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Abstract: The Internet of Things (IoT) offers different services for the 

agriculture industry, such as monitoring and analysing real-time data related 

to current weather conditions, water level, irrigation requirements, growth of 

plant disease and health status/temperature/humidity, etc.,). The performance 

of IoT networks may vary due to environmental conditions and operational 

areas (rural area/urban area/underwater). These constraints may degrade the 

transmission quality due to delay factors because the signal propagation may 

vary in these areas. IoT sensors are low-powered devices designed for long-

distance communication. The transmission rate may be degraded due to the 

delay factor, which may cause packet loss/ congestion/collision, thus 

resulting in unnecessary re-transmission over the cost of network resources. 

To resolve the transmission delay issue, there is a need to develop a solution 

to ensure reliable transmission under the constraint of delay, and this study 

will introduce a delay-aware scheme to manage the uncertainty over IoT 

networks in rural and urban areas. Its performance will be analysed using 

different quality of service constraints (i.e., throughput/delay/residual 

Energy/Energy Consumption, etc.) using two different IoT-based 

communication standards, i.e., LoRaWAN and SigFox, with IoT sensor 

density variation from 100-400 IoT sensors only. For simulation, an NS-3 

network simulator will be utilised. 

 

Keywords: IoT, Sensors, LoRaWAN, Delay, Quality of Service, Smart 

Farming 
 

Introduction 

Agriculture land can be developed in urban areas 

(areas within the city having to build as obstacles) or 

rural areas (areas outside the town with minimal 

barriers). IoT networks may be deployed over these 

areas. Still, it is necessary to use different propagation 

models per area type to ensure the quality of signal 

propagation under the constraints of other obstacles. In 

this study, for IoT-based smart farming, a solution will 

be introduced to ensure transmission quality by 

estimating the delay threshold to avoid packet loss.  

IoT networks can be used to collect sensitive data on 

agriculture that can be used to ensure product quality and 

losses, which can be optimised for historical data. 

However, the following constraints may hinder IoT-

based smart farming in Fig. 1.  

Reliability: Network operations under uncertain 

environmental conditions may cause delays or 

interruptions in network operations. Fault tolerance 

capabilities of IoT applications may also suffer due to the 

hybrid nature of networks.  

Deployment: Agriculture land may be deployed in 

Urban areas or in rural. In the case of Urban areas, the 

transmission quality may be degraded due to interference/ 

buildings, rural/remote locations, network deployment/ 

maintenance /connectivity, etc. 

Operational Cost: The setup cost of IoT networks for 

intelligent farming is quite expensive and thus may also 

increase the maintenance cost. IoT networks may 

consume excessive resources, i.e., 

electricity/batteries/storage space, etc. 

Connectivity: In a remote area, connectivity is a 

significant issue. Interruption in transmission may cause 

delay/packet loss/re-transmission etc.  

Scalability: IoT network expansion over a large-scale 

coverage area of agricultural land may degrade the 

network efficiency. IoT applications must be able to 

process the data under the constraints of scalable network 

parameters (sensor density/payload variations).  
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Fig. 1: Challenge for IoT-based smart farming 

 

 
 

Fig. 2: Wireless communication constraints 

 

Incompatible Hardware Standards: Different 

vendors have developed various communication 

standards and hardware incompatibility and transmission 

over hybrid networks; both are critical issues. 

Resource Utilisation: Optimal allocation of sensor 

density w.r.t. farm size, energy consumption, and maximum 

bandwidth usage are critical constraints for network 

performance (Mijwil et al., 2023; Sharma et al., 2022).  

All above-discussed constraints (except operational 

may degrade the quality of services (quality of service) of 

the IoT network and thus may cause communication 

delay/interruption/signal loss etc., (Kassim, 2020; 

Narwane et al., 2022; Maroua et al., 2022; Islam et al., 

2020; Tephila et al., 2022) in Fig. 2. Above mentioned 

factors may consume excessive network resources and 

reduce network performance.  

In this study, experiments following IoT standards are 

used as explained. 

LoRaWAN is a Media Access Control (MAC) 

protocol developed/maintained by the LoRa alliance 

and operates over LoRa modulation. It is designed to 

transmit small size packets over long distances. The 

following are its features: 

 

(a) Low cost 

(b) Easy to deploy and maintain 

(c) License-free spectrum (Locatelli et al., 2022) 

 

SigFox is designed for long-range transmission 

using binary phase shift keying, and the following are 

its features: 

 

(a) Frequently used for remote monitoring 

(b) Data security 

(c) Pairing is not required 

(d) Supports cellular wireless transmission (Elijah et al., 

2022) 

 

Problem Statement and Contributions 

IoT sensors can be deployed in smart farming to 

collect critical agriculture data for analysis. Agriculture 

land may be inside the city (urban area) or outside of the 

town (rural area), and in the case of the metropolitan area, 

there may be different obstacles (i.e., 

buildings/bridges/transmission interference, etc.) that can 

degrade the transmission quality due to delay. In the case 

of rural areas, there are fewer obstacles as compared to 

urban areas. So, there is a need to analyse the performance 

of different IoT standards in these constraints. 

This study introduces a delay-aware scheme for 

smart farming to optimise the transmission delay. 

Current research includes a simulation-based analysis 

(using Network Simulator version 3 (NS-3)) to 

calculate the network performance parameters 

(delay/throughput/ energy consumption/residual 

energy etc.). I am using two different IoT 

communication standards (LoRaWAN and SigFox).  

Following section II highlights the recent development 

related to the relevant domain. 

Florita et al. (2020) extended the MAC layer of the 

LoRa network to integrate the delay-tolerant capabilities. 

It uses multiple gateways to forward the data to the Server. 

Outcomes show that it offers higher network efficiency 

with minimal delay. However, the analysis also indicates 

that signal quality may be reduced due to interference 

between multiple gateways. 

Hakami et al. (2020) developed a machine learning 

method to manage the transmission w.r.t. available 

network resources (residual energy/buffer capacity). 

Analysis indicates that it can efficiently regulate the 

transmission under a resource-constrained network 

while maintaining higher residual energy with optimal 

delay factor. 
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Li et al. (2020) developed a secure and delay-tolerant 

scheme for IoT networks that utilise data caching during 

computations to avoid transmission delays and uses 

blockchain to secure data. Experiments indicate that it 

consumes fewer resources to provide efficient and secure 

data exchange over IoT networks.  

Zhao et al. (2020) proposed a UAV-based optimal data 

processing solution for IoT-based smart farming. It 

estimates resource availability w.r.t. actual requirement 

for successful transmission. Analysis shows optimal 

delay/energy consumption outcomes and is suitable for 

scalable IoT networks. 

Chinnasamy et al. (2021) presented a delay-tolerant 

IoT network that selects relay nodes w.r.t. given coverage 

area using a genetic algorithm to avoid transmission 

delay. Analysis shows that optimal placement of relay 

nodes can reduce the overall uncertainty and improve 

network throughput. 

Naik (2020) integrated edge/fog computing networks 

with IoT networks and presented a scheduler to distribute 

traffic load over these networks. Analysis shows that 

transmission delays over heterogeneous networks can be 

reduced using this scheduler, and network efficiency can 

be improved. 

Huang et al. (2021) proposed a time-constrained data 

collection method for IoT sensor networks. It estimated 

the expected/receiving interval for packets to cope with 

the delay factor. Analysis shows that it can ensure 

transmission reliability with optimal transmission delay. 

Sankayya et al. (2021) developed a protocol to utilise 

network resources efficiently. It estimates the 

transmission requirements and dynamically allocates the 

available spectrum. Analysis shows that intermediate 

transmission delay can be reduced under the quality-of-

service constraints using this protocol compared to 

existing IoT protocols. 

Su and Wang (2021) proposed a solution to 

synchronise data transmission to optimise the 

transmission delay over IoT networks by estimating the 

computational load w.r.t. data rate. Analysis shows that it 

has robust delay-tolerant capabilities and can ensure 

reliable transmission over IoT-sensor networks. 

Su et al. (2021) investigated the impact of 

transmission delay over real-time IoT networks. The study 

identified that the efficiency/decision-making/accuracy/ 

convergence rate of automated IoT networks might be 

degraded due to intermediate transmission delay. 

Analytical data from this study can be utilised to develop a 

delay-tolerant scheme for IoT networks. 

More and Kale (2022) reviewed the issues related to 

delay-tolerant networks. The study found some critical 

factors (i.e., buffer management/data processing by 

multiple nodes/ queuing algorithms/stable data rate) that 

can be optimised to reduce delays over different networks 

(i.e., IoT/ satellite networks, etc.). 

Diamanti et al. (2022) introduced a delay-tolerant 
process over IoT-enabled networks. It synchronises the 
load over different network layers w.r.t. user's 
preferences. Experiments show that IoT network 
integration with heterogeneous (edge/fog networks) can 
reduce the processing delay for end users. 

Chakravarty and Acharya (2022) presented a 
scheduler to regulate the traffic load w.r.t. available 
energy resources. It can synchronise the data transmission 
with the harvesting cycle under the delay's constraints. 
Outcomes show its performance regarding extended 
network lifetime/higher throughput w.r.t. optimal delay. 

Kumar et al. (2022) developed a protocol for IoT 
networks that selects the nearest neighbours for packet 
forwarding. Acknowledgement is also produced to keep 
track of all intermediate packets to avoid duplicate packets 
over the web. Its performance evaluation shows minimal 
packet forwarding delay compared to existing protocols. 

Han et al. (2022) emulated the IoT-enabled software-
defined networks to investigate the critical factors (packet 
loss/delay). They offered a delay-aware routing scheme to 
resolve these issues. Analysis shows that it can efficiently 
reduce overall uncertainty while maintaining higher 
network efficiency using hybrid networks. 

Nejadhasan et al. (2022) introduced a hardware-based 
solution that can regulate the residual energy at a different 
level to reduce the transmission delay. Analysis shows that 
signal amplification at different voltage levels minimises 
the uncertainty and consumes less computational power, 
thus extending the overall network lifespan. 

Long et al. (2022) developed a scheduler for IoT-
enabled edge networks. It uses a Q-learning method to 
compute the traffic load and prepares a load scheduling 
policy. Simulation shows that it has a fault/ delay 
tolerance capability to ensure reliable communication and 
outperforms optimal delay/resource utilisation etc.  

Darabkh et al. (2022) reviewed the performance of the 
RPL routing protocol for IoT networks. Study shows that 
it is an energy-efficient and reliable protocol for IoT 
networks; however, congestion control/quality of service, 
routing in highly mobile networks/cross-layer 
communication/load balancing are still open issues.  

Malekijou et al. (2023) developed a solution to 
regulate eh transmission control w.r.t. network resources 
(buffer/payload). It uses a Q-learning method to estimate 
the transmission policy under the quality-of-service 
constraints. Analysis shows that it can reduce the overall 
transmission delay/energy consumption compared to 
existing methods. 

Wang et al. (2022) evaluated the performance of 
various communication standards developed for IoT 
networks (LoRa /NB-IoT, Sigfox/ LTE Cat-M1). A 
comparison study found a few factors (optimal channel 
utilisation/ energy consumption/ delay/ jitter/ routing/ 
reliable communication/fault tolerance etc.) that can 
degrade the performance of these standards. All these 
factors are open issues for IoT networks. 
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Pavithra and Rekha (2022) proposed a MAC-based 

IoT network scheduler. It uses a genetic algorithm to 

estimate the number of slots required w.r.t. transmission 

interval and enforce a schedule for all nodes. Analysis 

shows that it can schedule the packet transmission with 

optimal delay, thus improving the network efficiency. 

Demiroglou et al. (2022) used mobile devices to 

collect data from the nodes deployed over a large 

coverage area. After data acquisition, it is forwarded to 

intermediate gateways. Analysis shows that this scheme 

can minimise the overall transmission delay and is 

suitable for scalable IoT networks compared to 

traditional delay-tolerant methods. 

Gupta et al. (2023) created a program based on the 

Internet of Things that can advance smart farming. 

However, the farm's coverage area, location, environmental 

conditions, etc., can all impact the performance of IoT 

networks. If it takes much energy to keep the network 

running in different conditions, that could cut into the 

lifespan of an Internet of Things sensor. In this study, we 

will present a method for energy-efficient smart farming 

that uses two separate Internet of Things standards, and we 

will assess its performance using a variety of metrics. 

Muthanna et al. (2022) developed a tree-based topology 

for IoT networks that forms multiple clusters for data 

sharing over the web. A deep learning method schedules 

duty cycle w.r.t. available network resources (i.e., data 

rate/frequency/spreading factors, etc.). Simulation results 

show that it offers higher network efficiency with optimal 

resource consumption/delay.  

Chen et al. (2023) simulated a positioning algorithm for 

an IoT network. It uses the Kalman filter to compute the 

accurate position of intermediate nodes to ensure reliable 

transmission. Experiments show that mobile 

nodes/gateways can reduce the transmission delay 

compared to stationary IoT networks.  

Prade et al. (2022) developed a data acquisition 

method for intelligent farming. It uses multi-hop 

transmission to gather the data from intermediate nodes. 

Analysis shows that it is more efficient than traditional 

LoRa-based IoT Networks.  

Qos Constrained 

Agriculture land may be located in rural areas or urban 
areas. So, the IoT sensor network's performance (low 
throughput, delay/energy consumption/excessive packet 
loss and re-transmission, etc.) may vary w.r.t. in each area. 

This study introduces a QoS-constrained transmission 
scheme to overcome this issue.  

There are different phases in proposed schemes, i.e., in 
phase 1, IoT Sensor's Deployment is performed (as 
explained); in phase 2, IoT Sensor side data is prepared; and 
in phase 3, IoT Gateway side data is processed: 
 

Phase 1: IoT Sensor's Deployment over Farm: 

Step 1: Get the total coverage area of the farm: ∑cvf` 

Step 2: Create Local coverage area Lcvf = ∑cvf/4 

Step 3: If no. of sensors: ∑n, then the required sensor  

 density sd = ∑n /4 w.r.t.∑Lcvf 

Step 4: If cvf-type==RURAL, then 

  Set Propagation_Model-Type = LogDistance) 

  Else cvf-type==URBAN then 

  Set Propagation_Model-Type=Nakagami) 

 End if  

Step 5: Transmission delay factor df can be defined as: 

 Df = 0: No delay  

 Df = 1 With delay 

Step 6: if pkt-type== control packet then df = 0 

Step 7: if pkt-type== !control packet then df = 1 

 

Control packets must have higher priority over sensed 

data to ensure connectivity. So there should be a minimum 

delay for such packets. 

 

Phase 2: IoT Sensor side data preparation 

Step 1: Sense data 

Step 2: Estimate Delay threshold (sdTh) for sensor: 

 Sensor- >Current time + (Sn->d * h) 

 Where sensor- >distance is d, no. of hops h required to 

forward a packet p from the sensor to Gateway 

Step 3: If the source is any sensor, then it is calculated as 

sdTh. The intermediate Gateway is calculated as  

 gdTh, as shown in Table 1 and Figs. 3, 4, and 5. 

Step 4: Forward (sensor->pkt, df, Gateway, TRUE) 

 

Phase 3: IoT Gateway side data processing 

Step 1: Collect (data, Sensors) 

Step 2: Gateways->Verify (Delay Threshold, Sensor- 

 >Data) 

Step 3: get expected time = (current time at Gateway -  

 sensor- >sdTh ) > 0 

Step 4: If (Sensor- >pkt- >sdTh> expected-time) 

  If pkt- >df !=0 then pkt- >status = expired 

 Discard (pkt) 

 Else 

 Forward (gateway ->pkts, df, Server) 

 End if 

 

Phase 4: IoT Server side data processing  

Step 1: Collect (data, gateway) 

Step 2: Server->Verify (Delay Threshold, Gateway- 

 >Data) 

Step 3: Get expected-time = (current time at Server-

Gateway->sdTh ) > 0 

Step 4: If (Gateway->pkt->gdTh> expected-time) 

 If pkt->df! = 0 then pkt->status = expired 

 Discard (pkt) 

 Else 

 Accept (Valid data, Gateway, true)  

 End if 
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Table 1 shows the source nodes (1-5), having distance (d) 
(in meters) from gateways with the number of Hops (h), the 
current time is marked as CT (milliseconds), and dTH is the 
delay threshold for packets. Table 1 values are obtained from 
simulation results (in a run-time environment). 

Flow chart 1 shows the basic setup of the network as 

described in phase 1. First of all, in phase 1, the entire 
coverage area of the farm is calculated as ∑cvf for the IoT 
sensor deployment. Then it is divided into local coverage 
area (Lcvf) as ∑cvf/4 and finally, several sensors ∑n/4 are 
deployed w.r.t. ∑Lcvf. 

The farm may be located in a rural/urban area, so 

according to area type, the propagation model is selected 
(log distance model for rural areas and Nakagami model for 
urban areas). Transmitted data may contain control packets 
or ordinary sensed data; the delay factor (0 for control 
packets and 1 for data packets) is initialised according to its 
type. According to phase 2, to minimise delay, the delay 

threshold and expected time are calculated for the packet 
arrival (based on the number of hops required to forward 
the packet and the distance between source and 
destination over a particular interval) between sensors and 
Gateway as well as it is also estimated for gateways and 
Server in Table 1. After calculating the above factors, data 

is forwarded from sensors to intermediate gateways. 
 
Table 1: Delay threshold 
 Distance  Hops Current 
Source (d) (h) Time (CT) dTH 
1 9 2 1 19 
2 2 1 3 5 
3 7 3 7 28 
4 5 5 5 30 
5 15 8 8 128 
 

 
 
Flow Chart 1: Sensor-level data forwarding 

 
 
Flow Chart 2: Gateway-level data forwarding 
 

 
 
Flow Chart 3: Server Level Data processing 
 

Flow chart 2 shows the steps of phase 3; in this, 

Gateway receives the data from sensors and verifies its 

expected time (at Gateway), which must be greater than 

zero. If there is any delay, only control packets are 

accepted and forwarded to the Server, and all other invalid 

data packets are marked as expired and discarded.  

Flow chart 3 shows steps of phase 4, in which the 

Server receives the data from the Gateway and verifies its 

expected time (at the Server), which must be greater than 

zero; otherwise, all data packets are discarded and marked 

as expired except control packets. All the above phases 

may be repeated as required. 
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Materials and Methods 

This study introduces a delay-aware scheme for delay-

optimized smart farming using a simulator called NS-3. 

The simulation-based methodology used in the present 

study computes the network performance parameters like 

delay, throughput, energy consumption, residual energy, 

etc. We have implemented two distinct Internet of Things 

communication standards (LoRaWAN and SigFox). 

Results  

For experiments, NS-3 over Linux platform/Intel(R) 

Core(TM) i7-7600U CPU @ 2.80GHz 2.90 GHz and 

32 GB RAM, Packet size 64 bytes were used with 

different simulation scenarios, i.e., Delay aware Quality 

of Service constrained scheme (DQS) and Normal method 

(NDQS) for smart farming using two different IoT 

standards (LoRaWAN and SigFox) over rural/urban 

areas. IoT sensor density varies from 100-400 sensors and 

simulation time is 600 sec, initial energy 10J, Rx/Tx (10), 

etc., NS-3 flow monitor is used to calculate the network 

performance parameters, and the NS-3 energy model is 

used to obtain the energy consumption data over the 

simulation interval. NS-3 patches integrate the support for 

LoRaWAN and SigFox standards and IoT sensors.  

Performance Analysis of LoRaWAN in Rural Areas 

Figure 6 shows the throughput of LoRaWAN in a rural 

area with 100 IoT-Sensors using NDQS and DQS 

scenarios. In the case of NDQS, it is 168 Kbps and 198 

Kbps for DQS. 

Figure 7 shows the throughput of LoRaWAN in a rural 

area with 100 IoT-Sensors using NDQS and DQS 

scenarios. In the case of NDQS, it is 314 Kbps and 394 

Kbps for DQS. 

Figure 8 shows the throughput of LoRaWAN in rural-

area with 100 IoT-Sensors using NDQS and DQS 

scenarios. In the case of NDQS, it is 450 Kbps, and 591 

Kbps for DQS. 

Figure 9 shows the throughput of LoRaWAN in a rural 

area with 100 IoT-Sensors using NDQS and DQS 

scenarios. In the case of NDQS, it is 564 Kbps and 783 

Kbps for DQS. 

Figure 10 compares the throughput of LoRaWAN 

using NDQS/DQS in a rural area. It can be analysed 

that In each scenario, throughput varies as the sensor 

density increases. However, NDQS delivered less 

throughput than DQS w.r.t. IoT sensor density, ranging 

from 100 to 400. 

Figure 11 shows the residual energy of LoRaWAN in 

rural-area with 100 IoT-Sensors. In the case of NDQS, it 

is 4.01J; in the case of DQS, it is 5.208J. 

Figure 12 shows the residual energy of LoRaWAN in 

rural-area with 200 IoT-Sensors. In the case of NDQS, it 

is 3.0516 J; in the case of DQS, it is 4.609 J. 

 
 
Fig. 3: Distribution of IoT sensors over the coverage area 

(Tephila et al., 2022) 

 

 

 

Fig. 4: Delay threshold for sensors and gateway 

 

 
 

Fig. 5: Delay threshold for gateway and server 

 

 
 
Fig. 6: Throughput-LoRaWAN-rural-area-100-IoT-sensors 
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Fig. 7: Throughput-LoRaWAN-rural-area-200-IoT-sensors 
 

 
 
Fig. 8: Throughput-LoRaWAN-rural-area-300-IoT-sensors 
 

 
 
Fig. 9: Throughput-LoRaWAN-rural-area-400-IoT-Sensors 

 

 
 

Fig. 10: LoRaWAN-rural-area-comparison-throughput 

 
 
Fig. 11: Residual energy-LoRaWAN-rural-area-100-IoT-sensors 

 

 
 
Fig. 12: Residual energy-LoRaWAN-rural-area-200-IoT-sensors 

 

 

 
Fig. 13: Residual energy-LoRaWAN-rural-area-300-IoT-sensors 

 

Figure 13 shows the residual energy of LoRaWAN in 

rural-area with 300 IoT-Sensors. In the case of NDQS, it 

is 2.0932J, and in the case of DQS, it is 2.9318J. 

Figure 14 shows the residual energy of LoRaWAN in 

rural-area with 400 IoT-Sensors. In the case of NDQS, it 

is 1.13482 J, and in the case of DQS, it is 1.614 J. 
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Fig. 14: Residual energy LoRaWAN rural-area-400-IoT-

sensors 

 

 

 

Fig. 15: LoRaWAN rural-area residual energy-

comparison 

 

 

 

Fig. 16: Energy consumption LoRaWAN rural-area 

100-IoT-sensor 

 
 
Fig. 17: Energy consumption-LoRaWAN-rural-area-200-IoT-

sensors 
 

Figure 15 shows the comparison of residual energy of 

NDQS and DQS using LoRaWAN in rural-area under the 

constraints of sensor density. As the sensor density increases, 

the network consumes more power and with the peak sensor 

density, it reaches its lowest level. DQS retained a higher 

residual energy level than NDQS w.r.t. sensor density. 

Energy Consumption Analysis-LoRaWAN-Rural Area 

Figure 16 shows the energy consumption of DQS and 

NDQS using LoRaWAN in a rural area with 100-IoT 

sensors. It can be observed that the energy depletion of 

NDQS is relatively higher as compared to DQS over the 

simulation interval, and it reaches up to its lowest level 

w.r.t. each scheme. However, DQS retained a higher 

energy level as compared to NDQS. 

Figure 17 shows the energy consumption of DQS and 

NDQS using LoRaWAN in a rural area with 200 IoT 

sensors. It can be observed that energy depletion of DQS 

is less than NDQS. NDQS consumed higher energy in 

contrast to DQS till the end of the simulation interval. 

Figure 18 shows the energy consumption of DQS and 

NDQS using LoRaWAN in a rural area with 300 IoT 

sensors. It can be observed that the residual energy level 

of NDQS is relatively less as compared to DQS. However, 

it becomes constant till the end of the simulation interval. 

Figure 19.1 shows the energy consumption of DQS 

and NDQS using LoRaWAN in a rural area with 400-IoT 

sensors. It can be observed that in the case of both 

schemes, there is a sharp decline in energy level over the 

simulation interval of up to 600 sec. However, DQS 

consumed slightly less energy as compared to NDQS. 

Figure 19.2 shows the variations in delay using 

NQDS/DQS with LoRaWAN standard in rural-area. It 

can be analysed that it varies with NQDS/DQS under 

the constraints of sensor density. Results show that 

DQS maintained an acceptable delay value as 

compared to NDQS.  
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Fig. 18: Energy consumption-LoRaWAN-rural-area-300-IoT-

sensors 

 

 

 

Fig. 19.1: Energy consumption-LoRaWAN-rural-area-400-

IoT-sensors 

 

 

 

Fig. 19.2: Delay-LoRaWAN-rural-area 

 

 
Fig. 20: Throughput-LoRaWAN-urban-area-100-IoT-sensors 

 

 
 
Fig. 21: Throughput-LoRaWAN-urban-area-200-IoT-Sensors 

 

Performance Analysis of LoRaWAN in an Urban Area 

Figure 20 shows the throughput of LoRaWAN in an 

urban area with 100 IoT sensors using DQS and NDQS 

schemes. For NDQS, it is 92 Kbps and 119 Kbps for DQS.  

Figure 21 shows the throughput of LoRaWAN in an 

urban area with 200 IoT sensors using DQS and NDQS 

schemes. For NDQS, it is 194 Kbps and 225 Kbps for 

DQS. 

Figure 22 shows the throughput of LoRaWAN in 

urban areas with 300 IoT sensors using DQS and 

NDQS schemes. For NDQS, it is 291 Kbps, and 332 

Kbps for DQS. 

Figure 23 shows the throughput of LoRaWAN in an 

urban area with 400-IoT sensors using DQS and NDQS 

schemes. For NDQS, it is 368 Kbps and 460 Kbps for DQS. 

Figure 24 shows the throughput Comparison of DQS 

and NDQS schemes using LoRaWAN standards in urban 

areas. It indicates that DQS delivered a higher throughput 

under the constraints of IoT sensor density (100-400) in 

contrast to NDQS. 
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Fig. 22: Throughput-LoRaWAN-urban-area-300-IoT-sensors 
 

 
 
Fig. 23: Throughput-LoRaWAN-urban-area-400-IoT-sensors 
 

 
 
Fig. 24: LoRaWAN-urban-area-comparison-throughput 

 

 
 
Fig. 25: Residual energy-LoRaWAN- urban -area-100-IoT-

sensors 

 
 
Fig. 26: Residual energy-LoRaWAN-urban-area-200-IoT-

sensors 

 

 
 

Fig. 27: Residual energy-LoRaWAN-urban-area-300-

IoT-sensors 

 

Residual Energy Comparison Analysis-LoRaWAN-

Urban Area 

Figure 25 shows the residual energy of DQS and 

NDQS using the LoRaWAN standard in an urban area 

with 100 IoT Sensors. It is 3.7704 J for NDQS and 4.7288 

J for DQS.  

Figure 26 shows the residual energy of DQS and NDQS 

using the LoRaWAN standard in urban areas with 200 IoT 

Sensors. It is 2.6922 J for NDQS and 3.8902 J for DQS. 

Figure 27 shows the residual energy of DQS and 

NDQS using the LoRaWAN standard in an urban area 

with 300 IoT Sensors. It is 1.2546 J for NDQS and 2.4526 

J for DQS. 

Figure 28 shows the residual energy of DQS and NDQS 

using the LoRaWAN standard in urban areas with 400 IoT 

Sensors. It is 0.985909 J for NDQS and 1.7338 J for DQS. 

Figure 29 compares the residual energy of DQS and 

NDQS using the LoRaWAN standard in an urban area. 

It indicates that DQS managed a higher level of 

residual energy w.r.t. IoT sensor density (100-400). In 

contrast, NDQS consumed higher resources and could 

not maintain optimal residual energy compared to the 

DQS scheme. 
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Fig. 28: Residual energy-LoRaWAN-urban-area-400-IoT-sensors 

 

 

 

Fig. 29: LoRaWAN-urban-area-residual energy-comparison 

 

 

 

Fig. 30: Energy consumption-LoRaWAN-urban-area-100-IoT-

sensors 

 
 
Fig. 31: Energy consumption-LoRaWAN-urban-area-200-IoT-

sensors 

 

 
 
Fig. 32: Energy consumption-LoRaWAN-urban-area-300-IoT-

sensors 

 

Analysis of Energy Consumption in an Urban Area 

Using LoRaWAN Standard 

Figure 30 shows the energy consumption of the 

LoRaWAN standard in an urban area with 100 IoT 

sensors for DQS and NDQS schemes. It can be 

observed that energy depletion is relatively higher for 

the NDQS scheme than the DQS scheme over the 

simulation interval (600 sec). 

Figure 31 shows the energy consumption of the 

LoRaWAN standard in an urban area with 200 IoT 

Sensors for DQS and NDQS schemes. It can be analysed 

that the scheme consumed more energy than the DQS 

scheme until the simulation's end.  

Figure 32 shows the energy consumption of the 

LoRaWAN standard in an urban area with 300 IoT 

Sensors for DQS and NDQS schemes. It shows that for 

both scenarios, there is a steep decline in energy level till 

the end of the simulation. 
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Fig. 33.1: Energy consumption-LoRaWAN- urban -area-400-

IoT-sensors 

 

 
 
Fig. 33.2: Delay-LoRaWAN-urban-area 

 

 
 
Fig. 34: throughput-SigFox-rural-area-100-IoT-sensors 

 

Figure 33.1 shows the energy consumption of the 

LoRaWAN standard in an urban area with 400 IoT 

Sensors for DQS and NDQS schemes. It can be 

observed that the energy level declined for the NDQS 

scheme and at the end of the simulation, it became 

constant as compared to the DQS scheme over the 

simulation interval 600 sec. 

 
 
Fig. 35: Throughput-SigFox-rural -area-200-IoT-sensors 

 

 
 
Fig. 36: Throughput-SigFox-rural-area-300-IoT-sensors 

 

Figure 33.2 shows the variations in delay using 

NQDS/DQS with LoRaWAN standard in urban areas. 

It can be analysed that it varies with NQDS/DQS under 

the constraints of sensor density for both schemes. As 

per the results, DQS has an optimal delay value 

compared to NDQS. 

Performance Analysis of SigFox in the Rural Area  

Figure 34 shows the throughput of SigFox in a rural 

area with 100 IoT-Sensors using DQS and NDQS 

schemes. In the case of NDQS, it is 177.777778 Kbps and 

228.571429 Kbps for the DQS scheme. 

Figure 35 shows the throughput of SigFox in a rural 

area with 200 IoT Sensors using DQS and NDQS 

schemes. In the case of NDQS, it is 411.428571 Kbps and 

442.532268 Kbps for the DQS scheme. 

Figure 36 shows the throughput of SigFox in a rural 

area with 300 IoT Sensors using DQS and NDQS 

schemes. In the case of NDQS, it is 469.565217 Kbps and 

521.73913 Kbps for the DQS scheme. 

Figure 37 shows the throughput of SigFox in a rural 

area with 400 IoT Sensors using DQS and NDQS 

schemes. In the case of NDQS, it is 528.813559 Kbps and 

589.79206 Kbps for the DQS scheme. 
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Fig. 37: Throughput-SigFox-rural-area-400-IoT-sensors 

 

 
 
Fig. 38: SigFox-rural-area-comparison-throughput 
 

 
 
Fig. 39: Residual energy-SigFox-rural-area-100-IoT-sensors 

 

 
 
Fig. 40: Residual energy-SigFox-rural-area-200-IoT-sensors 

 
 
Fig. 41: Residual energy-SigFox-rural-area-300-IoT-sensors 

 

 
 
Fig. 42: Residual energy-SigFox-rural-area-400-IoT-sensors 

 

Figure 38 compares the throughput of DQS and 

NDQS schemes using SigFox standard in rural-area 

under the constraints of IoT sensor density (100-400). 

It can be observed that the DQS scheme has a higher 

throughput as compared to the NDQS scheme w.r.t. IoT 

sensor density. 

Residual Energy Comparison of SigFox Standard in 

the Rural Area 

Figure 39 shows the residual energy of DQS and 

NDQS using SigFox standard in urban areas with 100 IoT 

Sensors. It is 5.194 J for NDQS and 6.406 J for DQS. 

Figure 40 shows the residual energy of DQS and NDQS 

using the SigFox standard in an urban area with 200 IoT 

Sensors. It is 4.3095 J for NDQS and 5.208 J for DQS. 

Figure 41 shows the residual energy of DQS and NDQS 

using the SigFox standard in an urban area with 300 IoT 

Sensors. It is 3.9501J for NDQS and 4.3095J for DQS. 

Figure 42 shows the residual energy of DQS and NDQS 

using the SigFox standard in an urban area with 400 IoT 

Sensors. It is 2.90185 J for NDQS and 3.16 J for DQS. 

Figure 43 shows the comparison residual energy of 

SigFox standard in rural areas using DQS and NDQS 

schemes. It can be analysed that more energy is consumed 

w.r.t. IoT sensor density and DQS retained its optimal 

level compared to NDQS, and with the peak sensor 

density (400), it reached its lowest level for both schemes.  
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Fig. 43: SigFox-rural-area-residual energy-comparison 
 

 
 
Fig. 44: Energy consumption-SigFox-rural-area-100-IoT-sensors 
 

 
 
Fig. 45: Energy consumption-SigFox-rural-area-200-IoT-sensors 
 

 
 

Fig. 46: Energy consumption-SigFox-rural-area-300-IoT-sensors 

 
 
Fig. 47. 1: Energy consumption-SigFox-rural-area-400-IoT-

sensors 

 

 
 
Fig. 47. 2: Delay-SigFox-rural-area 

 

Energy Consumption Comparison for SigFox 

Standard in a Rural Area  

Figure 44 shows that DQS and NDQS energy 

consumption using Sigfox standard in rural areas with 

100 IoT-Sensors. It can be analysed that NDQS has 

higher energy depletion over the simulation interval as 

compared to DQS.  

Figure 45 shows DQS and NDQS energy consumption 

using Sigfox standard in rural areas with 200 IoT-Sensors. 

It can be analysed that NDQS consumed more energy over 

the simulation interval than DQS w.r.t. sensor density. 

Figures 46-47.1 shows the energy consumption- 

SigFox standard over the rural area using NDQS and DQS 

with 300-IoT-Sensors. In both schemes, there is a 

marginal difference in energy consumption, increasing 

until the end of the simulation interval.  

Figure 47.2 shows the variations in delay using 

NDQS/DQS with SigFox standard in rural-area. Results 

indicate that it varies w.r.t. sensor density using both 

schemes (NDQS/DQS). However, it is slightly less using 

DQS than NDQS over simulation intervals.  



Zatin Gupta and Amit Kumar Bindal / Journal of Computer Science 2023, 19 (8): 1029.1049 

DOI: 10.3844/jcssp.2023.1029.1049 

 

1043 

 
 
Fig. 48: Throughput-SigFox-urban-area-100-IoT-sensors 

 

 
 
Fig. 49: Throughput-SigFox-urban-area-200-IoT-sensors 

 

 
 
Fig. 50: Throughput-SigFox-urban-area-300-IoT-sensors 

 

 
 
Fig. 51: Throughput-SigFox-urban-area-400-IoT-sensors 

 
 
Fig. 52: SigFox-urban-area-comparison-throughput 

 

Performance Analysis of SigFox in an Urban Area 

Figure 48 shows the throughput of SigFox in a rural 

area with 100 IoT-Sensors using DQS and NDQS 

schemes. In the case of NDQS, it is 133.3333 Kbps and 

138.355111 Kbps for the DQS scheme. 

Figure 49 shows the throughput of SigFox in an urban 

area with 200 IoT-Sensors using DQS and NDQS 

schemes. In the case of NDQS, it is 310.995927 Kbps and 

322.828593 Kbps for the DQS scheme. 

Figure 50 shows the throughput of SigFox in urban 

areas with 300 IoT-Sensors using DQS and NDQS 

schemes. In the case of NDQS, it is 488.707886 Kbps and 

527.788884 Kbps for the DQS scheme. 

Figure 51 shows the throughput of SigFox in urban 

areas with 400 IoT-Sensors using DQS and NDQS 

schemes. In the case of NDQS, it is 579.110651 Kbps and 

621.991855 Kbps for the DQS scheme. 

Figure 52 compares the throughput of DQS and NDQS 

using SigFox standard in urban areas w.r.t. IoT sensor 

density (100-400). Results indicate that with minimal 

sensor density, it is the lowest for both schemes.  

It increases as the sensor density varies and reaches its 

peak value with the highest sensor density. However, 

DQS offered higher throughput as compared to NDQS 

under the constraints of sensor density. 

Energy Consumption of SigFox Standard Under 

Urban Area 

Figure 53 shows the residual energy of DQS and 

NDQS using SigFox standard in urban areas with 100 IoT 

Sensors. It is 3.412 J for NDQS and 4.132 J for DQS. 

Figure 54 shows the residual energy of DQS and NDQS 

using the SigFox standard in an urban area with 200 IoT 

Sensors. It is 2.818 J for NDQS and 3.115 J for DQS. 

Figure 55 shows the residual energy of DQS and NDQS 

using the SigFox standard in an urban area with 300 IoT 

Sensors. It is 1.984 J for NDQS and 2.521 J for DQS. 
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Fig. 53: Residual energy-SigFox-urban-area-100-IoT-sensors 

 

 
 

Fig. 54: Residual energy-SigFox-urban -area-200-IoT-sensors 

 

 
 

Fig. 55: Residual energy-SigFox-urban-area-300-IoT-sensors 

 

 
 

Fig. 56: Residual energy-SigFox-urban-area-400-IoT-sensors 

 
 
Fig. 57: SigFox-urban-area-comparison-residual energy 

 

 
 
Fig. 58: Energy consumption-Sigfox- urban-area-100-IoT-sensors 

 

Figure 56 shows the residual energy of DQS and NDQS 

using the SigFox standard in an urban area with 400 IoT 

Sensors. It is 1.024 J for NDQS and 1.918 J for DQS. 

Figure 57 compares the residual energy of DQS and 

NDQS schemes using the SigFox standard in an urban 

area. Analysis shows that the lowest sensor density (100) 

is higher for both scenarios, decreasing w.r.t. sensor 

density variations and reaching its lowest level with the 

highest sensor density. However, it is higher for DQS than 

NDQS under the constraints of sensor density. 

Energy Consumption Comparison of SigFox in an 

Urban Area 

Figure 58 shows the energy consumption of DQS and 

NDQS using Sigfox standard in urban-area with 100-IoT 

sensors. It shows that the energy level of both schemes is 

decreasing gradually. 

Figure 59 shows the energy consumption of DQS and 

NDQS using Sigfox standard in urban-area with 200-IoT 

sensors. It offers a marginal difference between the energy 

level of DQS and NDQS and decreases until the end of 

the simulation interval.  
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Fig. 59: Energy consumption-Sigfox- urban-area-200-IoT-sensors 
 

 
 
Fig. 60: Energy consumption-Sigfox- urban-area-300-IoT-sensors 
 

 
 
Fig. 61: Energy consumption-Sigfox- urban-area-400-IoT-sensors 
 

 
 
Fig. 62: Delay-SigFox-urban area 

 
 
Fig. 63: Throughput comparison-LoRaWAN/SigFox-rural-area 

 

Figure 60 shows the energy consumption of DQS and 

NDQS using Sigfox standard in urban-area with 300-IoT 

sensors. It shows that the energy level of DQS and NDQS 

decreases gradually, with a slight difference between their 

energy levels. 

Figure 61 shows the energy consumption of DQS and 

NDQS using Sigfox standard in urban-area with 400-IoT 

sensors. It can be observed that there is a sharp decline in 

the energy level of NDQS as compared to DQS till the end 

of the simulation. 

Figure 62 shows the variations in delay using 

NDQS/DQS with SigFox standard in an urban area. As 

per the results, the delay value varies w.r.t. NDQS/DQS 

over sensor density. DQS offered optimal delay in 

contrast to NDQS over the simulation interval. 

Comparison of LoRaWAN and SigFox Rural Area 

Figure 63 shows the throughput comparison of 

LoRaWAN and SigFox standards in rural areas using 

NDQS and DQS schemes. It can be observed that 

throughput for both scenarios varies w.r.t. sensor density 

(100-400), and for SigFox, NDQS delivers slightly less 

throughput than DQS. It can be analysed that DQS 

enhanced it for both standards (LoRaWAN/SigFox) in 

contrast to NDQS.  

Figure 64 shows the residual energy comparison of 

LoRaWAN and SigFox standards in rural areas using 

NDQS and DQS schemes. It varies w.r.t. sensor density 

and is reduced to its lowest level with the highest sensor 

density (400) for both systems. However, DQS retained 

optimal residual energy levels for LoRaWAN and SigFox 

compared to NDQS. 

Figure 65 shows the delay comparison of LoRaWAN 

and SigFox standards in rural areas using NDQS and DQS 

schemes over a simulation interval. It can be observed that 

using NDQS, the performance of LoRaWAN/SigFox is 

affected due to a higher delay factor w.r.t. sensor density. 

However, DQS managed the delay up to a significant 

level for both standards.  
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Fig. 64: Residual energy-comparison-LoRaWAN/SigFox-rural-area 
 

 
 
Fig. 65: Delay comparison-LoRaWAN/SigFox-rural-area 
 

 
 
Fig. 66: Throughput comparison-LoRaWAN/SigFox-urban-area 

 

Comparison of LoRaWAN and SigFox Urban Area 

Figure 66 shows the throughput comparison of 

LoRaWAN and SigFox standards in an urban area 

using NDQS and DQS schemes. It can be observed that 

there is a marginal difference between its value for the 

sensor density 100-200 using NDQS and DQS schemes 

w.r.t. LoRaWAN/SigFox. 

 
 
Fig. 67:  Residual energy-comparison-LoRaWAN/SigFox-

urban-area 

 

 
 
Fig. 68: Delay comparison-LoRaWAN/SigFox-urban-area 

 

However, it varies as the sensor density increases to 

300-400 for LoRaWAN/SigFox. DQS delivered the 

higher throughput for SigFox, followed by LoRaWAN, 

compared to NDQS.  

Figure 67 shows the residual energy comparison of 

LoRaWAN and SigFox standards in rural areas using 

NDQS and DQS schemes. It can be observed that NDQS 

and DQS, both schemes, could not retain it under the 

constraints of sensor density, and for the highest sensor 

density, it declined up to its minimal level (for 

LoRaWAN/SigFox). However, DQS maintained its level 

for both standards as compared to NDQS.  

Figure 68 shows the delay comparison of LoRaWAN 

and SigFox standards in urban areas using NDQS and 

DQS schemes over a simulation interval. It can be 

observed that it varies for NDQS/DQS using 

LoRaWAN/SigFox w.r.t. sensor density.  

Discussion 

The study introduces DQS, a delay-aware quality of 

service-constrained scheme for smart farming, to 
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compare performance in rural and urban areas. The 

LoRaWAN standard outperforms SigFox regarding 

throughput, residual energy, and energy consumption, 

while DQS optimises energy consumption and retains 

higher residual energy levels. Sensor density also plays 

a role in the performance. 

Conclusion 

This study introduces a delay-aware quality of 
service-constrained scheme for smart farming, DQS. Its 
performance was compared using various parameters in 
different constraints, such as throughput, residual 
energy, and energy consumption. The LoRaWAN 
standard outperforms the LoRaWAN standard in rural 

regions with few sensors, while SigFox outperforms it in 
urban areas with a higher density of sensors. DQS also 
optimise energy consumption and retains higher residual 
energy levels. The delay factor varies for NQDS/DQS 
using LoRaWAN/SigFox based on sensor density and 
area type, with more variations in delay values in 

metropolitan areas. 
The scope of the DQS is limited to smart farming, and 

only two IoT communication standards are used for 

analysis. Future research will analyse its performance in 

other disciplines, such as healthcare, automotive, and 

education, where service delivery is affected by delay 

constraints using other standards. 
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