). 

Varying approaches deliver success and, consequently, 

bring about some challenges but it is clear that 

incorporating soft computing techniques into intelligent 

classification strategies will only improve terrain 

classification procedures (Nampoothiri et al., 2021).  

The motivation for this study is to determine the 

accuracy with which a Bayesian hyperparameter-

optimized deep SAE model can identify the terrain type 

from IMU sensor data. The main contribution of the 

study is the development of a supervised autoencoder 

(combined with a supervised learner such as a multilayer 

perceptron) that can be utilized for terrain classification 

purposes. This approach has not been used previously 

for terrain classification problems. The remainder of the 

paper is structured as follows. The next two sections 

present background information on AEs and the 

Bayesian hyperparameter optimization methodology. 

The material and methodology section details the data 

used and the experimental setup while the results section 

describes the result of the model-building process, the 

accuracies achieved, and contextualization with three 

other comparable modeling techniques. The penultimate 

section of the paper presents a discussion of the proposed 

model and the modeling process, as well as further 

insight into the modeling and classification results. The 

paper is then concluded in the conclusion section with 

some final remarks.  

Autoencoders 

An AE is an unsupervised artificial neural network 

that typically consists of three layers, i.e., an input layer, 

a hidden layer, and an output layer (Bao et al., 2017). AEs 

have become a popular way of reducing the 

dimensionality of large datasets and are often mentioned 

together with Principal Component Analysis (PCA), 

which is another technique used for dimensionality reduction 

(Witanowski et al., 2023). Reducing the number of features 

in a dataset has specific advantages such as increasing the 

computational efficiency of a modeling process, removing 

highly correlated features, eliminating noise in the data, and 

reducing the baseline drift (Kensert et al., 2021). Both 

techniques may be used for dimensionality reduction, 

however, Witanowski et al. (2023) argue that although 

PCA is a popular way of dimensionality reduction, an AE 

is more effective in reducing the number of features. 

Abdulhammed et al. (2019) list some differences between 

the two approaches. A fundamental distinction is that an 

AE can model linear and nonlinear structures, while PCA 

can only work with linear structures. Other differences 

include modeling aspects such as run time (PCA has a fast 

run time and AE, has a slow run time), computational 

complexity, and memory complexity. Care should also be 



Tiny Du Toit et al. / Journal of Computer Science 2023, 19 (9): 1073.1086 

DOI: 10.3844/jcssp.2023.1073.1086 

 

1075 

taken to prohibit overfitting when making use of an AE. In 

this study, an AE will be implemented to reduce the 

dimensionality of a given dataset, therefore, a brief 

introduction to AE is provided in the subsequent discussion. 

The objective of an AE is to reconstruct an input vector x 

into an output vector y in such a way that the error between 

the input and reconstructed vectors is minimized. To do 

this, the AE contains two distinct parts called an encoder 

function and a decoder function. The encoder maps a 

given input vector into a compressed form, the bottleneck, 

in a latent space. The decoder function then maps the 

latent representation back onto a reconstructed output 

vector (Abdulhammed et al., 2019). An example of a 

typical AE is illustrated in Fig. 1. 

After the input vector is mapped to the hidden layer, it 

is reconstructed by mapping the hidden vector to the 

reconstruction or output layer. These two actions can 

mathematically be expressed as follows (Bao et al., 2017): 

 

( ) ( )1 1
a x = f W x+b  (1) 

 

( )( )2 2
y = f W a x +b  (2) 

 

where, nx,y   (n is the dimensionality of the input and 

output layers). The hidden layer is denoted by a(x) while 

W1 and W2 represent the weight of the hidden and output 

layers, respectively. The biases of these two layers are 

indicated by b1 and b2 respectively, while f is an activation 

function. To minimize the reconstruction error between 

the input vector x and the reconstructed output vector y, 

the following function is optimized: 

 

 1 2 1 2 1 2 1 2

1
1 2

n

i i wd spi=

argminW ,W ,b ,b J = argminW ,W ,b ,b

x - y + J + J 
 

 (3) 

 

In this function, J is the squared reconstruction 

error, and xi and yi are the ith value of x and y, 

respectively. A weighted decay (Jwd) and sparse penalty 

term (Jsp) are included in the objective function. These 

terms are required to avoid overfitting and ensure that 

the model generalizes effectively. The two terms are 

formulated as follows: 

 

( ) ( )2 2

1 2
1 2

wd F F
J = λ W + W  (4) 

 

( )1

n

sp tt=
J = β KL ρ p̂   (5) 

 

where, .
f  is the Frobenius norm. The weight decay and 

sparse penalty are controlled by parameters  and  while 

KL (.) denotes the Kullback-Leibler divergence, a 

standard function to measure the difference between two 

distributions (Nielsen, 2022). A sparsity parameter and 

the average activation of the tth hidden layer are denoted 

by  
t

p̂  and, respectively. The average activation ( )t
p̂

for input i is formulated as follows: 
 

( ) ( )
1

1
k

t t ii=
p = m a xˆ   (6) 

 
where, at (xi) denotes the kth unit of the tth hidden layer. 

Although the above description refers to three layers 

(input, hidden, and output), the AE is referred to as a single 

layer AE (Bao et al., 2017). A sequence of single-layer AEs 

may be stacked to form a stacked AE (Bao et al., 2017; 

Bengio et al., 2006). In a stacked AE, the reconstructed 

layer of the first single-layer AE is removed and the hidden 

layer then acts as the input layer for the second single-layer 

AE. This process is repeated for each layer within the 

stacked AE so that each subsequent one is the hidden layer 

of the one preceding it. Bao et al. (2017) provides details of 

a stacked AE, where an example of a five-layer stacked AE 

is described. There are several other variations of AEs that 

do not form part of this study. Examples include a sparse 

AE (Hu et al., 2019), deep AE (Farahnakian and 

Heikkonen, 2018), denoising AE (Tagawa et al., 2015), 

under-complete AE (Buongiorno et al., 2019) and 

variational AE (Liu et al., 2020). 

This research models terrain classification, a supervised 

learning scenario in which the goal is to learn a function for 

a vector of inputs dx  to predict a vector of targets 
my   (Le et al., 2018). The function is trained on a finite 

batch of independent and identically distributed data, (x1, 

y1), …,(xt, yt), to accurately predict new samples generated 

from the same distribution. To perform well in prediction, 

a typical goal is representation learning, in which the input 

xi is transformed into a new representation from which a 

simple predictor like a linear predictor may be learned. AEs 

are known for their ability to perform representation 

learning-see, for example, Yang et al. (2022). 
 

 
 
Fig. 1: Typical AE structure 
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An SAE, which is proposed in this study, is a kind of 

neural network that jointly predicts inputs 

(reconstruction) and targets (Le et al., 2018). This 

essentially implies that a supervised loss is added to the 

output layer for a single hidden layer, i.e., the supervised 

loss is introduced to the innermost (lowest) layer of a deep 

AE. Following the AE training, the layer is typically 

handed off to the supervised learner. In this study, the AE 

and supervised learner training is performed 

simultaneously. By including a supervised loss in the AE, 

representation learning is more directed toward successful 

representations for the targeted tasks. In contrast, training 

a representation purely on supervised tasks, such as 

learning hidden layers in a neural network, is likely to be 

an under-constrained problem, yielding solutions that 

match the data well but do not uncover underlying 

patterns or generalize well. Thus, the combination of the 

two losses has the potential to achieve both a balance in 

terms of extracting underlying structure and accurate 

prediction performance. Furthermore, it has been 

demonstrated empirically (Le et al., 2018) that adding the 

reconstruction error has no adverse effect on 

performance compared to the matching neural network 

model. In some instances, it may improve classification 

accuracy significantly. To be able to evaluate the results 

in a structured manner and draw reasonable conclusions, 

the results obtained by three other models are compared 

to the proposed SAE. The three models used for 

comparative purposes and which are briefly introduced 

in the subsequent paragraphs are a Support Vector 

Machine (SVM), a logistic regression model, and a 

gradient tree boosting model. 

Support Vector Machines (SVMs) are a subset of 

kernel methods that have been successfully used to 

classify terrains (Liu et al., 2022). A separating 

hyperplane is constructed between two classes of 

points so that the margin between the hyperplane and the 

points closest to it becomes maximal. Nonlinear 

classification may be accomplished by first mapping the 

original data in a nonlinear form to a high-dimensional 

feature space. Typically, this computation is performed 

implicitly using a kernel function that defines the dot 

product between points in a feature space. Allowing for 

a small number of training errors is also feasible via a 

so-called soft margin parameter which regularizes the 

trade-off between maximizing the margin and 

minimizing the training error. 

Logistic regression is an efficient supervised machine 

learning algorithm used for binary classification problems 

which can also be generalized to multiclass classification 

problems. The technique employs a non-linear sigmoidal 

function and models the probability of a discrete outcome 

by building, what is generally known as a logit model. 

This type of model does not require a linear relationship 

between inputs and outputs and the model's range is 

bounded to the interval [0,1] (Subasi, 2020). Logistic 

regression models are widely used by decision-makers to 

solve classification problems and in the context of this 

study, the work of Wang et al. (2021) stands out as an 

example where the technique was applied to a terrain 

classification problem.  

Tree boosting is a commonly used and very 

successful machine-learning method (Chen and 

Guestrin, 2016). Among the current machine-learning 

techniques, gradient tree boosting consistently produces 

excellent results in various applications, including 

terrain classification (Zhang et al., 2021). Rather than 

parallelizing the process of decision tree construction, 

gradient tree boosting obtains predictions in a sequential 

approach in which each decision tree predicts the error 

of the preceding tree, therefore boosting (improving) the 

error (gradient) (Ayyadevara, 2018). 

Bayesian Hyperparameter Optimization 

Hyperparameters are internal model parameters not 

determined or learned by a machine learning algorithm, but 

rather set by the user prior to training (Stuke et al., 2021). 

They directly influence the performance of a training 

algorithm and are responsible for the efficiency of machine 

learning models. Examples of hyperparameters include the 

number of hidden layers, the number of neurons per layer, 

the learning rate, and momentum. The best or optimal 

settings for hyperparameters depend on the size and type of 

dataset, making the model usually relevant to only one 

problem. Hyperparameter tuning or optimization involves 

finding the optimal hyperparameter set that will optimize 

the performance of a model (Karl et al., 2022). When 

initializing a machine learning model, it is customary to use 

a rule-of-thumb approach for the initial values of 

hyperparameters and improve them through trial and error. 

However, automated optimization techniques can save a 

considerable amount of processing time. Popular 

optimization algorithms include grid search, random search, 

and Bayesian optimization (Masood and Sherif, 2021). 

 

Algorithm 1: The Bayes optimization algorithm (Guo et al., 

2020) 

Input: f(x), T, a(x, H) 

Output: H 

1: H ← θ 

2: Random initialization of Gaussian processes, calculate 

p(f(x)| x, H) 

3: for t←1 to T do 

4:  x'← argmaxx a(x, H) 

5:  evaluate y'= f(x' ) 

6:  H ← H∪(x', y' ) 

7:  Remodel Gaussian processes according to H, 

calculate p(f(x)| x, H) 

8: end for 
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The grid search approach passes all combinations of 

hyperparameters through the model and selects the one 

with the best result. This is an exhaustive and time-

consuming technique, especially in models with very 

large datasets. Random search involves the selection and 

use of random combinations of hyperparameter values 

and returning the mix that produced the best result. It is 

useful when the possible ranges for hyperparameters are 

relatively large and the method requires less time than 

grid search. As not all the possible combinations are 

tested in such a case, the resulting hyperparameter set 

may not be the optimal one. Both methods evaluate 

numerous unsuitable combinations without considering 

the results from previous iterations. In this study, 

Bayesian optimization is utilized for hyperparameter 

tuning. The technique is a probabilistic approach that 

uses Bayesian inference to model the uncertainty in the 

hyperparameters, rather than relying on other 

deterministic methods. 

Bayesian optimization is an informed method that 

learns from previous iterations to have an improved 

subspace in the subsequent iterations (Owen, 2022). 

The technique consists of two key elements namely a 

probabilistic surrogate model (i.e., a regression model 

to create simpler objective functions) and an 

acquisition function that is used for updating 

probabilities in a step-by-step manner to gauge how a 

group of hyperparameters may affect their 

performance, considering data that has been observed 

in the past. New hyperparameters that can be 

experimented with are recommended while the 

acquisition function determines which subspace should 

be tested next. The next set of hyperparameters to 

evaluate is selected based on the posterior distribution, 

such as by sampling from it. This process is then 

repeated multiple times until a satisfactory set of 

hyperparameters is found. 

Algorithm 1 presents the pseudo-code for the Bayes 

optimization approach and is constructed as follows 

(Guo et al., 2020). Let f (x) be a function that obeys a 

Gaussian process, then  ( )( )p f x x  is a normal distribution. 

Furthermore, assume that N experiments are performed and 

let  
1

N

n n
n=

H = x ,y  represent the training set consisting of the 

N observations of f (x). The posterior distribution of f (x) is 

then calculated as ( )( )p f x x,H .  Following the calculation 

of the posterior distribution, an acquisition function a (x, H) 

is defined to determine the next sample point by 

maximizing the acquisition function. These two key 

elements of the technique are defined in Algorithm 1 in 

Step 4 (the acquisition function is maximized) and Steps 

5-7 (the updating of the posterior distribution). 

For further details and a mathematical review of the 

Bayes optimization technique, the work of (Shahriari et al. 

2015; Wu et al., 2019) may be consulted. 

Materials and Methods  

An experiment was performed to acquire 

representative training data and then build the SAE model 

to accurately classify the terrain on which a purpose-built 

mobile robot travels. To ensure a proper and valid data-

gathering process, a Lego Mindstorm EV3 mobile robot 

was chosen to collect the required data. Lego Mindstorms 

(Valk, 2014) is a low-cost robotic platform that has been 

used for various real-world applications, including data 

logging (Abdullah et al., 2014), remote control (Chin et al., 

2009), navigation (Kwon et al., 2023) and localization 

(Liu et al., 2018). The mobile robot shown in Fig. 2 was 

constructed with a Raspberry Pi computer and a Sense 

HAT IMU (Chatterjee and Debnath, 2018) mounted on 

top. This IMU included a variety of integrated circuit-

based sensors that are suitable for different types 

of experiments and applications. The mobile robot moved 

on rubber wheels and is battery-operated.  

A robot's functional abilities are highly dependent on 

its sensing capabilities (Chin et al., 2009). Therefore, the 

Sense HAT IMU was chosen since it includes six sensors 

that measure the dynamic performance of the vehicle 

which is of particular significance in terrain classification 

problems. These sensors include the following: 
 

• Accelerometer-used to detect the acceleration force 

acting along the x-, y- and z-axes in a local frame 

• Barometer-a pressure sensor that also determines the 

altitude 

• Gyroscope-this sensor detects angular velocity in a 

local frame along the x-, y- and z-axes 

• Humidity-a device that detects and measures the 

amount of water vapor in the air 

• Magnetometer-a sensor that senses the magnetic field 

of the earth and provides the heading of the sensor; and  

• Temperature-used to determine the ambient 

temperature 
 

 
 
Fig. 2: Lego Mindstorms robot used in the data acquisition 

experiments 
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The sensors measured eight quantities, viz 

acceleration intensity, orientation, rotational intensity, 

relative humidity, humidity-based temperature, 

magnetic intensity, pressure, and pressure-based 

temperature. Since the planned data acquisition 

experiment was conducted on several terrains, of which 

each composition has different properties and 

characteristics, it was advantageous to include all the 

sensor measurements to classify the terrain. In 

addition, when deep learning models are developed an 

effective method for improving classification accuracy 

is to train them on more, or better data (Chollet, 2021; 

Hasib et al., 2022; 2023). 

Data 

Data for the model-building experiment was 

obtained by driving the mobile robot on six different 

surfaces, i.e., asphalt, dirt, epoxy, grass, paving, and 

stone surfaces, respectively. These diverse surfaces 

were selected to improve the robustness of the 

proposed SAE model. The robot was driven for 30 min 

on two different samples of each of the six terrains 

while simultaneously gathering measurements from all 

the IMU sensors at 13.02 Hz. This driving time and 

sampling rate resulted in 46872 data points recorded for 

each terrain. According to a heuristic proposed by 

Goodfellow et al. (2016), a supervised learning 

algorithm will generally achieve acceptable 

performance with around 5000 labeled examples per 

category (terrain). Therefore, the assumption was made 

that the IMU sensor measurements represented a 

signature that could be used to classify the terrain 

accurately. The IMU sensor measurements are 

described in Table 1. 

The complete dataset had 16 inputs (Table 1), six 

one-hot encoded outputs corresponding to the different 

terrains, and 281 232 data points with no missing 

values (the complete dataset is available on request 

from the corresponding author). An extraction of the 

dataset is presented in the Appendix. In many practical 

applications, the pre-processing technique applied to 

the data will critically affect the performance of the 

final system (Bishop, 1995). The input values differed 

by several orders of magnitude, not reflecting their 

relative importance in determining the terrain type. 

Linear rescaling is one of the most common forms of 

pre-processing and is often useful when the typical 

values for different inputs are significantly diverse. 

Consequently, all inputs were standardized to a N (0, 1) 

distribution with like values.  

The final step in the pre-processing was to split the 

available data into three sets: Training, validation, and test 

sets. This step enables the proposed SAE model to be 

evaluated by a simple holdout validation protocol 

(Chollet, 2021). Since the six terrains were equally 

represented in the available data, the data were randomly 

partitioned into training (70%), validation (20%), and test 

(10%) sets, as suggested by Goodfellow et al. (2016).  

Experimental Setup 

The model-building experiments were performed on 

an IntelR CoreTM i7-7700 CPU with a 3.60GHz 

processor, 32 GB of RAM, and a 64-bit Windows 10 

operating system running Python 3.9.6, TensorFlow 

2.5.0 and the Keras 2.5.0 API. In addition, a GeForce 

GTX 1080 GPU with 8 GB of frame buffering provided 

accelerated computing. Table 2 shows the 

hyperparameter lower and upper bounds of the SAE 

model. These bounds define a search space of 12 096 

000 possible candidate architectures. The number of 

architectures was determined by performing 

preliminary experiments to determine appropriate 

bounds and then enumerating all the possible 

architectures within these bounds. 

All the hidden layers used Rectified Linear Unit 

(ReLU) activation functions. Compared to other 

activation functions (e.g., sigmoid and tanh), ReLUs 

significantly accelerate stochastic gradient descent 

convergence and avoid saturation. A linear activation 

function was selected for the AE output layer and a 

softmax activation function for the output layer of the 

supervised learner i.e., a multilayer perceptron in this 

study. The softmax function's output represents the 

class probability associated with each surface. Default 

Keras parameters (kernel initializer: Glorot uniform, 

bias initializer: Zeros) were utilized to randomly 

initialize the model's weights. The Adam adaptive 

learning rate optimization algorithm (Kingma and Ba, 

2014) was used for training the feature-based model 

offline, utilizing a batch size of 32. To minimize 

overfitting, a Keras early stopping callback was 

included (patience of 250 epochs). No regularization 

was performed as the best model discovered did not 

overfit due to the relatively small model size. The 

model-building experiment ran for 284.81 h while 

conducting 108 Bayesian optimization trials. The best 

model discovered was then further trained until the best 

terrain classification accuracy on the validation dataset 

was established. Finally, the model's performance was 

evaluated using the test dataset. 

Along with the SAE model, an SVM was utilized to 

learn the separation between each terrain type and all 

other terrain types (one versus rest classification). 

Later, an unseen test pattern was assigned to the class 

with the most significant distance to the decision 

boundary. In addition to the SAE and SVM models, 

logistic regression and gradient tree boosting models 

were also used to model the data. 
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Table 1: IMU sensor measurements 

Input Sensor Measuring Unit Description 

acc_x Accelerometer ms2  Acceleration intensity of the x-axis 

acc_y Accelerometer ms2  Acceleration intensity of the y-axis 

acc_z Accelerometer ms2  Acceleration intensity of the z-axis 

pitch Accelerometer deg Orientation 

roll Accelerometer deg Orientation 

yaw Accelerometer deg Orientation 

gyro_x Gyroscope rads  Rotational intensity of the x-axis 

gyro_y Gyroscope rads Rotational intensity of the y-axis 

gyro_z Gyroscope rads Rotational intensity of the z-axis 

humidity Humidity % Relative humidity 

temp_h Humidity °C Humidity-based temperature 

mag_x Magnetometer T Magnetic intensity of the x-axis 

mag_y Magnetometer T Magnetic intensity of the y-axis 

mag_z Magnetometer T Magnetic intensity of the z-axis 

 Pressure  mb Pressure 

temp_p Pressure  °C Pressure-based temperature 

 

Table 2: Hyperparameter lower and upper bounds 

Hyperparameter Type Lower bound Upper bound 

Encoder layers Integer 1 2 

Encoder hidden layer nodes Integer 1 15 

Bottleneck layer nodes Integer 2 15 

Decoder layers Integer 1 2 

Decoder hidden layer nodes Integer 1 15 

MLP hidden layers Integer 2 3 

MLP hidden layer nodes Integer 1 15 

Learning rate (on a logarithmic scale) Real 10-6 10-1 

Epochs Integer 64 512 

 

Results  

The architecture of the best SAE model discovered is 

shown in Fig. 3. This model has 867 parameters and an 

optimized learning rate of 8.87.10-4. Asymmetrical AE 

was constructed with one hidden layer in the encoder and 

a decoder with ten nodes each. The bottleneck of the AE 

has eight nodes. The lower layers of the supervised learner 

(multilayer perceptron) share the encoder's hidden layer 

and bottleneck, with 13 and 11 nodes in the two 

consecutive higher hidden layers.  

The Bayesian optimization history in terms of the 

objective value (validation set accuracy) for the 108 

trials is presented in Fig. 4. Trials are numbered starting 

from 0 and each trial is indicated by a blue dot. 

Considering the red line, which shows the best objective 

value determined so far, there was a sharp increase in the 

validation set accuracy from 26.59-69.32% for the 

model architecture at the 15th trial. From thereon, three 

better models were determined within the 108 trials 

performed. However, continued training of the best 

model at the 108th trial did not improve the validation set 

performance. Finally, the third-best model at the 100th 

trial with a validation set accuracy of 78.83% performed 

the best with continued training. 

Many machine learning methods rely critically on 

hyperparameter settings for the best results. However, 

end-users may lack insight into the relative importance 

of various hyperparameters and their interactions if 

they rely only on such methods. Hutter et al. (2014) 

described efficient methods that may be utilized to get 

such insight by fitting random forest models to previously 

collected data using Bayesian optimization. They 

presented a unique, linear-time algorithm for computing 

marginals of random forest predictions. Hutter et al. 

(2014) then demonstrated how to use these predictions 

inside a functional ANOVA (fANOVA) framework to 

quantify the importance of single hyperparameters. Figure 5, 

the importance of the hyperparameters towards the 

objective value is based on the fANOVA hyperparameter 

importance evaluation algorithm. The learning rate was 

the most critical hyperparameter by a large margin 

compared to the number of neurons in the second hidden 

layer of the multilayer perceptron (ffnn_architecture2). 

This vital importance of the learning rate is confirmed by 

Goodfellow et al. (2016). In addition, the importance 

of the hyperparameters regarding the duration of 

training was also evaluated by the fANOVA framework. 
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Fig. 3: The supervised autoencoder model architecture 

 

 
 
Fig. 4: Bayesian optimization history 

 

 

 
Fig. 5: Importance of the hyperparameters toward the 

objective value 

Table 3: Average accuracy results 

Model Average Accuracy % 

SVM model 43.54 

Logistic regression 53.94 

Supervised autoencoder model 88.62 

XGBoost model 95.03 

 

Insight into the importance of hyperparameters and 

duration time is used to exclude unimportant 

hyperparameters from optimization, which may 

dominate the training time. Of all the hyperparameters, 

it was only the number of epochs that influenced the 

model training time and consequently, no 

hyperparameters were excluded in the proposed model. 

As alluded to in the section on AEs, comparative 

modeling results are needed to make meaningful 

deductions from the results of the proposed model. Three 

additional models were selected to compare and validate 

the results of the proposed SAE model. The models 

chosen are an SVM, a logistic regression model, and an 

XGBoost model. The detailed modeling process for each 

of these three models is omitted as it is only the average 

accuracy of the models that are used for comparison 

purposes. Table 3, the resulting average accuracy of the 

proposed SAE, together with the three comparative 

modeling techniques, is shown. The SVM model 

performed the worst, with the XGBoost model 

outperforming the SAE model by 6.41%.  

Although the XGBoost model performs best with a 

relatively small margin, the proposed SAE model 

performed much better than the SVM model and the 

logistic regression model. The confusion matrix (to 

explain the actual and predicted values) for the proposed 

SAE model is shown in Table 4. The most accurate 

results of the SAE model were obtained on the paving, 

epoxy, dirt, and asphalt terrains. The result for the grass 

surface was also acceptable but for the stone surface, a 

significant number of predictions were incorrectly 

indicated as an epoxy surface.  

To present a clearer picture of the proposed SAE 

model, the accuracy, precision, recall, and F1 scores 

were also calculated for each surface. These scores are 

summarized in Table 5. The accuracy of a classification 

system is a class-insensitive performance measure and 

is defined as the ratio of correctly classified instances 

to all instances: 
 

TP
accuracy =

TP + FP + FN +TN'
 (7) 

 
where, Positive (P) or Negative (N) corresponds to the 

class labels predicted by the model and True (T) or 

False (F) values indicate the model's accuracy (Rivera-

Lopez et al., 2021). 
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Table 4: Confusion matrix for the supervised autoencoder model 

 Predicted 

 -------------------------------------------------------------------------------------------------------------------------------------- 

Real terrain Paving Epoxy Grass Dirt Stone Asphalt 

Paving 4507 0 135 0 0 46 

Epoxy 168 4383 52 0 82 3 

Grass 226 0 4290 2 84 86 

Dirt 0 0 42 4608 38 0 

Stone 366 1377 0 16 2613 316 

Asphalt 74 0 86 0 2 4526 

 
Table 5: Accuracy, precision, recall, and F1 scores for the supervised autoencoder model 

 Accuracy (%) Precision (%) Recall (%) F1 (%) 

Paving 96.14 84.38 96.14 89.88 

Epoxy 93.49 76.09 93.49 83.90 

Grass 91.51 93.16 91.51 92.33 

Dirt 98.29 99.61 98.29 98.95 

Stone 55.74 92.69 55.74 69.62 

Asphalt 96.54 90.94 96.54 93.66 

 

Accuracy is a good measure for this dataset since the 

dataset is balanced (both negative and positive classes 

have the same number of data instances). Precision and 

recall performance measurements are class-sensitive 

indicators that specify how well the evaluated classifier 

detects the positive class correctly. Precision is defined as 

the ratio of correctly classified positive cases to all 

positive instances: 

 

TP
Precision =

TP + FP
 (8) 

 

The recall rate is the same as the True Positive rate 

(TP). A good classifier's precision and recall should 

ideally be 100% (high). Therefore, a metric is needed that 

considers both precision and recall. As a result, the F1 

score is defined as the harmonic mean of precision and 

recall (Eq. 9) and becomes 100% only when precision and 

recall are both 100%: 

 

2
1

× precision×recall
F =

precision+recall
 (9) 

 

The performance metrics in Table 5 complement and 

confirm the initial results depicted in the confusion 

matrix. The four accuracy measures for the epoxy 

terrain are marginally lower than the others while the 

accuracy of the stone surface is considerably lower than 

the rest. The classification results computed for the dirt 

terrain were the most accurate. In general, the results in 

Tables 4-5 indicate that the implementation of an SAE 

does indeed contribute satisfactorily to the 

classification of various terrains. The use of a Bayes 

optimization hyperparameter technique also 

contributes to the good accuracy results obtained. In the 

next section, a more detailed discussion will be offered.  

Discussion 

The implementation of the proposed technique has 

provided new contributions and insights into both the 

modeling approach and the actual results obtained. In the 

field of terrain classification, the combination of an AE 

and a supervised learner such as a multilayer perceptron 

is a first and new attempt to improve and contribute to the 

classification process of different surfaces. 

General Remarks Related to the Proposed Model 

and Modeling Process 

The degree of computational complexity (amount of 

computing resources required) is an aspect that should be 

considered when an SAE is employed. The proposed 

model required a considerable amount of time to train and 

a significant number of trials were necessary to optimize 

the modeling process. This, however, is not a 

disadvantage if one considers the criticality of the 

application area. Classifying different terrains is not time 

critical and a suitable model can be developed over a 

longer period. Once the model is trained, inferences can 

be made in a very short time. 

The introduction of a Bayes optimization method for 

hyperparameter value determination proved to be more 

advantageous over traditional approaches such as a grid 

search. The technique ensures that the "best" 

hyperparameter values are selected in terms of an 

objective function that is minimized and therefore 

contributes to addressing the critical aspect of finding 

suitable hyperparameter values. Furthermore, the 

technique facilitates the identification of the most 

important hyperparameter variables which in turn 

contributes to a more understandable model. In this study, 

the learning rate, the number of neurons in the hidden 

layer of the supervised learner, and the training time were 
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identified as critical. These findings concur with other 

related studies in the literature-see for example 

Goodfellow et al. (2016). 

The results of the model are easily verifiable and 

contextualized by comparing it to other classification 

models. In this study, three other models were used to 

compare the results of the proposed SAE. An SVM model, 

a logistic regression model, and an XGBoost model were 

constructed using the same dataset. The results of these 

three models were then compared to the proposed SAE. 

The proposed model performed much better than the SVM 

and logistic regression model but was marginally worse 

than the XGBoost model. This may be attributed to the 

parallel processing capabilities of an XGBoost model. 

Despite its good performance, it should also be noted that 

XGBoost models are prone to overfitting, difficult to 

fine-tune, less interpretable, and difficult to visualize 

(Jafarzadeh et al., 2021). Although the three models 

selected for comparative purposes are traditionally easy to 

train and implement, the SAE model was equally easy to 

develop and implement. However, the combination with a 

supervised learner (the multilayer perceptron) does need some 

initial understanding of the models and concepts involved. 

Results of the Proposed Model 

The actual results obtained from the SAE model 

provide further insight into the proposed methodology. To 

analyze the predicted cases, a confusion matrix was 

constructed in Table 4. In Table 6, a summary of the 

percentage of correct classifications for each of the six 

terrains is shown. 

From the results depicted in Table 6, it is clear that the 

proposed model predicted the dirt terrain with the highest 

accuracy (98.3%). The worst performance was recorded for 

the stone terrain where a large number of predictions were 

incorrectly indicated as epoxy surface. The accuracy for the 

stone surface was only 55.7%. All the other classification 

predictions were higher than 91% correct. If the stone 

terrain is omitted, the confusion matrix shows an average 

of 95.2% correct classification predictions for the remaining 

five surfaces. It should be noted that the classification of 

stone surfaces is traditionally more challenging because of 

the complexity of a stone terrain. Stones are not similar in 

shape and often result in uneven surfaces that are difficult 

to classify. This observation is in line with findings from 

other studies pertaining to the classification of stone 

surfaces- see, for example, the work by Fredriksson (2022). 

Four different accuracy measures were computed for 

the proposed model and were summarized in Table 5. 

Except for the stone surface, all accuracy measures were 

high with the classification of the dirt surface showing the 

highest accuracy for all four measures. The results from 

both the confusion matrix and the computed four accuracy 

measures are encouraging and indicate the feasibility of 

employing an SAE in the field of terrain classifications. 

Table 6: Correct classifications according to the confusion 

matrix 

 Number correctly Percentage correctly 

Terrain classified classified  

Paving 4507 96.1 

Epoxy 4383 93.5 

Grass 4290 91.5 

Dirt 4608 98.3 

Stone 2613 55.7 

Asphalt 4526 96.5 

 

Conclusion  

The use of an SAE model for terrain classification, 

using robots, is increasingly important and may be applied 

in areas such as disaster management, military 

reconnaissance, or inspection of hazardous areas. To 

contribute to the area of terrain classification, an SAE 

model is proposed in this study. Although the technique is 

not entirely new, it is a first attempt at terrain 

classification. As part of the model-building process, a 

Bayes optimization technique was employed to determine 

hyperparameter values. The Bayes approach proves to be 

more advantageous than the traditional hyperparameter 

identification techniques. The results of the proposed SAE 

were compared with three other well-known models. 

Although one of these models has marginally 

outperformed the proposed model, a closer look at the 

results and the modeling process indicated that definite 

benefits can be derived by opting for an SAE model to 

distinguish among different surfaces. As this was the first 

attempt at using an SAE in terrain classification, several 

future research opportunities exist. One such opportunity 

may be to experiment with the construction of the dataset 

(drive the robot longer on more surfaces to generate a 

larger and more reliable dataset) as well as with the 

bounds of the hyperparameter set (relaxing some of the 

bounds to further improve the accuracy of the Bayes 

hyperparameter value optimization process). 
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In this appendix section, the first ten data points of 

the training dataset are presented. The provided data 

points proffer a preliminary insight into the 

characteristics and scope of the data under analysis. 
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Appendix 1: Extract of first ten records of data file used for model development 

 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 X16 

  1 1.81E-01 5.05E-01 -6.20E-01 2.06E-01 3.42E-01 -1.29E+00 -1.30E+00 1.03E+00 -1.89E-01 4.32E-01 2.90E-01 2.22E-01 5.53E-01 -9.55E-02 7.72E+03 5.93E+02 
  2 -1.97E-01 1.06E-01 -1.74E-01 2.13E-01 3.42E-01 -1.34E-01 -4.17E-01 -2.58E-03 7.69E-01 -4.84E-01 -4.55E-01 -3.87E-02 1.78E-01 3.80E-01 1.59E+04 1.22E+03 

  3 -2.05E-01 1.40E-01 -1.62E-01 2.19E-01 3.38E-01 -1.69E-01 -4.96E-01 -2.04E-02 8.69E-01 7.01E-01 1.00E+00 -9.60E-01 -1.39E-01 -5.14E-01 1.47E+04 1.12E+03 

  4 2.96E-02 3.70E-02 8.47E-01 2.05E-01 3.54E-01 -1.78E+00 7.84E-01 8.73E-01 6.67E-02 1.34E-01 -6.16E-01 2.42E-01 1.85E-01 -6.00E-01 1.61E+04 1.23E+03 
  5 1.39E-01 3.95E-02 -2.94E-01 2.06E-01 3.47E-01 -5.74E-01 -6.32E-01 1.75E+00 -3.00E-01 3.30E-01 2.31E-01 3.91E-01 4.71E-01 -4.28E-02 1.30E+04 9.96E+02 

  6 1.27E-01 -7.69E-04 1.61E+00 2.24E-01 3.12E-01 -8.42E-02 1.13E+00 -4.25E-01 -1.43E+00 -1.03E+00 1.90E+00 -1.06E+00 8.08E-01 2.25E+00 3.17E+03 2.44E+02 

  7 2.77E-01 3.42E-01 -1.49E+00 1.96E-01 3.16E-01 1.52E+00 -7.96E-01 1.16E+00 5.11E-01 -3.33E-02 2.39E-01 4.47E-01 3.40E-02 7.44E-01 1.62E+04 1.24E+03 

  8 4.33E-02 7.71E-01 6.15E-01 2.25E-01 3.15E-01 6.25E-01 7.09E-01 1.96E-01 -2.22E-01 -3.43E-01 2.05E-02 1.57E+00 8.11E-01 4.08E-01 6.36E+03 4.88E+02 
  9 2.15E-01 4.60E-01 -4.57E-01 1.91E-01 3.27E-01 -1.34E+00 -1.27E+00 1.26E+00 -4.94E-01 2.30E-01 1.35E+00 2.35E-01 7.77E-01 7.75E-01 1.47E+04 1.12E+03 

10 2.20E-02 6.01E-01 -6.68E-01 1.52E-01 2.90E-01 -5.90E-01 -4.62E-01 -4.74E-01 1.25E+00 7.63E-02 2.86E-01 4.10E-01 1.78E+00 3.11E-01 4.84E+03 3.71E+02 

 
Appendix 2: Extract of one-hot coded terrain classification variable (six terrain surfaces) 

 y1 y2 y3 y4 y5 y6 

  1 1 0 0 0 0 0 

  2 1 0 0 0 0 0 

  3 1 0 0 0 0 0 

  4 0 1 0 0 0 0 

  5 0 1 0 0 0 0 

  6 0 0 0 1 0 0 

  7 0 0 1 0 0 0 

  8 0 0 1 0 0 0 

  9 1 0 0 0 0 0 

10 0 0 1 0 0 0 


