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Abstract: Manual implementation of test code can lead to 

maintainability problems such as test code duplication. Strategies to 

avoid test code duplication and to promote test code reuse exist in the 

literature. However, it becomes increasingly difficult to apply these 

strategies as the system evolves and the number of test increases. In this 

study, we present a novel strategy to reuse test setup code from other 

test classes without breaking the independency principle of the Test 

Automation Manifesto. We implemented this strategy in a framework 

called Estόria. Beyond test code reuse, the framework also enables the 

reuse of setup execution. Test execution reuse is important because it 

reduces testing runtime and allows a quicker feedback to test 

developers. The overall impact in promoting both code and execution 

reuse of test setup is an improvement in test maintainability and a 

reduction in testing effort. Experimental results showed a reduction of 

47.62% of duplicate test lines using our strategy. In addition, execution 

reuse allowed to reduce the execution time by a ratio of 8. 
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Introduction 

Software testing is an activity that plays an important 

role in the software development process (Bourque et al., 

2014). It is primarily used to provide evidence that the 

software works as expected (Bertolino, 2007). In addition, 

other benefits can also be achieved, such as detecting 

defects (Tiwari and Goel, 2013), preventing bug insertion 

(Agrawal et al., 1993), giving feedback about design 

(Freeman and Pryce, 2009) and serving as a means for 

software documentation (Haugset and Hanssen, 2008) and 

specification (Alvestad, 2007). Software testing can be 

automated or manual (Meszaros, 2007). Test automation 

is the process of creating automated tests in order to 

reduce the effort needed to manually test the system. 

We can cite three different approaches to create 

automated tests. The most straightforward approach 

consists in manually write the test code. The second 

approach is the Model-Based Testing (MBT), where the 

test code is automatically generated from the software 

requirements (Dalal et al., 1999). The third approach is 

the one that uses recording tools to generate the test 

code from the manual use of the System Under Test 

(SUT) (Adamoli et al., 2011). In this study, we focus on 

the first approach, in which the quality of test code has 

special importance. Unlike the MBT and the recording-

tools approaches, the manual codification of test code 

demands constant maintenance by programmers 

(Ramler and Wolfmaier, 2006). In this scenario, the test 

code must be maintained during all the project and a 

good maintainability must be ensured in order to reduce 

the development effort. 
The testing activity can take up 50 to 60% of the total 

project development effort and 30% of total project 

effort (Tsai et al., 2003; Kumar and Mishra, 2016). 

This demonstrates the importance of test code 

maintainability to reduce the total development effort. 

In order to achieve a good maintainability, test methods 

should be clearly structured, well named, small and 

most importantly, code duplication should be avoided 

(Greiler et al., 2013b). In general, tests tend to be 

repetitive with a high potential of reuse (Berner et al., 

2005). As the system evolves, the number of tests 

increases, and it is easier to find code duplication across 
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tests. Thus, a key aspect for reducing testing effort is the 

development of test through a reusable-oriented 

approach (Tiwari and Goel, 2013). Test development 

effort in approaches without code reuse is lower in the 

beginning; however, as the number of tests increases, 

the effort of developing without reuse also increases 

(Berner et al., 2005). On the other hand, when one uses 

reusable components, the effort of developing tend to 

be reduced as the number of test increases (Meszaros, 

2007). To achieve an effective cost-benefit trade-off, 

the effort to promote code reuse must be offset by the 

improvement in the maintainability. Thus, the approach 

used to promote code reuse is crucial to ensure this 

positive trade-off (Garousi and Küçük, 2018). 

Figure 1 shows an example of code duplication 

between two tests. Lines 3 to 5 in the first test are the 

same as lines 13 to 15 in the second test. In this naive 

example, code duplication does not seem to be a big 

problem. However, as the system evolves and the 

number of tests increases, this type of duplication can be 

harmful to the test code maintainability, e.g., a 

refactoring in the User constructor would demand 

modification in both tests. 

Another factor that affects testing activity is the time 

needed to run a given suite of tests. The first impact of 

slow tests is a reduction in the productivity of the 

person running the tests (Meszaros, 2007). Also, test 

suites that take too long to run will be run less 

frequently and test automation may fail when the 

automated tests are not run frequently (Berner et al., 

2005). Because test suites have a strong tendency to 

be forgotten when not running for a while, this leads 

to the degradation of tests over time. It is worth 

mentioning that part of test runtime is spent with fixture 

setup. Hence, it is possible to reduce testing runtime by 

reusing fixture setup executions across tests. We will 

explore this subject in more detail later in the paper. 

In this study, we intend to address two problems: (1) 

Test code duplication; and (2) slow test execution. Our 

approach to solve both problems is different from the 

well-known approaches in the literature. In our 

approach, we consider that each test class has its own 

implicit setup (Meszaros, 2007) code and that both 

code reuse and execution reuse can be promoted 

through a definition of dependency between test 

classes. Thus, with code reuse we can reduce code 

duplication across tests and with execution reuse we 

can speed up test execution. To promote both code and 

execution reuse between tests from different test 

classes, we proposed a dependency model between test 

classes. We also implemented a framework called 

Estόria, which supports the proposed model. 

The remainder of this paper is structured as follows: 

Section 2 presents core concepts regarding test code 

and execution of tests and highlights the main 

characteristics of approaches in the literature to solve 

test code duplication and slower test execution 

problems. In section 3, related works are presented and 

discussed. In section 4, our proposal is presented along 

with the dependency model between test classes and 

the Estόria framework. In section 5, we evaluate our 

proposal and compare it with well-known approaches 

in the literature. Finally, section 6 shows the 

conclusions and future works. 

 

 
 

Fig. 1: Test classes with code duplication 

1 public class CreateUserTest { 

2  @Test public void create() { 

3  User john = new User(); 

4  john.setName("John Doe"); 

5  john.setCareer("Programmer"); 

6  assertNull(john.getId()); 

7  assertEquals("John Doe", john.getName()); 

8  assertEquals("Programmer", john.getCareer()); 

9  } 

10 } 

11 public class InsertUserTest { 

12  @Test public void insert() { 

13  User john = new User(); 

14  john.setName("John Doe"); 

15  john.setCareer("Programmer"); 

16  UserDao dao = new UserDao(); 

17  Long id = dao.insert(john); 

18  assertEquals(id, john.getId()); 

19  } 

20 } 
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Background 

In this section, we present fundamental concepts for 

our work. 

Test Code Smells 

Code smells correspond to a poor solution to a 

recurring implementation and design problem (Fowler, 

2018). Test code and production code share common 

code smells. However, due to its characteristics, test 

code can involve specific code smells (Meszaros, 2007; 

Greiler et al., 2013a; 2013b; Garousi and Küçük, 2018; 

Lambiase et al., 2020). Test code smells affects the 

quality of test code in a long run and can reduce test 

code maintainability by different factors (Garousi and 

Küçük, 2018). For example, one common smell is 

obscure test (Meszaros, 2007), which occurs when we 

have difficult to understand what behavior a test is 

verifying. It can be caused by either too much 

information or too little information. Another important 

test smells are code duplication and slow test execution 

(Meszaros, 2007). 

Four-Phase Test Pattern 

The four-phase test pattern separates test execution 

into four phases: (1) Setup, (2) exercise, (3) verification 

and (4) tear down (Meszaros, 2007). In the setup phase, 

test fixtures are created, i.e., everything needed to 

exercise the SUT is put in place. In the exercise phase, 

the test interacts with the SUT by calling the operation 

or the feature to be tested. Next, in the verification 

phase, the test must verify if the expected outcome 

corresponds to the obtained behavior. Finally, in the 

last phase, the state of the SUT is put back into the 

initial state. Some projects do not use the last phase of 

this pattern because, in this case, for each test run, the 

SUT is prepared from scratch in the setup phase. The 

main advantage of this approach is to avoid fragile tests 

(Meszaros, 2007) that fail due to a previous test run that 

let the SUT in an inconsistent state. 

Fixture Setup Strategies 

As stated before, fixtures correspond to everything 

needed to exercise the SUT. A fixture can be an object in 

memory, a record in a database and even a file in a 

filesystem. The code responsible for creating fixtures is 

called fixture setup. There are distinct fixture setup 

strategies and each one has its pros and cons. The most 

straightforward fixture setup strategy is inline setup 

(Meszaros, 2007). In inline setup, the code needed to 

setup fixtures is put directly in the test method. The tests 

shown in Fig. 1 use this strategy, which produces code 

duplication smell (Meszaros, 2007). At a first glance, the 

inline setup can establish a good relationship between 

fixtures and the expected outcome. However, large 

amount of setup code can lead to irrelevant information 

smell (Meszaros, 2007), a subdivision of the obscure test 

smell, making tests hard to understand. 

Another fixture setup strategy is implicit setup 

(Meszaros, 2007). It can be used to reduce code 

duplication from inline setup. In the implicit setup, tests 

are placed in a same test class and a special method, 

usually called setup method, is created. The setup code 

common to all tests of the class is placed in the setup 

method. The setup method is run before each test 

method of the class. Although this strategy promotes 

code reuse, it does not promote execution reuse. 

Moreover, as the implicit setup moves some fixture 

setup code to a method that is not the test method, the 

establishment of relationship between fixtures and 

expected outcomes is reduced when compared to inline 

setup. Also, as the implicit setup includes the tests in 

the same test class, it may not scale well because to 

keep increasing reuse it would be necessary to increase 

the number of tests in the same test class. Grouping 

tests in the same class in order to promote code reuse 

through implicit setup can lead to several test code 

smells, such as general fixture, test maverick and lack 

of cohesion of test methods (Greiler et al., 2013b). 

In the delegated setup strategy (Meszaros, 2007), 

setup code is placed in helper methods that can be 

called by test methods from different test classes. This 

can be used to promote code reuse. However, 

delegated setup hides details of test fixtures. This is a 

double-edged sword characteristic, because it can 

simplify and improve the readability of test code by 

avoiding irrelevant information smell, but at the same 

time it can also lead to mystery guest smell 

(Meszaros, 2007), a subdivision of the obscure test 

smell that makes harder to understand the relationship 

between fixtures and expected outcomes. Unlike 

implicit setup, delegated setup does not require to 

include the setup code in the same test class of the test 

methods. However, the main disadvantage is that the 

delegated setup method returns only one fixture object 

to the test method that called it. In order to enable 

access to several fixtures objects and avoid the hard-

coded test data smell (Meszaros, 2007), the delegated 

setup method must be broken into multiple methods 

and this can be a time-consuming and error-prone task. 

Implicit setup and delegated setup only promote code 

reuse. However, there is a category of strategies, called 

shared fixture construction, which also promotes 

execution reuse in addition to code reuse (Meszaros, 

2007). In shared fixture construction, common fixtures 

are persisted between different test executions. The 

fixtures are created once and can be reused several times 

by different tests that depend on them. In this way, 

shared fixture construction decreases the time needed to 

run tests. However, it has two major problems: (1) A 
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given test may dirty a fixture and leave it in an 

inconsistent state for the next test run; and (2) test 

frameworks typically do not have built-in mechanisms to 

manage shared fixtures and it is up to the programmer to 

ensure the consistency of the life cycle of tests and 

fixtures. The second problem breaks the Hollywood 

principle (Sweet, 1985; Sobernig and Zdun, 2010) which 

states that the framework must call the application and 

not the contrary. To break the Hollywood principle is 

dangerous because it may affect the internal state of the 

framework, interfering in the correct execution of the 

tests (Mattsson et al., 1999). Moreover, this can increase 

the effort needed to write tests, because developers need 

to ensure that the used shared fixture setup strategy do 

not cause an unwanted failure in the tests. 

Each fixture setup strategy has its own advantages 

and disadvantages. In fact, they are complementary 

regarding the characteristics of code reuse, execution 

reuse, readability and complexity of implementation. In 

general, the weak point of one strategy is the strong 

point of the others. The most experienced programmers 

can balance the use of the most adequate strategy for 

each situation. However, as the number of tests increases 

it is more difficult, even for experienced programmers, 

to find the right balance between the strategies. 

Related Works 

In this section, we present some works that propose 

new fixture setup strategies for specialized contexts. We 

investigate works that also focus on the improvement of 

test code reuse, test execution reuse, or both. 

DbUnit 

The DbUnit1 framework (Christensen et al., 2006) is 

an extension of JUnit2 to reuse fixture of tests involving 

database applications. In this framework, a test class 

must be defined for each database entity to be tested. The 

main goal is to reuse the fixtures inserted by a given test 

class in another test class. To achieve this, each test class 

must define three methods: (1) An insertion method 

where the entity represented by the test class is inserted; 

(2) a deletion method where the entity represented by the 

test class is removed; and (3) a method that returns the 

list of entities that the entity being tested depends on, 

called dependency list. Based on the dependency list 

returned by the third method, the framework executes, in 

a recursive order, the insertion test method of each 

dependency entity. After that, the framework executes, 

in a recursively inverse order, the deletion test method of 

each dependency entity. 

For example, suppose that there is an entity called 

teacher and there is an entity called office. Each teacher 

                                                           
1 http://dbunit.org/ 
2 https://junit.org/ 

must have an office. So, in order to test the insertion of a 

Teacher entity, first it is necessary to insert an Office 

entity. To accomplish this and to reuse the execution, the 

DbUnit framework runs the tests relative to these two 

entities in a specific order. First, the framework runs the 

test to insert the Office entity. Next, the test to insert the 

Teacher entity is run. It is worth mentioning that at this 

point, the framework reuses the entity inserted in the 

first test. In this way, it is possible to achieve 

execution reuse because to run the Teacher test it is 

not necessary to insert an Office entity again. After 

the recursive running of the insertion tests, the 

framework runs, in the recursively inverse order, the 

deletion tests. This is necessary in order to clean the 

SUT and let it in a consistent state. Thus, first the 

framework will run the deletion of the Teacher test 

and, finally, the deletion of the Office test. 

The main limitation of this work is that the fixtures 

created are only accessible through database operations. 

Fixtures created by test classes of dependency entities 

cannot be accessed programmatically by the running 

test. Also, although the framework promotes execution 

reuse, the running test must not change the state of 

any dependency entity, because doing so can break 

other tests that depend on the same dependency entity. 

Thus, the work breaks the independency principle 

(Meszaros et al., 2003), which advocates that tests must 

be independent of each other and that a suite of tests 

should be run in any arbitrary order. 

Reusable Fit Specifications 

Mugridge and Cunningham (2005) propose the reuse 

of fixtures in the context of Fit3. Fit is an acceptance 

testing framework in which tests are defined using a 

tabular format specification (Borg and Kropp, 2011). 

The work proposes that Fit tests can be connected in a 

way that one test can serve as a starting point of another 

one, promoting the reuse of the Fit specifications. Next, 

from the connected specifications, the authors propose to 

build a directed graph of tests. Thus, instead of executing 

each test individually, the authors propose to execute the 

tests through a graph walking algorithm. The main 

drawback of the graph approach is the mischaracterization 

of test as a concise and cohesive unit. This approach leads 

to comprehension and traceability problems, e.g., it is 

more difficult to find the source of an error when all tests 

are run together as a whole. 

In our approach the idea is that the setup code of one 

test class can be used as starting point for another test 

class. Mugridge and Cunningham (2005) approach 

differs from our approach because the specification reuse 

is applied directly between tests. Besides that, when 

considering the reuse of execution and not only the reuse 

                                                           
3 http://fit.c2.com/ 
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of setup code or specification, in our work we only reuse 

execution of test setup that does not change the test 

fixtures of its test classes. 

Picon 

The Picon4 framework (Longo et al., 2015) is an 

extension of JUnit that promotes the reuse of test code of 

Plain Old Java Objects (POJO). POJO are objects that 

include a default constructor and getter and setter 

methods for each attribute. In Picon, the fixtures are 

defined in an external file through a special notation. The 

defined fixtures are reused through the declaration of an 

attribute in the test class. The attribute must have the 

same name as the desired fixture. For each test, Picon 

parses the files that contain the fixture definitions, 

creates the fixture objects and, finally, injects the objects 

into the running test. 

The authors claim that the success of their approach 

is based on an adequate naming strategy, i.e., 

programmers should choose clear and meaningful names 

for the fixtures, otherwise test comprehension will be 

harmed. In a Test-Driven Development (TDD) project 

where Picon was used, the authors estimated a reduction 

of 60% of the test code. 

SolUnit 

SolUnit5 (Medeiros et al., 2019) is a framework for 

reducing testing runtime of unit tests for smart contracts. 

Smart contracts are software programs that are run over a 

blockchain (Tonelli et al., 2018). A blockchain consists 

of chain of data packages which comprises multiple 

transactions (Nofer et al., 2017). Smart contracts are 

decentralized and immutable, i.e., once deployed they 

cannot be changed (Destefanis et al., 2018). 

SolUnit aims to reduce the time spent to run tests for 

smart contracts. Because smart contracts need to be 

deployed on a blockchain to be tested, the time spent to 

run tests can lead to slow test execution smell. Thus, 

SolUnit tries to reduce test execution time by reusing 

smart contract deployment and test setup. To do this, 

first SolUnit identifies smart contract functions that do 

not generate new transactions in the blockchain. Tests 

that only call these functions are identified as well. Next, 

the framework reuses the contract deployment and test 

setup execution of the identified tests. The approach was 

able to reduce test execution time by 30 to 70% 

considering five open-source projects found on GitHub. 

Discussion 

As we already mentioned, in our work we focus on 

promoting both code and execution reuse of test code. In 

                                                           
4 https://github.com/douglashiura/picon 
5 https://github.com/hmhallan/sol-unit 

DbUnit and Reusable Fit Specifications, the test code 

and execution can be reused. However, both approaches 

break the independency principle. Furthermore, the 

approach used by DbUnit can only be applied for 

applications in which the fixtures are persisted in a 

database. Also, in DbUnit the fixtures cannot be passed 

between different test classes. The work proposed by 

Mugridge and Cunningham (2005) differs from our work 

too. While our work focuses on test code refactoring, 

Mugridge and Cunningham (2005) propose a strategy for 

refactoring Fit table specifications. Another difference is 

that our approach is applied to reuse code between test 

classes, while Mugridge and Cunningham (2005) 

propose the reuse of specifications in a test granularity. 

Picon promotes code reuse of fixtures defined externally 

to the test classes, but only POJOs can be reused and 

execution reuse is not provided. SolUnit is designed to 

reduce tests runtime of smart contracts without breaking 

the independency principle. The framework 

automatically identifies test setups that can be reused by 

other tests. However, SolUnit does not aim to reduce test 

code duplication. 

Next, we present our proposal. It differs from other 

approaches because it can promote both code and execution 

reuse while preserving the independency principle and 

enabling programmatic access to the fixtures. 

Estόria 

In this section we present the Estόria6 framework 
(da Silva and Vilain, 2016; 2017), an extension of 
JUnit in which we implemented our proposal. Our main 

goal is to enable the reuse of implicit setups between 
different test classes. This idea comes from the basic 
principle that the implicit setup of one test class can 
serve as starting point to the implicit setup of another 
test class. Thus, we define a dependency model 
between test classes as follows: 
 

 Definition 1 Given a provider test class and a 

consumer test class, the dependency relationship 

between them implies that the implicit setup of 

the provider will be run before the implicit setup 

of the consumer 

 

This means that in order to run a given test of the 

consumer class, Estόria will run the implicit setup of the 

provider before running the implicit setup of the 

consumer. Estόria implements this behavior through the 

@FixtureSetup annotation. In addition to this annotation, 

Estόria provides a complementary annotation called 

@Fixture. The @Fixture annotation allows the tests of a 

consumer class to use the fixtures created in the implicit 

setup of a provider class. 

                                                           
6 https://github.com/lucasPereira/estoria 
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Fig. 2: Test class to create a banking system 

 

 
 

Fig. 3: Test class to create a bank 

 

Figure 2 and 3 show an example of how to use 

Estόria annotations. In Fig. 3, line 1 indicates that the 

implicit setup of the test class defined in Fig. 2 will be 

used. In JUnit, the implicit setup of a test class 

corresponds to the methods annotated with @Before. 

Estόria is an extension of JUnit. Thus, in Estόria, the 

@Before annotation has the same meaning as in JUnit. 

Besides that, line 3 in Fig. 3 indicates that the annotated 

attribute will be dynamically injected by Estόria. Thus, 

in order to run the test in the BankTest class (Fig. 3), 

Estόria executes the following steps: (1) Run the implicit 

setup of the BankingSystemTest; (2) run the implicit 

setup of the BankTest; (3) injects the fixtures from the 

provider class in the annotated attributes of the consumer 

class; and, finally, (4) run the test. The Estόria 

annotations allow us to achieve code reuse and 

programmatic access to the fixtures. 

Fixture Injection 

As shown above, to use a fixture created in the 

implicit setup of a provider class it is necessary to 

declare, in a consumer class, an attribute with the same 

name as the desired fixture presented in the provider 

class. It is also necessary to annotate the declared 

attribute with the @Fixture annotation. Although Estόria 

does not need the @Fixture annotation to identify the 

attributes to be injected, we decided to make this step 

mandatory because of two reasons: (1) To improve test 

readability by making clear which fixtures are provided 

by dependencies; and (2) to minimize the error-prone 

characteristic of the fixture injection by (a) avoiding 

fixture injection without the programmer’s knowledge 

and (b) detecting typos in cases where a fixture is not 

found in the provider classes. 

Independence Principle 

It is important to highlight that the dependency model 

does not break the independency principle presented in 

the Automation Manifesto (Meszaros et al., 2003). The 

independency principle says that tests can be run in any 

arbitrary order without collateral effects. This principle 

is justified by the idea that one test execution should not 

depend on or interfere in a different test execution, e.g., a 

given test  should not fail just because the execution of 

another test put the SUT in an inconsistent state for the 

test . There are two strategies to avoid side effects from 

previous test executions: (1) In the setup phase, each test 

should reset the state of the SUT; or (2) in the tear-down 

phase, each test should undo the modifications made in 

the SUT. From the perspective of each test, the first 

strategy is the safest because the test itself guarantees 

that the SUT will be in a consistent state. 

In Estόria, the dependency relationship between two 

classes does not interfere in the execution of their tests. 

1  @FixtureSetup(BankingSystemTest.class) 

2  public class BankTest { 

3  @Fixture private BankingSystem bs; 

4  private Bank hsbc; 

5  @Before public void setup() { 
6  hsbc = bs.createBank("HSBC", Currency.GBP); 

7  } 

8  @Test public void test() { 
9  assertEquals("HSBC", hsbc.getName()); 

10  assertEquals(Currency.GBP, hsbc.getCurrency()); 

11  assertEquals(0, hsbc.getAccounts().size()); 
12  assertEquals(1, bs.getBanks().size()); 

13 } 

14 } 

1  public class BankingSystemTest { 

2  private BankingSystem bs; 

3  @Before public void setup() { 

4  bs = new BankingSystem(); 

5  } 

6  @Test public void test() { 

7  assertEquals(0, bs.getBanks().size()); 

8  assertEquals(0, bs.getMints().size()) 

9  } 

10 } 
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Instead of that, the relationship between test classes 

only implies that the implicit setup of the provider class 

will be run before the implicit setup of the consumer 

class. This relationship, however, does not interfere in 

the execution of the tests, e.g., a given test from a 

provider class could be run after a test from a consumer 

class, or vice-versa, without any side effect. In other 

words, in Estόria, the dependency relationship between 

test classes does not imply on a dependency between the 

tests from the involved classes. 

The dependency model and its implications can be 

better understood through a concept from biology: 

Commensalism (Beneden, 1876). Commensalism is a 

relationship between two organisms in which one 

organism gains benefits from another without 

benefiting or harming it. It is a commensal behavior 

that we expect with the dependency relationship 

between two test classes. More than that, we expect 

that producer classes do not even need to know the 

existence of consumer classes. 

Transitive Dependencies 

In Estόria, the dependency between different test 

classes is a transitive relationship, e.g., if a test class  

depends on  and  depends on , then  also depends 

on . Before running a given test, Estόria will run, in a 

recursive inverse order, the implicit setups of the 

dependencies. Figure 4 illustrates an example of 

transitive dependencies. The test class presented in Fig. 4 

depends on the test class presented in Fig. 3, which in 

turn, depends on the test class presented in Fig. 2. We 

say that the test class of Fig. 2 is a transitive dependency 

of the test class of Fig. 4. Thus, in order to run the test 

method presented in Fig. 4, Estόria will create an 

Execution Sequence of Implicit Setup and Test Methods 

(ESISTM) to determine the order to run the methods 

needed for the test. Figure 5 shows an Unified Modeling 

Language (UML) activity diagram corresponding to the 

ESISTM for the test of Fig. 4. 

Regarding the created fixtures, after each implicit 

setup execution, Estόria injects the created fixtures in the 

next dependency implicit setup execution. It is worth 

mentioning that the fixture injection is also transitive, 

e.g., the test class in Fig. 4 uses the bs fixture created in 

the class of Fig. 2. However, the transitivity of fixture 

injection only works if the provider test class 

immediately following uses the fixture as well, e.g., if 

the test class in Fig. 3 does not use the bs fixture, then 

the test class in Fig. 4 could not use it either. 

 

 
 

Fig. 4: Test class to create a account 

 

 
 

Fig. 5: ESISTM for account test 

1  @FixtureSetup(BankTest.class) 

2  public class AccountTest { 

3  @Fixture private BankingSystem bs; 

4  @Fixture private Bank hsbc; 

5  private Account jane; 

6  @Before public void setup() { 

7  jane = hsbc.createAccount("Jane Doe"); 

8  } 

9  @Test public void test() { 

10  assertEquals("Jane Doe", jane.getName()); 

11  assertEquals(Money.ZERO, jane.getBalance()); 

12  assertEquals(1, hsbc.getAccounts().size()); 

13  assertEquals(1, bs.getBanks().size()); 

14  } 

15  } 

BankingSystemTest 

setup() 
BankTest 

setup() 

AccountTest 

test() 
AccountTest 

setup() 
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Transitive dependencies are especially useful for 

implementing story tests. Story tests, also known as 

acceptance tests (Kamalrudin et al., 2013), are user 

tests that are used to determine if a system satisfies the 

acceptance criteria from the customer perspective 

(Borg and Kropp, 2011). This type of test is usually 

implemented in an evolutionary and incremental way 

(Erdogmus et al., 2005). Transitive dependencies make 

possible implementing tests in the same evolutionary 

way, i.e., the setup of the test classes that are already 

implemented can serve as starting point for 

implementing the next test. The simple observation that 

story tests can be connected in order to build a bigger 

picture was the main idea that motivated our work. 

Symmetric Dependency and Cyclic Dependency 

In graph theory, a symmetric graph is a graph in 

which any two adjacent vertices v and u are connected 

by both the edges (v, u) and (u, v) and a cyclic graph is a 

graph with a closed chain of edges in which the 

terminal vertex is not distinguished from the initial 

vertex (Essam and Fisher, 1970). We borrowed these 

definitions from graph theory and applied it to our work. 

Thus, in the dependency model, a symmetric dependency 

occurs when two test classes depend directly on each 

other and a cyclic dependency occurs when a test class 

depends on itself through a chain of transitive 

dependencies. However, we treat symmetric and cyclic 

dependencies as a modeling error. Estόria deals with this 

type of error simply by throwing a runtime exception. 

Multiple Dependencies 

The Estόria framework also enables multiple 

dependencies for consumer classes, i.e., a given 

consumer class may depend on one or more provider 

classes. This scenario is illustrated through Fig. 4, 6 and 

7. In Fig. 4, an account is created in the implicit setup. In 

Fig. 6, a mint facility to issue money for a given 

currency is created in the implicit setup. In Fig. 7, the 

class tests the behavior of an account deposit. In order to 

test this behavior, the test class in Fig. 7 depends on the 

implicit setup of two other test classes: The one 

presented in Fig. 4, in which the account is created and 

the one shown in Fig. 6, in which a mint is created. 

 

 
 

Fig. 6: Test class to create a mint 

 

 
 

Fig. 7: Test class to make a deposit 

1  @FixtureSetup(BankingSystemTest.class) 

2  public class MintTest { 

3  @Fixture private BankingSystem bs; 

4  private Mint royal; 

5  @Before public void setup() { 

6  royal = bs.createMint("Royal Mint", Currency.GBP); 

7  } 

8  @Test public void test() { 

9  assertEquals("Royal Mint", royal.getName()); 

10  assertTrue(royal.manufactures(Currency.GBP)); 

11  assertFalse(royal.manufactures(Currency.USD)); 

12  assertEquals(1, bs.getMints().size()); 

13  } 

14  } 

1  @FixtureSetup(AccountTest.class, MintTest.class) 

2  public class DepositTest { 

3  @Fixture private Account jane; 

4  @Fixture private Mint royal; 

5  private Money tenPounds; 

6  @Before public void setup() { 

7  tenPounds = royal.issue(10); 

8  jane.deposit(tenPounds); 

9  } 

10 @Test public void test() { 

11  assertEquals(tenPounds, jane.getBalance()); 

12  } 

13  } 
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The order in which the provider classes are declared 

in the @FixtureSetup annotation is a relevant aspect. 

Firstly, this order determines the execution order of the 

provider implicit setups, and changes in this order can 

affect the state of the SUT. Secondly, this order will be 

used to resolve fixture naming conflicts, i.e., if two 

provider classes have a fixture with the same name, then 

Estόria will inject the fixture from the first class that 

appears in the @FixtureSetup annotation. We 

recommend that programmers avoid this type of conflict 

because it can harm test comprehension. 

Multiple Tests and Multiple Implicit Setups 

The test classes of the examples presented from Fig. 2 

to 7 contain only one test and one implicit setup method. 

However, as occurs in JUnit, Estόria also enables the 

existence of multiple tests and multiple implicit setup 

methods in the same test class. The challenge is to provide 

these features while providing code reuse between test 

classes and preserving the independence principle at the 

same time. To achieve this, Estόria executes all the 

implicit setups of the providers and all the implicit setups 

of the running test class before each test run. 

Figure 8 shows an example of a test class that 

includes two implicit setups and two tests. To run both 

tests of the class, Estόria will run the following steps for 

each test: (1) Recursive execution of the setup of the 

DepositTest provider; (2) execution of the fifteen 

implicit setup method; (3) execution of the five implicit 

setup method; and (4) execution of the given test. The 

order in which the implicit setup methods of the running 

class are executed is determined by the alphabetical 

order of the method names. This is the reason why the 

method fifteen is executed before the method five. We 

choose to use the alphabetical order because JUnit also 

uses the same arbitrary criteria. 

Graph Models 

In order to facilitate the comprehension and to represent 

the dependency model through a more formal definition, we 

define the dependency model as a graph model. The 

directed graph G = (V, E) is defined as follows: 
 

 Definition 2 V = {t | t is a test class of the system} 

 Definition 3 E = {(c, p) | c is a consumer test class  

p is a provider test class} 

 

We call G a Dependency Graph (DG). The V set 

contains the test classes of the system and the E set 

contains all the direct dependencies between pairs of test 

classes. The DG facilitates the validation of the 

dependency model, e.g., through a breadth-first search 

algorithm it is possible to detect cyclic dependencies, a 

type of violation in the dependency model. In addition to 

the static dependencies between test classes, it is 

convenient to represent the test classes that are involved 

in a given test run in order to generate the execution 

order of setup methods. Thus, from DG, we define a 

directed subgraph H = (W, F) as follows: 

 

 Definition 4 W = {r  V | r is a running class  a 

running class depends on r} 

 Definition 5 F = {(c, p) | c is a consumer test class  

p is a provider test class} 

 

We call H an Execution Graph (EG). Unlike DG, EG 

does not include all the test classes of the system. While 

DG is a static representation of the dependency model, 

EG presents a subset of DG containing only the test 

classes involved, directly or indirectly, with the tests to 

be run. EG is important to determine the execution order 

of the implicit setups before the test run. From EG, it is 

possible to determine the execution order simply through 

a depth-first search algorithm. 

Figure 9 shows the DG (left) of the test classes 

presented in the examples from Fig. 2 to 8 and the EG 

(right) considering the execution of the deposit test 

shown in Fig. 7. The graphs are represented by UML 

class diagrams. Two extra stereotypes are being used. 

The <<consumes>> stereotype indicates that a consumer 

class consumes the implicit setup of a provider class and 

the <<running>> stereotype indicates the tests to be run. 

Singular Execution 

Considering the EG shown in Fig. 9 which 

represents the execution of the deposit test shown in 

Fig. 7, it is possible to use a depth-first search 

algorithm to find the ESISTM. However, due to the 

possibility of multiple dependencies, there is a concern 

about the strategy to be used when a vertex is visited 

twice through the depth-first search algorithm. There 

are two possibilities: (1) The strategy may visit the 

already-visited vertex again; (2) the strategy may 

ignore the already-visited vertex. The ESISTM will 

vary depending on the chosen strategy. 

The test class shown in Fig. 7 has two providers. 

Directly or indirectly, each one of these providers 

depends on the same test class shown in Fig. 2, the 

BankSystemTest. Thus, to run the test shown in Fig. 2, 

two distinct ESISTM may be considered as shown in 

Fig. 10 and 11. According to the ESISTM shown in Fig. 

10, the implicit setup method of the BankSystemTest is 

run only once. In Fig. 11, the same implicit setup method 

is run twice, i.e., the BankSystemTest implicit setup 

method will be run before each direct consumer. In the 

example of the test of Fig. 7, we do not want to run 

BankSystemTest implicit setup method twice, otherwise 

we will create another bs and this is not the goal. The 

idea is that both consumers use the same bs. Thus, for 

the given example, we want to ensure that Estόria runs 
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the BankSystemTest implicit setup method only once. To do this, we introduce the @Singular annotation. 

 

 
 

Fig. 8: Test class to withdraw money 

 

 
 

Fig. 9: DG for tests classes and EG for deposit test 

1  @FixtureSetup(DepositTest.class) 

2  public class WithdrawTest { 

3  @Fixture private Account jane; 

4  @Fixture private Mint royal; 

5  @Fixture private Money tenPounds; 

6  private Money fivePounds; 

7  private Money fifteenPounds; 

8  @Before public void five() { 

9  fivePounds = royal.issue(5); 

10  } 

11  @Before public void fifteen() { 

12  fifteenPounds = royal.issue(15); 

13  } 

14  @Test public void lessThanBalance() { 

15  Transaction withdraw = jane.withdraw(fivePounds); 

16  assertTrue(withdraw.hasSuccess()); 

17  assertEquals(fivePounds, jane.getBalance()); 

18  } 

19  @Test public void moreThanBalance() { 

20  Transaction withdraw = jane.withdraw(fifteenPounds); 

21  assertFalse(withdraw.hasSuccess()); 

22  assertEquals(tenPounds, jane.getBalance()); 

23  } 

24  } 
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Fig. 10: ESISTM for deposit test with singular provider 

 

 
 

Fig. 11: ESISTM for deposit test with non-singular provider 

 

 
 
Fig. 12: Singular annotation in the test class to create banking 

system 
 

The @Singular annotation tells Estόria that the 
implicit setup of the annotated test class should not be 
run before each direct consumer. Instead, the implicit 
setup method should be run only once, right before the 
first direct consumer. Thus, to assure that the implicit 
setup of BankSystemTest is run only once, it is 
necessary to annotate the test class of Fig. 2 with the 
@Singular annotation as shown in line 1 of Fig. 12. 
Estόria assumes that implicit setup of classes not 
annotated with @Singular should be run before each 
direct consumer. If each direct consumer needs its own 
bs, then @Singular should not be used. 

Execution Reuse 

Until now we have shown only aspects involving code 

reuse. However, Estόria has two reuse modes: (1) The one 

with only code reuse; and (2) the other one with both code 

and execution reuse. In the mode with only code reuse, the 

entire chain of implicit setup methods is run before each 

test. In this mode, the independency principle is never 

broken, because Estόria does not interfere in the ordering 

of the tests to be run, i.e., the tests can be run in any 

arbitrary order. From the perspective of the mode with 

execution reuse, an execution of a chain of implicit setup 

methods of a given test may be reused for another test. In 

this context, the independency principle is broken, 

because Estόria must define the ordering of the tests to 

be run. This section gives an overview of the execution 

reuse mode of Estόria. A more detailed discussion about 

this subject can be found in previous works (da Silva and 

Vilain, 2016; 2017). 

The first observation necessary to understand the 
execution reuse of Estόria is to distinguish between safe 
and unsafe tests. We refer to a test as safe when it does not 
dirty the fixtures that were created in the implicit setup 
method of the test class nor the fixtures that were created 
in the implicit setup methods from the dependencies. In 

this way, another test could use the same fixtures without 
needing to run the implicit setup methods again. The 
examples from Fig. 2 to 7 contain only safe tests, because 
none of these test methods affects the fixtures created in 
the chain of implicit setups. A counter example is the 
lessThanBalance test shown in Fig. 8. In line 15, money is 

withdrawn from an account, changing the balance. After 
executing this test, it is not possible to reuse the 
execution of the implicit setup methods by any other test, 
because a fixture created in the implicit setup, the jane 
fixture, was affected by this test. 

Estόria introduces the @Safe and @Unsafe 

annotations. The annotations are used to indicate safe 

and unsafe test methods, respectively. Estόria assumes 

that all test methods are unsafe by default. The 

framework does not reuse the execution of implicit 

setups after running an unsafe test. To reuse the 

execution of implicit setups, all tests, except by the last 

one, must be annotated with the @Safe annotation. 

Figure 13 shows the test class of Fig. 8 with the @Safe 

and @Unsafe annotations. 

To exemplify the execution reuse mode of Estόria, 

we will consider the tests from Fig. 2 to 8. Figure 14 

shows the EG considering the execution of all tests. The 

tests to be run are marked with the <<running>> 

stereotype. We also highlight the use of the <<safe>> 

and <<unsafe>> stereotypes in test methods. 

BankingSystemTest 
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AccountTest 

setup() 
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setup() 

BankingSystemTest 
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2 public class BankingSystemTest { ... } 
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Fig. 13: Safe and Unsafe annotations in test class to withdraw money 

 

 
 

Fig. 14: EG with multiple tests to run 
 

To promote execution reuse, Estόria first selects all 

source vertices in the EG. A source vertex is a vertex 

without descendants, e.g., in Fig. 14 the WithdrawTest is 

the only source vertex. For each source vertex, Estόria 

creates the transitive closure of the vertex. A transitive 

closure is the set of vertices that can be reached from a 

given vertex, e.g., in Fig. 14 all vertices belong to the 

transitive closure of the WithdrawTest. The execution 

reuse in Estόria is only possible between tests from the 

same transitive closure. Estόria does not promote 

execution reuse between tests from distinct transitive 

closures because they do not share the same 

dependencies. Estόria also does not promote code reuse 

after executing an unsafe test because unsafe tests 

change the internal state of the SUT, and this may affect 

the execution of the next test as well. 

To run all the selected tests and to maximize the 

execution reuse of the implicit setup methods, Estόria 

starts by the biggest transitive closure and creates, from 

it, the ESISTM according to the reverse topological 

ordering. Next, the framework starts the execution of the 

methods according to the ESISTM. This process 

continues until all implicit setup methods and safe test 

methods are executed. Unsafe tests are scheduled to be 

run later, i.e., after the execution of all safe test methods. 

For each unsafe test, all chain of implicit setup methods 

must be run again, except for the first unsafe test of a 

source vertex. As the safe test methods do not change the 

fixtures of the implicit setup methods, then the first 

unsafe test can reuse the previous execution. 

Figure 15 shows the execution of the EG shown in 

Fig. 14 considering the reuse mode enabled. Each test 

1 @FixtureSetup(DepositTest.class) 

2 public class WithdrawTest { 

3  @Usafe @Test public void lessThanBalance() { ... } 

4  @Safe @Test public void moreThanBalance() { ... } 

5 } 

WithdrawTest 
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+<<safe>><<running>>moreThanBalance() 
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class and its implicit setup methods serve as starting 

point for the next test class in the dependency chain. 

Hence, it is possible to promote the execution reuse of 

the implicit setup methods. It is worth mentioning that 

even the lessThanBalance method, an unsafe test, can 

reuse the execution of the previous implicit setup 

methods. This is possible because Estόria schedules this 

method as the first one to be run after the last safe 

method. Thus, the test can reuse the previous implicit 

setup methods because the previous safe tests do not 

change the internal state of the SUT. In Fig. 16, the same 

scenario is shown but without the execution mode 

enabled. It is important to note that before each test, all 

implicit setup methods in the dependency chain are 

executed. While in Fig. 15 the execution of all tests 

involves 7 implicit setup method executions, in Fig. 16 

this number increases to 27. 

Estόria Algorithms 

In this section, we describe the algorithms used by 

Estόria. Algorithm 1 and Algorithm 2 generate ESISTMs 

for the running tests and Algorithm 3 shows the general 

algorithm of Estόria to run the tests based on the 

generated ESISTMs. 

 

 
 

Fig. 15: Flow of execution for all tests with the execution reuse mode 

 

 
 

Fig. 16: Flow of execution for all tests without the execution reuse mode 
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Algorithm 1 shows the algorithm to generate 

ESISTMs considering the execution without reuse. First, 

from line 1 to 8, the algorithm creates a set including the 

tests to run. In line 9, the set of ESISTMs is initialized. 

Next, from line 10 to 26, the algorithm generates one 

ESISTM for each test. In line 11, the ESISTM for the 

current test is initialized. Besides that, a set for controlling 

the addition of implicit setup methods from singular test 

classes is initialized in line 12. Next, from line 13 to 15, a 

stack representing the dependency chain is initialized and 

the owner test class of the current test is pushed to the stack. 

In line 16, the current test method to run is pushed into the 

current ESISTM stack. Then, from line 17 to 24, the 

algorithm iterates over each test class of the dependency 

chain and pushes the implicit setup methods into the current 

ESISTM stack. It is worth mentioning that in line 19 the 

algorithm checks if the current class in the dependency 

chain was already added as a singular test class. If it was 

not, then, in line 20, the algorithm pushes the setup methods 

of the current class into the ESISTM stack. In line 21, the 

algorithm pushes the direct dependent classes of the current 

class in the chain stack. In line 22, the algorithm checks if 

the current class is singular. If it is, then it is added to the 

singular test classes set. This is done to avoid adding 

implicit setups from singular classes again in the same 

ESISTM. Next, in line 25, the algorithm puts the 

generated ESISTM in the set of ESISTMs. Finally, in line 

27, the algorithm returns the set of ESISTMs to be run. 

Algorithm 2 is used to generate the ESISTMs 
considering the execution with reuse. It has a behavior 
similar to the Algorithm 1 but has a special treatment for 
safe and unsafe tests. The first main difference is that the 
algorithm does not iterate over all tests. Instead of that, 

the algorithm starts the execution, from line 1 to 6, by 
initializing and populating the list of source vertex, i.e., 
the list of classes that are sources in EG. In line 7, the 
list of sources is ordered according to the length of the 
transitive closure of each source. This is important for 
optimizing the execution reuse of Estόria. In line 8, the 

set of ESISTMs is initialized. Next, a set for controlling 
the already added tests is initialized in line 9. This set is 
used to avoid adding a given test in more than one 
ESISTM. Next, from line 10 to 39, the algorithm 
generates an ESISTM for each source test class. These 
ESISTMs will contain all safe test methods in the 

dependency chain (line 20 to 22) and may have the last 
unsafe test method that is a member of the current 
source test class (line 24 to 28). This unsafe test method 
can be added to the ESISTM because it will be the last 
method to be run. Finally, in line 40, the algorithm 
returns the set of ESISTMs to be run. 

Algorithm 1 contains a ESISTM for each test and 

Algorithm 2 contains a ESISTM for each source test 

class. Except for only one unsafe test method in each 

source test class, the ESISTMs of Algorithm 2 do not 

contain unsafe test methods. Algorithm 3 uses the other 

two algorithms in order to generate the ESISTMs and 

run the tests. The algorithm starts by creating the sets of 

ESISTMs from line 1 to 6. If reuse mode is enabled, then 

the Algorithm 2 is used (line 3), otherwise, it is not used, 

and an empty set is initialized (line 5). In line 7, a test 

report is initialized. In line 8, a set of already executed test 

is initialized. Because the ESISTMs without reuse have 

tests that also appear in the ESISTMs with reuse, then this 

set is used for avoiding running a given test twice. From 

line 9 to 11 the algorithm creates a list of ESISTMs. This 

list is ordered, first the ESISTMs with code reuse and next 

the ESISTMs without code reuse. Next, from line 12 to 

24, the algorithm runs the ESISTMs. In line 14, it is 

verified if the first test was not executed yet. This can be 

the case of tests that appear both in the ESISTMs with 

reuse and in the ESISTMs without reuse. Thus, these 

tests are run only in the ESISTM with reuse. From line 

15 to 22, the algorithm runs the methods of the given 

ESISTM until it has no more methods to run. The result 

of the method execution is stored in line 17. If the 

executed method is a test (line 18), then the algorithm 

puts the result in the report (line 19) and puts the test 

method in the set of executed tests (line 20). Finally, in 

line 25, the algorithm returns the test report. 

 

Algorithm 1: Generation of ESISTMs without execution 

reuse. 

 Input: H = (W, F) such that H is an EG 

 Output: The set of ESISTMs without execution reuse 

1  testsToRun  0  

2  foreach rW do 

3  foreach test  r do 

4   if isRunning(test) then 

5   put(testsToRun, test); 

6  end 

7  end 

8  end 

9  esistmsWithoutExecutionReuse  0 ; 

10 foreach test 2 testsToRun do 

11   esistm  0 ; 

12   singularsAdded  0 ; 

13   chain  0 ; 

14   ownerTestClass  getTestClass(test); 

15   push(chain, ownerTestClasse); 

16   push(esistm, test); 

17   repeat 

18  class  pop(chain); 

19  if class  singularsAdded then 

20  foreach setup  class do push(esistm,  

setup); 

21  foreach dependent  class do 

 push(chain, dependent); 

22  if isSingular(class) then 

 put(singularsAdded, class); 
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23  end 

24  until chain  0 ; 

25  put(esistmsWithoutExecutionReuse, esistm); 

26  end 

27  return esistmsWithoutExecutionReuse 

 

Algorithm 2: Generation of ESISTMs with execution 

reuse. 

 Input: H = (W, F) such that H is an EG 

 Output: The set of ESISTMs with execution reuse 

1 sources  0 ; 

2 foreach rW do 

3 if isSource(H, r) then 

4 add(sources, r); 

5 end 

6 end 

7  sources  

 sortByBiggestTransitiveClosure(sources); 

8  esistmsWithExecutionReuse  0 ; 

9  testsAdded  0 ; 

10  foreach source  sources do 

11  unsafeTestAddedLast  false; 

12  esistm  0 ; 

13  singularsAdded  0 ; 

14  chain  0 ; 

15  push(chain, source); 

16  repeat 

17  class  pop(chain); 

18  foreach test  class do 

19  if isRunning(test) test  testsAdded 

 then 

20  if isSafe(test) then 

21  push(esistm, test); 

22  put(testsAdded, test); 

23 else 

24  if source = class  

 unsafeTestAddedLast then 

25 unshift(esistm, test); 

26 put(testsAdded, test); 

27 unsafeTestAddedLast   

 true; 

28 end 

29 end 

30 end 

31 end 

32 if class  singularsAdded then 

33 foreach setup  class do push(esistm, 

 setup); 

34 foreach dependent  class do 

 push(chain, dependent); 

35 if isSingular(class) then 

 put(singularsAdded, class); 

36 end 

37 until chain  0 ; 
38 put(esistmsWithExecutionReuse, esistm); 

39 end 

40 return esistmsWithExecutionReuse 

 

Algorithm 3: Execution of Estόria. 

 Input: H = (W, F) such that H is an EG 

 Input: a reuse flag indicating if execution reuse 

mode is or not enabled 

 Output: a test report 

1  esistmsWithoutReuse  

 generateEsistmsWithoutExecutionReuse; 

2  if reuse then 

3  esistmsWithReuse  

 generateEsistmsWithExecutionReuse; 

4  else 

5  esistmsWithReuse  0 ; 

6  end 

7  report  0 ; 

8  executed  0 ; 

9  allEsistms  0 ; 

10 add(allEsistms, esistmsWithReuse); 

11 add(allEsistms, esistmsWithoutReuse); 

12 foreach esistm  allEsistms do 

13 firstTest first(esistm); 

14 if firstTest  executed then 

15 repeat 

16 method  pop(esistm); 

17 result  run(method); 

18 if isTest(method) then 

19 put(report, result); 

20 put(executed, method); 

21 end 

22 until esistm  0 ; 

23 end 

24 end 

25 return report 

 

Evaluation 

In this section, we show the evaluation of Estόria 

through three different perspectives: (1) Code reuse; (2) 

execution reuse; and (3) usage. In the first and second 

perspectives, we investigate the efficiency of Estόria in 

promoting code and execution reuse, respectively. In the 

third perspective, we investigate the usage of Estόria 

through an experiment in which Estόria is used by 

programmers of a software company. Next, we present the 

experiments and our findings in each experiment as well. 

Code Reuse Experiment 

In this section we show an experiment conducted to 

investigate the efficiency of Estόria in promoting code 

reuse. To conduct the experiment, we used an event 
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scheduling system that was developed as part of a 

project of a Computer Science graduate curse of the 

Universidade Federal de Santa Catarina (UFSC). To 

develop this system, the students used a set of agile 

practices, including software testing. 
First, we selected a set containing 24 tests grouped in 4 

test classes. We named this set as control group. The tests 
of the control group were written by graduate students 
enrolled in the course. In this project, the students created 
unit tests for an event scheduling system. The tests of the 
control group were written using classical fixture setup 
strategies, i.e., inline setup, implicit setup and delegated 
setup. Next, after the end of the course, we manually 
created the experimental group by rewriting the tests of 
the control group using the dependency setup strategy 
available in Estόria. The experimental group was 
composed by the same 24 tests, but we redistributed 
them in 14 test classes. The tests of both control and 
experimental groups were written in Java. The control 
group tests were written for JUnit, while the 
experimental group tests were written for Estόria. 

Next, we collected the following measurements from 

both groups: (1) Number of code lines of test and helper 

classes; (2) sum of the number of repeated lines, excluding 

assertions; (3) sum of distinct repeated lines, excluding 

assertions; (4) sum of the number of repeated lines, 

including assertions; and (5) sum of distinct repetitions, 

including assertions. In the measurements 2, 3, 4 and 5 the 

following symbols were not counted as repetitions: 

@Test, @Before and @Fixture annotations, identical 

method declarations and block delimiter symbols. 

Figure 17 shows the collected measurements for 
control and experimental groups. The experimental 
group presented a considerable reduction in the number 
of duplicate lines. The control group reached a total of 
126 duplicate lines, excluding assertions, while the 
number of duplicate lines was reduced to 66 in the 
experimental group. Considering the total number of test 
code lines of each group, 40.91% of the lines of the 
control group corresponded to duplicate lines, while in 
the experimental group it was 20.37%. Comparing the 
control group with the experimental group, the latter had 
a reduction of 47.62% of the duplicate lines considering 
absolute values. It is interesting to note that the tests of 
the experimental group, i.e., the tests written for Estόria, 
led to a considerable increase in test classes. While the 
control group had 4 test classes, the experimental group 
had 14 test classes. This behavior is expected because in 
Estόria the reuse of fixture setups is strongly affected by 
the distribution of test classes. Estόria motivates the use 
of the test class per fixture strategy (Meszaros, 2007). In 
the usage experiment we evaluate better the impact of 
increasing the number of test classes. 

It is worth mentioning that the control group was 

written by four graduate students, including the first 

author of this work and the experimental group was 

written only by the first author of this work. Thus, we can 

cite as a treat to the validity of this experiment an implicit 

bias involved. The other students were not involved in the 

written of the experimental group because the scope of the 

course did not include Estόria. To write the experimental 

group we preserved the tests behavior. We did not change 

any assertion of test setup code. The modifications made 

were only structural changes, i.e., we only moved test 

code for another classes and methods in order to apply 

the dependency setup of Estόria. The sources used in the 

experiment can be found on GitHub7. 

Execution Reuse Experiment 

To evaluate the execution reuse capabilities of 
Estόria we conducted another experiment. The goal of 
the experiment was to identify potential differences in 
the time needed to run tests with and without the 
execution reuse mode of Estόria. In the experiment, we 
extracted 32 acceptance tests of a system for course 
assessment developed to the Brazilian Ministry of 
Education and Culture (MEC). As these tests correspond 
to a feature that was being developed along with the 
realization of the experiment, it was easier to rewrite the 
tests from JUnit to Estόria. Furthermore, we chose to use 
acceptance tests for Graphical User Interface (GUI) 
instead of unit tests because the typical slower execution 
of GUI tests facilitates the human perception of potential 
differences in execution times. 

Once the tests were converted to Estόria, we run them 

twice, with the execution reuse mode enabled and with 

the execution reuse mode disabled. In Fig. 18 we show 

the test report of the execution without reuse and in Fig. 

19 we show the test report of the execution with reuse. 

While the execution of the tests without reuse took 1089 

seconds to be completed, the execution with reuse took 

131 seconds. This represents a reduction of 

approximately 8 times the execution time when the 

execution reuse mode is enabled. The sources used in the 

experiment can be found on GitHub8. 

Usage Experiment 

To evaluate Estόria usage by different participants, 

we conducted an experiment divided into four phases: 

(1) Preparation, (2) learning, (3) usage and (3) 

assessment. In the preparation phase, we gave the 

participants an ad hoc application, the Banking System, 

developed specifically for the experiment. We showed 

the participants the system requirements and a class 

diagram of the system as well. Next, in the learning 

phase, we explained to the participants four fixture setup 

strategies: Inline setup, implicit setup, delegated setup 

and the dependency setup strategy available in Estόria. 

The goal was to establish a common base between all 

participants because some participants were more 

                                                           
7 https://github.com/lucasPereira/alocacaoDeHorarios/tree/testesestoria 
8 https://github.com/lucasPereira/saas-teste-estoria 
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experienced in test development than others. In the usage 

phase, we asked each participant to finish the 

implementation of two tests for each fixture setup 

strategy learned in the previous phase. In total, each one 

of the 13 participants had to finish the implementation of 

8 tests. In this phase, for each fixture setup strategy we 

collected the time needed to finish the implementation 

and verified if the strategy was implemented properly. 

Finally, in the last phase, the assessment, we asked each 

participant to answer a questionnaire. 
 

 
 

Fig. 17: Measurements of the code reuse experiment 
 

 
 

Fig. 18: Test report of the execution experiment without reuse 
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Fig. 19: Test report of the execution experiment with reuse 

 
Table 1: Usage phase results of case of study 

Strategy  Average  Std. Deviation  Shortest  Largest  Incorrect 

Inline setup  13.9  11.7  3  40  3 

Implicit setup  9.1  5.3  5  20  4 

Delegated setup  9.3  5.5  5  20  5 

Dependency setup  10.6  9.6  5  34  4 

 

Table 1 summarizes the experiment results from the 

usage phase. The table shows the average time needed 

by all the 13 participants to finish the implementation 

considering each fixture setup strategy. Each participant 

implemented 2 tests for each strategy. Standard 

deviation, shortest time and largest time to complete the 

task are also shown in the table. These metrics are only 

relative to the tests implemented properly. In addition, 

the total number of tests not properly implemented 

considering each strategy is shown in the last column of 

the table, e.g., in inline setup, 3 out of 26 tests were 

implemented incorrectly. While the implicit setup 

strategy had the best average time compared to the 

others, the inline setup had the worst results. 

In the beginning of the assessment phase, we tried 

to identify the experience of the participants regarding 

the following topics: Software development, software 

testing, Java language and fixture setup strategies. The 

main goal of the initial part of the questionnaire was to 

trace a profile of the participants. The results presented 

in Table 2 show a quite heterogeneous environment 

regarding the experience of the participants. In total, 13 

employees of a technology company participated in the 

experiment. All participants reported having at least 

some experience with software development. 

Regarding software testing, the experience of the 

participants was considerably low, 3 participants 

reported not having any experience and no participant 

reported having high experience with software testing. 

Regarding experience with the Java language, the 

language used in the experiment, a high number of 

participants declared themselves without Java 

experience. In total, 4 participants reported not having 

any experience with Java at all. 

Table 3 shows the participants’ experience with 

fixture setup strategies before the experiment. We can 

observe that 7 of 13 participants declared they knew 

the inline setup strategy; 4 participants knew the 

implicit setup and only 2 participants knew the 

delegated setup strategy. 
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Table 2: Participants experience results of case of study 

Topic  No experience  Low  Medium  High 

Software development  0  5  4  4 

Software testing  3  5  5  0 

Java language  4  3  4  2 

 
Table 3: Participants experience with fixture setup strategies results of case of study 

Strategy  Knew before the experiment  Did not know before the experiment 

Inline setup  7  6 

Implicit setup  4  9 

Delegated setup  2  11 

Dependency setup  0  13 

 

 
 

Fig. 20: Effort to learn and use results of the study of case 

 

Next, we asked each participant to measure the effort 

needed to learn and to use the dependency setup 

available in Estόria. We also asked them to evaluate how 

useful they considered the dependency strategy to be. 

Figure 20 shows the results considering the effort needed 

to learn and to use the dependency setup. Regarding the 

effort to learn, 1 participant considered that the effort 

was high, while the other 12 participants were equally 

divided into low and medium effort. The results of the 

effort to use were similar, but with fewer low-effort 

evaluations and more medium-effort evaluations. 

Moreover, we asked the participants to answer how 

useful they considered the dependency setup. In total, 10 

participants considered it useful and 3 considered it very 

useful. No participant considered the dependency setup 

strategy to be not useful at all. 

In the last question of the questionnaire, each 

participant could write comments about the fixture 

setup strategy. Only two participants answered this 

question. One participant said that the proposal is 

“interesting and easy to use”. The other participant 

argued that Estόria facilitates the removal of 

redundancies in test code, but he added that 

redundancies sometimes are useful to identify potential 

problems in test code. The participant said that “it is 

easy to write some field wrong, but it is harder to make 

the same mistake again” and that “redundancy 

facilitates the identification of this type of error”. 

Analysis of the Experiments 

In this section, we presented three experiments to 

evaluate Estόria. The first two experiments investigated 

the reuse capabilities of the framework and the last one 

investigated the adherence to Estόria considering the use 

by programmers from industry. Our goal was to establish 

a foundation to evaluate the effectiveness and efficiency 

of Estόria. Regarding the effectiveness, we wanted to 

know if Estόria is suitable to promote code and 

execution reuse. Regarding the efficiency, we wanted to 

know whether Estόria is simple and fast to use. While 
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reuse experiments cover the evaluation in terms of the 

effectiveness, the usage experiment covers the evaluation 

in terms of the efficiency. 

According to the results of the experiments, Estόria 

seems to be effective considering the used projects. In the 

code reuse experiment, the framework promoted a 

reduction of 47.62% of the duplicate lines, while in the 

execution reuse experiment, the framework achieved a 

reduction of approximately 8 times the execution time. It 

worth mentioning some treats to validity regarding these 

two experiments. In the code reuse experiment the first 

author of this work participate of the implementation of 

the control group tests and was responsible for writing the 

experimental group tests. Thus, there is an intrinsically 

bias involved. The execution reuse experiment has the 

same treat to validity because the first author of this work 

also wrote the tests of this experiment. Besides that, 

regarding the external treat to validity, i.e., the capacity to 

generalize the results for other projects, we can cite that 

we used only one project for each experiment. This 

reduced the internal treat to validity because we performed 

the experiments in a more controlled environment but 

reduced the capacity to generalize the results. 

Estόria also has been shown to be efficient, since in 

the usage experiment no significant difference between 

Estόria and classical fixture setup strategies, such as 

implicit and delegated setup, was observed. Furthermore, 

the framework was assessed by programmers from 

industry and it was considered useful by most of them. 

In total, 10 participants considered it useful and 3 

considered it very useful. No participant considered 

Estόria to be not useful at all. It worth mentioning that 

the participants do not knew Estόria before the 

experiment and do not have any relationship with the 

authors of this work. However, we also need to point out 

that only 13 programmers participated of the experiment. 

In order to generalize the results, we need to perform the 

experiment with more participants. 

Conclusion and Future Works 

In this study we presented a model called dependency 

model, which defines a new relationship between test 

classes. The dependency model establishes a 

consumer/provider relationship in which a consumer test 

class may have one or more provider test classes. This 

relationship implies that the consumer class will use the 

implicit setup of the provider classes. From the 

dependency model, we developed a new fixture setup 

strategy, namely the dependency setup and implemented 

the strategy in Estόria, a JUnit extension framework. 

Estόria enables the use of dependency setup through two 

different modes: One that promotes code reuse and 

another that promotes both code and execution reuse. 

Unlike other fixture setup strategies, dependency 

setup enables the reuse of code between test classes 

without affecting the structure of the involved classes. 

Thus, it is possible to use the implicit setup of a test class 

as starting point for the implicit setup of another test 

class. This enables the creation of a chain of reuse, 

reducing the test code duplication. Furthermore, the 

dependency setup strategy was implemented in a 

framework with a built-in mechanism to promote 

execution reuse. It is important to note that test 

frameworks typically do not provide execution reuse 

built-in mechanisms. 

Initial experiments showed that the dependency 

strategy leads to a reduction of 47.62% of the duplicate 

lines of the test code. In addition, execution reuse mode 

of Estόria allowed us to reduce the execution time by a 

ratio of 8. We also conducted an experiment to evaluate 

the usage of Estόria by different participants of a 

technology company. Out of 13 participants, 10 

considered the strategy to be useful and 3 considered the 

strategy very useful. 

We also compared our model with other models for 

reusing code or execution of tests. Estόria and DbUnit 

(Christensen et al., 2006) models were similar regarding 

the approach, i.e., both approaches promote code and 

execution reuse through definition of dependencies 

between test classes. However, unlike DbUnit, Estόria is 

application independent. Also, fixture objects in Estόria 

can be shared across test classes, which it is not possible 

in DbUnit. The model proposed by Mugridge and 

Cunningham (2005) was compared with the Estόria model 

as well. Both approaches promote code and execution 

reuse, but the work of Mugridge and Cunningham (2005) 

is applied to Fit specifications while our approach is 

applied to test code. Besides that, in our model tests can 

be run individually, while in Mugridge and Cunningham 

(2005) the tests are connected together and are run as a 

whole, loosing traceability. Comparing Estόria model 

with Picon (Longo et al., 2015), we observed that both 

models promote code reuse. However, Picon cannot be 

used to promote execution reuse. Also, Picon can only 

be applied to promote reuse of POJOs. The most similar 

model to Estόria that was found in literature was SolUnit 

(Medeiros et al., 2019). Regarding execution reuse, 

SolUnit model has one advantage when compared with 

Estόria model: SolUnit automatically identifies test 

setups that can be reused by other tests and in Estόria 

this is done manually by developers. However, Estόria is 

application independent while SolUnit can be applied 

only to smart contract tests. Besides that, Estόria also 

promotes code reuse, while SolUnit does not. 

To summarize our contribution to the research in the 

testing area, we presented a generic model to promote 

both code and execution reuse between test classes. We 

also developed a testing framework (available at 

https://github.com/lucasPereira/estoria) that implements 

this model as a new fixture setup strategy. This testing 

framework has a built-in mechanism that promotes both 

https://github.com/lucasPereira/estoria
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code and execution reuse. As future work, we intend to 

investigate the possibility of automatic identification of 

safe tests. In this way, Estόria could automatically infer 

if a test is safe or not. Currently, the test developer must 

explicitly mark a test as safe to promote execution reuse. 

We also expect to use Estόria in real projects. 
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