

 © 2021 Lucas Pereira da Silva and Patrícia Vilain. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Estόria: A Framework for Code and Execution Reuse between

Test Classes

Lucas Pereira da Silva and Patrícia Vilain

Departamento de Informática e Estatística, Programa de Pós-Graduação em Ciências da Computação,

Universidade Federal de Santa Catarina, Brasil

Article history

Received: 25-11-2020

Revised: 06-02-2021

Accepted: 09-02-2021

Corresponding Author:

Lucas Pereira da Silva

Departamento de Informática e

Estatística, Programa de Pós-

Graduação em Ciências da

Computação, Universidade

Federal de Santa Catarina,

Brasil

Email: lucas.pereira@ufsc.br

Abstract: Manual implementation of test code can lead to

maintainability problems such as test code duplication. Strategies to

avoid test code duplication and to promote test code reuse exist in the

literature. However, it becomes increasingly difficult to apply these

strategies as the system evolves and the number of test increases. In this

study, we present a novel strategy to reuse test setup code from other

test classes without breaking the independency principle of the Test

Automation Manifesto. We implemented this strategy in a framework

called Estόria. Beyond test code reuse, the framework also enables the

reuse of setup execution. Test execution reuse is important because it

reduces testing runtime and allows a quicker feedback to test

developers. The overall impact in promoting both code and execution

reuse of test setup is an improvement in test maintainability and a

reduction in testing effort. Experimental results showed a reduction of

47.62% of duplicate test lines using our strategy. In addition, execution

reuse allowed to reduce the execution time by a ratio of 8.

Keywords: Software Testing, Test Code, Test Code Reuse, Test Execution

Reuse, Fixture, Fixture Setup, Test Class

Introduction

Software testing is an activity that plays an important

role in the software development process (Bourque et al.,

2014). It is primarily used to provide evidence that the

software works as expected (Bertolino, 2007). In addition,

other benefits can also be achieved, such as detecting

defects (Tiwari and Goel, 2013), preventing bug insertion

(Agrawal et al., 1993), giving feedback about design

(Freeman and Pryce, 2009) and serving as a means for

software documentation (Haugset and Hanssen, 2008) and

specification (Alvestad, 2007). Software testing can be

automated or manual (Meszaros, 2007). Test automation

is the process of creating automated tests in order to

reduce the effort needed to manually test the system.

We can cite three different approaches to create

automated tests. The most straightforward approach

consists in manually write the test code. The second

approach is the Model-Based Testing (MBT), where the

test code is automatically generated from the software

requirements (Dalal et al., 1999). The third approach is

the one that uses recording tools to generate the test

code from the manual use of the System Under Test

(SUT) (Adamoli et al., 2011). In this study, we focus on

the first approach, in which the quality of test code has

special importance. Unlike the MBT and the recording-

tools approaches, the manual codification of test code

demands constant maintenance by programmers

(Ramler and Wolfmaier, 2006). In this scenario, the test

code must be maintained during all the project and a

good maintainability must be ensured in order to reduce

the development effort.
The testing activity can take up 50 to 60% of the total

project development effort and 30% of total project

effort (Tsai et al., 2003; Kumar and Mishra, 2016).

This demonstrates the importance of test code

maintainability to reduce the total development effort.

In order to achieve a good maintainability, test methods

should be clearly structured, well named, small and

most importantly, code duplication should be avoided

(Greiler et al., 2013b). In general, tests tend to be

repetitive with a high potential of reuse (Berner et al.,

2005). As the system evolves, the number of tests

increases, and it is easier to find code duplication across

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

91

tests. Thus, a key aspect for reducing testing effort is the

development of test through a reusable-oriented

approach (Tiwari and Goel, 2013). Test development

effort in approaches without code reuse is lower in the

beginning; however, as the number of tests increases,

the effort of developing without reuse also increases

(Berner et al., 2005). On the other hand, when one uses

reusable components, the effort of developing tend to

be reduced as the number of test increases (Meszaros,

2007). To achieve an effective cost-benefit trade-off,

the effort to promote code reuse must be offset by the

improvement in the maintainability. Thus, the approach

used to promote code reuse is crucial to ensure this

positive trade-off (Garousi and Küçük, 2018).

Figure 1 shows an example of code duplication

between two tests. Lines 3 to 5 in the first test are the

same as lines 13 to 15 in the second test. In this naive

example, code duplication does not seem to be a big

problem. However, as the system evolves and the

number of tests increases, this type of duplication can be

harmful to the test code maintainability, e.g., a

refactoring in the User constructor would demand

modification in both tests.

Another factor that affects testing activity is the time

needed to run a given suite of tests. The first impact of

slow tests is a reduction in the productivity of the

person running the tests (Meszaros, 2007). Also, test

suites that take too long to run will be run less

frequently and test automation may fail when the

automated tests are not run frequently (Berner et al.,

2005). Because test suites have a strong tendency to

be forgotten when not running for a while, this leads

to the degradation of tests over time. It is worth

mentioning that part of test runtime is spent with fixture

setup. Hence, it is possible to reduce testing runtime by

reusing fixture setup executions across tests. We will

explore this subject in more detail later in the paper.

In this study, we intend to address two problems: (1)

Test code duplication; and (2) slow test execution. Our

approach to solve both problems is different from the

well-known approaches in the literature. In our

approach, we consider that each test class has its own

implicit setup (Meszaros, 2007) code and that both

code reuse and execution reuse can be promoted

through a definition of dependency between test

classes. Thus, with code reuse we can reduce code

duplication across tests and with execution reuse we

can speed up test execution. To promote both code and

execution reuse between tests from different test

classes, we proposed a dependency model between test

classes. We also implemented a framework called

Estόria, which supports the proposed model.

The remainder of this paper is structured as follows:

Section 2 presents core concepts regarding test code

and execution of tests and highlights the main

characteristics of approaches in the literature to solve

test code duplication and slower test execution

problems. In section 3, related works are presented and

discussed. In section 4, our proposal is presented along

with the dependency model between test classes and

the Estόria framework. In section 5, we evaluate our

proposal and compare it with well-known approaches

in the literature. Finally, section 6 shows the

conclusions and future works.

Fig. 1: Test classes with code duplication

1 public class CreateUserTest {

2 @Test public void create() {

3 User john = new User();

4 john.setName("John Doe");

5 john.setCareer("Programmer");

6 assertNull(john.getId());

7 assertEquals("John Doe", john.getName());

8 assertEquals("Programmer", john.getCareer());

9 }

10 }

11 public class InsertUserTest {

12 @Test public void insert() {

13 User john = new User();

14 john.setName("John Doe");

15 john.setCareer("Programmer");

16 UserDao dao = new UserDao();

17 Long id = dao.insert(john);

18 assertEquals(id, john.getId());

19 }

20 }

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

92

Background

In this section, we present fundamental concepts for

our work.

Test Code Smells

Code smells correspond to a poor solution to a

recurring implementation and design problem (Fowler,

2018). Test code and production code share common

code smells. However, due to its characteristics, test

code can involve specific code smells (Meszaros, 2007;

Greiler et al., 2013a; 2013b; Garousi and Küçük, 2018;

Lambiase et al., 2020). Test code smells affects the

quality of test code in a long run and can reduce test

code maintainability by different factors (Garousi and

Küçük, 2018). For example, one common smell is

obscure test (Meszaros, 2007), which occurs when we

have difficult to understand what behavior a test is

verifying. It can be caused by either too much

information or too little information. Another important

test smells are code duplication and slow test execution

(Meszaros, 2007).

Four-Phase Test Pattern

The four-phase test pattern separates test execution

into four phases: (1) Setup, (2) exercise, (3) verification

and (4) tear down (Meszaros, 2007). In the setup phase,

test fixtures are created, i.e., everything needed to

exercise the SUT is put in place. In the exercise phase,

the test interacts with the SUT by calling the operation

or the feature to be tested. Next, in the verification

phase, the test must verify if the expected outcome

corresponds to the obtained behavior. Finally, in the

last phase, the state of the SUT is put back into the

initial state. Some projects do not use the last phase of

this pattern because, in this case, for each test run, the

SUT is prepared from scratch in the setup phase. The

main advantage of this approach is to avoid fragile tests

(Meszaros, 2007) that fail due to a previous test run that

let the SUT in an inconsistent state.

Fixture Setup Strategies

As stated before, fixtures correspond to everything

needed to exercise the SUT. A fixture can be an object in

memory, a record in a database and even a file in a

filesystem. The code responsible for creating fixtures is

called fixture setup. There are distinct fixture setup

strategies and each one has its pros and cons. The most

straightforward fixture setup strategy is inline setup

(Meszaros, 2007). In inline setup, the code needed to

setup fixtures is put directly in the test method. The tests

shown in Fig. 1 use this strategy, which produces code

duplication smell (Meszaros, 2007). At a first glance, the

inline setup can establish a good relationship between

fixtures and the expected outcome. However, large

amount of setup code can lead to irrelevant information

smell (Meszaros, 2007), a subdivision of the obscure test

smell, making tests hard to understand.

Another fixture setup strategy is implicit setup

(Meszaros, 2007). It can be used to reduce code

duplication from inline setup. In the implicit setup, tests

are placed in a same test class and a special method,

usually called setup method, is created. The setup code

common to all tests of the class is placed in the setup

method. The setup method is run before each test

method of the class. Although this strategy promotes

code reuse, it does not promote execution reuse.

Moreover, as the implicit setup moves some fixture

setup code to a method that is not the test method, the

establishment of relationship between fixtures and

expected outcomes is reduced when compared to inline

setup. Also, as the implicit setup includes the tests in

the same test class, it may not scale well because to

keep increasing reuse it would be necessary to increase

the number of tests in the same test class. Grouping

tests in the same class in order to promote code reuse

through implicit setup can lead to several test code

smells, such as general fixture, test maverick and lack

of cohesion of test methods (Greiler et al., 2013b).

In the delegated setup strategy (Meszaros, 2007),

setup code is placed in helper methods that can be

called by test methods from different test classes. This

can be used to promote code reuse. However,

delegated setup hides details of test fixtures. This is a

double-edged sword characteristic, because it can

simplify and improve the readability of test code by

avoiding irrelevant information smell, but at the same

time it can also lead to mystery guest smell

(Meszaros, 2007), a subdivision of the obscure test

smell that makes harder to understand the relationship

between fixtures and expected outcomes. Unlike

implicit setup, delegated setup does not require to

include the setup code in the same test class of the test

methods. However, the main disadvantage is that the

delegated setup method returns only one fixture object

to the test method that called it. In order to enable

access to several fixtures objects and avoid the hard-

coded test data smell (Meszaros, 2007), the delegated

setup method must be broken into multiple methods

and this can be a time-consuming and error-prone task.

Implicit setup and delegated setup only promote code

reuse. However, there is a category of strategies, called

shared fixture construction, which also promotes

execution reuse in addition to code reuse (Meszaros,

2007). In shared fixture construction, common fixtures

are persisted between different test executions. The

fixtures are created once and can be reused several times

by different tests that depend on them. In this way,

shared fixture construction decreases the time needed to

run tests. However, it has two major problems: (1) A

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

93

given test may dirty a fixture and leave it in an

inconsistent state for the next test run; and (2) test

frameworks typically do not have built-in mechanisms to

manage shared fixtures and it is up to the programmer to

ensure the consistency of the life cycle of tests and

fixtures. The second problem breaks the Hollywood

principle (Sweet, 1985; Sobernig and Zdun, 2010) which

states that the framework must call the application and

not the contrary. To break the Hollywood principle is

dangerous because it may affect the internal state of the

framework, interfering in the correct execution of the

tests (Mattsson et al., 1999). Moreover, this can increase

the effort needed to write tests, because developers need

to ensure that the used shared fixture setup strategy do

not cause an unwanted failure in the tests.

Each fixture setup strategy has its own advantages

and disadvantages. In fact, they are complementary

regarding the characteristics of code reuse, execution

reuse, readability and complexity of implementation. In

general, the weak point of one strategy is the strong

point of the others. The most experienced programmers

can balance the use of the most adequate strategy for

each situation. However, as the number of tests increases

it is more difficult, even for experienced programmers,

to find the right balance between the strategies.

Related Works

In this section, we present some works that propose

new fixture setup strategies for specialized contexts. We

investigate works that also focus on the improvement of

test code reuse, test execution reuse, or both.

DbUnit

The DbUnit1 framework (Christensen et al., 2006) is

an extension of JUnit2 to reuse fixture of tests involving

database applications. In this framework, a test class

must be defined for each database entity to be tested. The

main goal is to reuse the fixtures inserted by a given test

class in another test class. To achieve this, each test class

must define three methods: (1) An insertion method

where the entity represented by the test class is inserted;

(2) a deletion method where the entity represented by the

test class is removed; and (3) a method that returns the

list of entities that the entity being tested depends on,

called dependency list. Based on the dependency list

returned by the third method, the framework executes, in

a recursive order, the insertion test method of each

dependency entity. After that, the framework executes,

in a recursively inverse order, the deletion test method of

each dependency entity.

For example, suppose that there is an entity called

teacher and there is an entity called office. Each teacher

1 http://dbunit.org/
2 https://junit.org/

must have an office. So, in order to test the insertion of a

Teacher entity, first it is necessary to insert an Office

entity. To accomplish this and to reuse the execution, the

DbUnit framework runs the tests relative to these two

entities in a specific order. First, the framework runs the

test to insert the Office entity. Next, the test to insert the

Teacher entity is run. It is worth mentioning that at this

point, the framework reuses the entity inserted in the

first test. In this way, it is possible to achieve

execution reuse because to run the Teacher test it is

not necessary to insert an Office entity again. After

the recursive running of the insertion tests, the

framework runs, in the recursively inverse order, the

deletion tests. This is necessary in order to clean the

SUT and let it in a consistent state. Thus, first the

framework will run the deletion of the Teacher test

and, finally, the deletion of the Office test.

The main limitation of this work is that the fixtures

created are only accessible through database operations.

Fixtures created by test classes of dependency entities

cannot be accessed programmatically by the running

test. Also, although the framework promotes execution

reuse, the running test must not change the state of

any dependency entity, because doing so can break

other tests that depend on the same dependency entity.

Thus, the work breaks the independency principle

(Meszaros et al., 2003), which advocates that tests must

be independent of each other and that a suite of tests

should be run in any arbitrary order.

Reusable Fit Specifications

Mugridge and Cunningham (2005) propose the reuse

of fixtures in the context of Fit3. Fit is an acceptance

testing framework in which tests are defined using a

tabular format specification (Borg and Kropp, 2011).

The work proposes that Fit tests can be connected in a

way that one test can serve as a starting point of another

one, promoting the reuse of the Fit specifications. Next,

from the connected specifications, the authors propose to

build a directed graph of tests. Thus, instead of executing

each test individually, the authors propose to execute the

tests through a graph walking algorithm. The main

drawback of the graph approach is the mischaracterization

of test as a concise and cohesive unit. This approach leads

to comprehension and traceability problems, e.g., it is

more difficult to find the source of an error when all tests

are run together as a whole.

In our approach the idea is that the setup code of one

test class can be used as starting point for another test

class. Mugridge and Cunningham (2005) approach

differs from our approach because the specification reuse

is applied directly between tests. Besides that, when

considering the reuse of execution and not only the reuse

3 http://fit.c2.com/

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

94

of setup code or specification, in our work we only reuse

execution of test setup that does not change the test

fixtures of its test classes.

Picon

The Picon4 framework (Longo et al., 2015) is an

extension of JUnit that promotes the reuse of test code of

Plain Old Java Objects (POJO). POJO are objects that

include a default constructor and getter and setter

methods for each attribute. In Picon, the fixtures are

defined in an external file through a special notation. The

defined fixtures are reused through the declaration of an

attribute in the test class. The attribute must have the

same name as the desired fixture. For each test, Picon

parses the files that contain the fixture definitions,

creates the fixture objects and, finally, injects the objects

into the running test.

The authors claim that the success of their approach

is based on an adequate naming strategy, i.e.,

programmers should choose clear and meaningful names

for the fixtures, otherwise test comprehension will be

harmed. In a Test-Driven Development (TDD) project

where Picon was used, the authors estimated a reduction

of 60% of the test code.

SolUnit

SolUnit5 (Medeiros et al., 2019) is a framework for

reducing testing runtime of unit tests for smart contracts.

Smart contracts are software programs that are run over a

blockchain (Tonelli et al., 2018). A blockchain consists

of chain of data packages which comprises multiple

transactions (Nofer et al., 2017). Smart contracts are

decentralized and immutable, i.e., once deployed they

cannot be changed (Destefanis et al., 2018).

SolUnit aims to reduce the time spent to run tests for

smart contracts. Because smart contracts need to be

deployed on a blockchain to be tested, the time spent to

run tests can lead to slow test execution smell. Thus,

SolUnit tries to reduce test execution time by reusing

smart contract deployment and test setup. To do this,

first SolUnit identifies smart contract functions that do

not generate new transactions in the blockchain. Tests

that only call these functions are identified as well. Next,

the framework reuses the contract deployment and test

setup execution of the identified tests. The approach was

able to reduce test execution time by 30 to 70%

considering five open-source projects found on GitHub.

Discussion

As we already mentioned, in our work we focus on

promoting both code and execution reuse of test code. In

4 https://github.com/douglashiura/picon
5 https://github.com/hmhallan/sol-unit

DbUnit and Reusable Fit Specifications, the test code

and execution can be reused. However, both approaches

break the independency principle. Furthermore, the

approach used by DbUnit can only be applied for

applications in which the fixtures are persisted in a

database. Also, in DbUnit the fixtures cannot be passed

between different test classes. The work proposed by

Mugridge and Cunningham (2005) differs from our work

too. While our work focuses on test code refactoring,

Mugridge and Cunningham (2005) propose a strategy for

refactoring Fit table specifications. Another difference is

that our approach is applied to reuse code between test

classes, while Mugridge and Cunningham (2005)

propose the reuse of specifications in a test granularity.

Picon promotes code reuse of fixtures defined externally

to the test classes, but only POJOs can be reused and

execution reuse is not provided. SolUnit is designed to

reduce tests runtime of smart contracts without breaking

the independency principle. The framework

automatically identifies test setups that can be reused by

other tests. However, SolUnit does not aim to reduce test

code duplication.

Next, we present our proposal. It differs from other

approaches because it can promote both code and execution

reuse while preserving the independency principle and

enabling programmatic access to the fixtures.

Estόria

In this section we present the Estόria6 framework
(da Silva and Vilain, 2016; 2017), an extension of
JUnit in which we implemented our proposal. Our main

goal is to enable the reuse of implicit setups between
different test classes. This idea comes from the basic
principle that the implicit setup of one test class can
serve as starting point to the implicit setup of another
test class. Thus, we define a dependency model
between test classes as follows:

 Definition 1 Given a provider test class and a

consumer test class, the dependency relationship

between them implies that the implicit setup of

the provider will be run before the implicit setup

of the consumer

This means that in order to run a given test of the

consumer class, Estόria will run the implicit setup of the

provider before running the implicit setup of the

consumer. Estόria implements this behavior through the

@FixtureSetup annotation. In addition to this annotation,

Estόria provides a complementary annotation called

@Fixture. The @Fixture annotation allows the tests of a

consumer class to use the fixtures created in the implicit

setup of a provider class.

6 https://github.com/lucasPereira/estoria

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

95

Fig. 2: Test class to create a banking system

Fig. 3: Test class to create a bank

Figure 2 and 3 show an example of how to use

Estόria annotations. In Fig. 3, line 1 indicates that the

implicit setup of the test class defined in Fig. 2 will be

used. In JUnit, the implicit setup of a test class

corresponds to the methods annotated with @Before.

Estόria is an extension of JUnit. Thus, in Estόria, the

@Before annotation has the same meaning as in JUnit.

Besides that, line 3 in Fig. 3 indicates that the annotated

attribute will be dynamically injected by Estόria. Thus,

in order to run the test in the BankTest class (Fig. 3),

Estόria executes the following steps: (1) Run the implicit

setup of the BankingSystemTest; (2) run the implicit

setup of the BankTest; (3) injects the fixtures from the

provider class in the annotated attributes of the consumer

class; and, finally, (4) run the test. The Estόria

annotations allow us to achieve code reuse and

programmatic access to the fixtures.

Fixture Injection

As shown above, to use a fixture created in the

implicit setup of a provider class it is necessary to

declare, in a consumer class, an attribute with the same

name as the desired fixture presented in the provider

class. It is also necessary to annotate the declared

attribute with the @Fixture annotation. Although Estόria

does not need the @Fixture annotation to identify the

attributes to be injected, we decided to make this step

mandatory because of two reasons: (1) To improve test

readability by making clear which fixtures are provided

by dependencies; and (2) to minimize the error-prone

characteristic of the fixture injection by (a) avoiding

fixture injection without the programmer’s knowledge

and (b) detecting typos in cases where a fixture is not

found in the provider classes.

Independence Principle

It is important to highlight that the dependency model

does not break the independency principle presented in

the Automation Manifesto (Meszaros et al., 2003). The

independency principle says that tests can be run in any

arbitrary order without collateral effects. This principle

is justified by the idea that one test execution should not

depend on or interfere in a different test execution, e.g., a

given test  should not fail just because the execution of

another test put the SUT in an inconsistent state for the

test . There are two strategies to avoid side effects from

previous test executions: (1) In the setup phase, each test

should reset the state of the SUT; or (2) in the tear-down

phase, each test should undo the modifications made in

the SUT. From the perspective of each test, the first

strategy is the safest because the test itself guarantees

that the SUT will be in a consistent state.

In Estόria, the dependency relationship between two

classes does not interfere in the execution of their tests.

1 @FixtureSetup(BankingSystemTest.class)

2 public class BankTest {

3 @Fixture private BankingSystem bs;

4 private Bank hsbc;

5 @Before public void setup() {
6 hsbc = bs.createBank("HSBC", Currency.GBP);

7 }

8 @Test public void test() {
9 assertEquals("HSBC", hsbc.getName());

10 assertEquals(Currency.GBP, hsbc.getCurrency());

11 assertEquals(0, hsbc.getAccounts().size());
12 assertEquals(1, bs.getBanks().size());

13 }

14 }

1 public class BankingSystemTest {

2 private BankingSystem bs;

3 @Before public void setup() {

4 bs = new BankingSystem();

5 }

6 @Test public void test() {

7 assertEquals(0, bs.getBanks().size());

8 assertEquals(0, bs.getMints().size())

9 }

10 }

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

96

Instead of that, the relationship between test classes

only implies that the implicit setup of the provider class

will be run before the implicit setup of the consumer

class. This relationship, however, does not interfere in

the execution of the tests, e.g., a given test from a

provider class could be run after a test from a consumer

class, or vice-versa, without any side effect. In other

words, in Estόria, the dependency relationship between

test classes does not imply on a dependency between the

tests from the involved classes.

The dependency model and its implications can be

better understood through a concept from biology:

Commensalism (Beneden, 1876). Commensalism is a

relationship between two organisms in which one

organism gains benefits from another without

benefiting or harming it. It is a commensal behavior

that we expect with the dependency relationship

between two test classes. More than that, we expect

that producer classes do not even need to know the

existence of consumer classes.

Transitive Dependencies

In Estόria, the dependency between different test

classes is a transitive relationship, e.g., if a test class 

depends on  and  depends on , then  also depends

on . Before running a given test, Estόria will run, in a

recursive inverse order, the implicit setups of the

dependencies. Figure 4 illustrates an example of

transitive dependencies. The test class presented in Fig. 4

depends on the test class presented in Fig. 3, which in

turn, depends on the test class presented in Fig. 2. We

say that the test class of Fig. 2 is a transitive dependency

of the test class of Fig. 4. Thus, in order to run the test

method presented in Fig. 4, Estόria will create an

Execution Sequence of Implicit Setup and Test Methods

(ESISTM) to determine the order to run the methods

needed for the test. Figure 5 shows an Unified Modeling

Language (UML) activity diagram corresponding to the

ESISTM for the test of Fig. 4.

Regarding the created fixtures, after each implicit

setup execution, Estόria injects the created fixtures in the

next dependency implicit setup execution. It is worth

mentioning that the fixture injection is also transitive,

e.g., the test class in Fig. 4 uses the bs fixture created in

the class of Fig. 2. However, the transitivity of fixture

injection only works if the provider test class

immediately following uses the fixture as well, e.g., if

the test class in Fig. 3 does not use the bs fixture, then

the test class in Fig. 4 could not use it either.

Fig. 4: Test class to create a account

Fig. 5: ESISTM for account test

1 @FixtureSetup(BankTest.class)

2 public class AccountTest {

3 @Fixture private BankingSystem bs;

4 @Fixture private Bank hsbc;

5 private Account jane;

6 @Before public void setup() {

7 jane = hsbc.createAccount("Jane Doe");

8 }

9 @Test public void test() {

10 assertEquals("Jane Doe", jane.getName());

11 assertEquals(Money.ZERO, jane.getBalance());

12 assertEquals(1, hsbc.getAccounts().size());

13 assertEquals(1, bs.getBanks().size());

14 }

15 }

BankingSystemTest

setup()
BankTest

setup()

AccountTest

test()
AccountTest

setup()

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

97

Transitive dependencies are especially useful for

implementing story tests. Story tests, also known as

acceptance tests (Kamalrudin et al., 2013), are user

tests that are used to determine if a system satisfies the

acceptance criteria from the customer perspective

(Borg and Kropp, 2011). This type of test is usually

implemented in an evolutionary and incremental way

(Erdogmus et al., 2005). Transitive dependencies make

possible implementing tests in the same evolutionary

way, i.e., the setup of the test classes that are already

implemented can serve as starting point for

implementing the next test. The simple observation that

story tests can be connected in order to build a bigger

picture was the main idea that motivated our work.

Symmetric Dependency and Cyclic Dependency

In graph theory, a symmetric graph is a graph in

which any two adjacent vertices v and u are connected

by both the edges (v, u) and (u, v) and a cyclic graph is a

graph with a closed chain of edges in which the

terminal vertex is not distinguished from the initial

vertex (Essam and Fisher, 1970). We borrowed these

definitions from graph theory and applied it to our work.

Thus, in the dependency model, a symmetric dependency

occurs when two test classes depend directly on each

other and a cyclic dependency occurs when a test class

depends on itself through a chain of transitive

dependencies. However, we treat symmetric and cyclic

dependencies as a modeling error. Estόria deals with this

type of error simply by throwing a runtime exception.

Multiple Dependencies

The Estόria framework also enables multiple

dependencies for consumer classes, i.e., a given

consumer class may depend on one or more provider

classes. This scenario is illustrated through Fig. 4, 6 and

7. In Fig. 4, an account is created in the implicit setup. In

Fig. 6, a mint facility to issue money for a given

currency is created in the implicit setup. In Fig. 7, the

class tests the behavior of an account deposit. In order to

test this behavior, the test class in Fig. 7 depends on the

implicit setup of two other test classes: The one

presented in Fig. 4, in which the account is created and

the one shown in Fig. 6, in which a mint is created.

Fig. 6: Test class to create a mint

Fig. 7: Test class to make a deposit

1 @FixtureSetup(BankingSystemTest.class)

2 public class MintTest {

3 @Fixture private BankingSystem bs;

4 private Mint royal;

5 @Before public void setup() {

6 royal = bs.createMint("Royal Mint", Currency.GBP);

7 }

8 @Test public void test() {

9 assertEquals("Royal Mint", royal.getName());

10 assertTrue(royal.manufactures(Currency.GBP));

11 assertFalse(royal.manufactures(Currency.USD));

12 assertEquals(1, bs.getMints().size());

13 }

14 }

1 @FixtureSetup(AccountTest.class, MintTest.class)

2 public class DepositTest {

3 @Fixture private Account jane;

4 @Fixture private Mint royal;

5 private Money tenPounds;

6 @Before public void setup() {

7 tenPounds = royal.issue(10);

8 jane.deposit(tenPounds);

9 }

10 @Test public void test() {

11 assertEquals(tenPounds, jane.getBalance());

12 }

13 }

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

98

The order in which the provider classes are declared

in the @FixtureSetup annotation is a relevant aspect.

Firstly, this order determines the execution order of the

provider implicit setups, and changes in this order can

affect the state of the SUT. Secondly, this order will be

used to resolve fixture naming conflicts, i.e., if two

provider classes have a fixture with the same name, then

Estόria will inject the fixture from the first class that

appears in the @FixtureSetup annotation. We

recommend that programmers avoid this type of conflict

because it can harm test comprehension.

Multiple Tests and Multiple Implicit Setups

The test classes of the examples presented from Fig. 2

to 7 contain only one test and one implicit setup method.

However, as occurs in JUnit, Estόria also enables the

existence of multiple tests and multiple implicit setup

methods in the same test class. The challenge is to provide

these features while providing code reuse between test

classes and preserving the independence principle at the

same time. To achieve this, Estόria executes all the

implicit setups of the providers and all the implicit setups

of the running test class before each test run.

Figure 8 shows an example of a test class that

includes two implicit setups and two tests. To run both

tests of the class, Estόria will run the following steps for

each test: (1) Recursive execution of the setup of the

DepositTest provider; (2) execution of the fifteen

implicit setup method; (3) execution of the five implicit

setup method; and (4) execution of the given test. The

order in which the implicit setup methods of the running

class are executed is determined by the alphabetical

order of the method names. This is the reason why the

method fifteen is executed before the method five. We

choose to use the alphabetical order because JUnit also

uses the same arbitrary criteria.

Graph Models

In order to facilitate the comprehension and to represent

the dependency model through a more formal definition, we

define the dependency model as a graph model. The

directed graph G = (V, E) is defined as follows:

 Definition 2 V = {t | t is a test class of the system}

 Definition 3 E = {(c, p) | c is a consumer test class 

p is a provider test class}

We call G a Dependency Graph (DG). The V set

contains the test classes of the system and the E set

contains all the direct dependencies between pairs of test

classes. The DG facilitates the validation of the

dependency model, e.g., through a breadth-first search

algorithm it is possible to detect cyclic dependencies, a

type of violation in the dependency model. In addition to

the static dependencies between test classes, it is

convenient to represent the test classes that are involved

in a given test run in order to generate the execution

order of setup methods. Thus, from DG, we define a

directed subgraph H = (W, F) as follows:

 Definition 4 W = {r  V | r is a running class  a

running class depends on r}

 Definition 5 F = {(c, p) | c is a consumer test class 

p is a provider test class}

We call H an Execution Graph (EG). Unlike DG, EG

does not include all the test classes of the system. While

DG is a static representation of the dependency model,

EG presents a subset of DG containing only the test

classes involved, directly or indirectly, with the tests to

be run. EG is important to determine the execution order

of the implicit setups before the test run. From EG, it is

possible to determine the execution order simply through

a depth-first search algorithm.

Figure 9 shows the DG (left) of the test classes

presented in the examples from Fig. 2 to 8 and the EG

(right) considering the execution of the deposit test

shown in Fig. 7. The graphs are represented by UML

class diagrams. Two extra stereotypes are being used.

The <<consumes>> stereotype indicates that a consumer

class consumes the implicit setup of a provider class and

the <<running>> stereotype indicates the tests to be run.

Singular Execution

Considering the EG shown in Fig. 9 which

represents the execution of the deposit test shown in

Fig. 7, it is possible to use a depth-first search

algorithm to find the ESISTM. However, due to the

possibility of multiple dependencies, there is a concern

about the strategy to be used when a vertex is visited

twice through the depth-first search algorithm. There

are two possibilities: (1) The strategy may visit the

already-visited vertex again; (2) the strategy may

ignore the already-visited vertex. The ESISTM will

vary depending on the chosen strategy.

The test class shown in Fig. 7 has two providers.

Directly or indirectly, each one of these providers

depends on the same test class shown in Fig. 2, the

BankSystemTest. Thus, to run the test shown in Fig. 2,

two distinct ESISTM may be considered as shown in

Fig. 10 and 11. According to the ESISTM shown in Fig.

10, the implicit setup method of the BankSystemTest is

run only once. In Fig. 11, the same implicit setup method

is run twice, i.e., the BankSystemTest implicit setup

method will be run before each direct consumer. In the

example of the test of Fig. 7, we do not want to run

BankSystemTest implicit setup method twice, otherwise

we will create another bs and this is not the goal. The

idea is that both consumers use the same bs. Thus, for

the given example, we want to ensure that Estόria runs

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

99

the BankSystemTest implicit setup method only once. To do this, we introduce the @Singular annotation.

Fig. 8: Test class to withdraw money

Fig. 9: DG for tests classes and EG for deposit test

1 @FixtureSetup(DepositTest.class)

2 public class WithdrawTest {

3 @Fixture private Account jane;

4 @Fixture private Mint royal;

5 @Fixture private Money tenPounds;

6 private Money fivePounds;

7 private Money fifteenPounds;

8 @Before public void five() {

9 fivePounds = royal.issue(5);

10 }

11 @Before public void fifteen() {

12 fifteenPounds = royal.issue(15);

13 }

14 @Test public void lessThanBalance() {

15 Transaction withdraw = jane.withdraw(fivePounds);

16 assertTrue(withdraw.hasSuccess());

17 assertEquals(fivePounds, jane.getBalance());

18 }

19 @Test public void moreThanBalance() {

20 Transaction withdraw = jane.withdraw(fifteenPounds);

21 assertFalse(withdraw.hasSuccess());

22 assertEquals(tenPounds, jane.getBalance());

23 }

24 }

WithdrawTest

+fiveSetup()

+fifteenSetup()

+withdrawLessThanBalanceTest()

+withdrawMoreThanBalanceTest() DepositTest

+setup()

<<running>> +test()
<<consumes>>

<<consumes>> <<consumes>>
DepositTest

AccountTest MintTest +setup()

+test()
+setup()

+test()

+setup()

+test() <<consumes>> <<consumes>>

<<consumes>>
AccountTest MintTest

BankTest +setup()

+test()
+setup()

+test()
+setup()

+test() <<consumes>>
<<consumes>>

BankTest

+setup()

+test() <<consumes>>

<<consumes>>

<<consumes>>

BankingSystemTest

BankingSystemTest

+setup()

+test()

+setup()

+test()

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

100

Fig. 10: ESISTM for deposit test with singular provider

Fig. 11: ESISTM for deposit test with non-singular provider

Fig. 12: Singular annotation in the test class to create banking

system

The @Singular annotation tells Estόria that the
implicit setup of the annotated test class should not be
run before each direct consumer. Instead, the implicit
setup method should be run only once, right before the
first direct consumer. Thus, to assure that the implicit
setup of BankSystemTest is run only once, it is
necessary to annotate the test class of Fig. 2 with the
@Singular annotation as shown in line 1 of Fig. 12.
Estόria assumes that implicit setup of classes not
annotated with @Singular should be run before each
direct consumer. If each direct consumer needs its own
bs, then @Singular should not be used.

Execution Reuse

Until now we have shown only aspects involving code

reuse. However, Estόria has two reuse modes: (1) The one

with only code reuse; and (2) the other one with both code

and execution reuse. In the mode with only code reuse, the

entire chain of implicit setup methods is run before each

test. In this mode, the independency principle is never

broken, because Estόria does not interfere in the ordering

of the tests to be run, i.e., the tests can be run in any

arbitrary order. From the perspective of the mode with

execution reuse, an execution of a chain of implicit setup

methods of a given test may be reused for another test. In

this context, the independency principle is broken,

because Estόria must define the ordering of the tests to

be run. This section gives an overview of the execution

reuse mode of Estόria. A more detailed discussion about

this subject can be found in previous works (da Silva and

Vilain, 2016; 2017).

The first observation necessary to understand the
execution reuse of Estόria is to distinguish between safe
and unsafe tests. We refer to a test as safe when it does not
dirty the fixtures that were created in the implicit setup
method of the test class nor the fixtures that were created
in the implicit setup methods from the dependencies. In

this way, another test could use the same fixtures without
needing to run the implicit setup methods again. The
examples from Fig. 2 to 7 contain only safe tests, because
none of these test methods affects the fixtures created in
the chain of implicit setups. A counter example is the
lessThanBalance test shown in Fig. 8. In line 15, money is

withdrawn from an account, changing the balance. After
executing this test, it is not possible to reuse the
execution of the implicit setup methods by any other test,
because a fixture created in the implicit setup, the jane
fixture, was affected by this test.

Estόria introduces the @Safe and @Unsafe

annotations. The annotations are used to indicate safe

and unsafe test methods, respectively. Estόria assumes

that all test methods are unsafe by default. The

framework does not reuse the execution of implicit

setups after running an unsafe test. To reuse the

execution of implicit setups, all tests, except by the last

one, must be annotated with the @Safe annotation.

Figure 13 shows the test class of Fig. 8 with the @Safe

and @Unsafe annotations.

To exemplify the execution reuse mode of Estόria,

we will consider the tests from Fig. 2 to 8. Figure 14

shows the EG considering the execution of all tests. The

tests to be run are marked with the <<running>>

stereotype. We also highlight the use of the <<safe>>

and <<unsafe>> stereotypes in test methods.

BankingSystemTest

setup()

BankTest

setup()

AccountTest

setup()

Deposit

test()

Deposit

setup()

MintTest

setup()

BankingSystemTest

setup()

BankTest

setup()

AccountTest

setup()

Deposit

test()
Deposit

setup()

MintTest

setup()

BankingSystemTest

setup()

1 @Singular

2 public class BankingSystemTest { ... }

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

101

Fig. 13: Safe and Unsafe annotations in test class to withdraw money

Fig. 14: EG with multiple tests to run

To promote execution reuse, Estόria first selects all

source vertices in the EG. A source vertex is a vertex

without descendants, e.g., in Fig. 14 the WithdrawTest is

the only source vertex. For each source vertex, Estόria

creates the transitive closure of the vertex. A transitive

closure is the set of vertices that can be reached from a

given vertex, e.g., in Fig. 14 all vertices belong to the

transitive closure of the WithdrawTest. The execution

reuse in Estόria is only possible between tests from the

same transitive closure. Estόria does not promote

execution reuse between tests from distinct transitive

closures because they do not share the same

dependencies. Estόria also does not promote code reuse

after executing an unsafe test because unsafe tests

change the internal state of the SUT, and this may affect

the execution of the next test as well.

To run all the selected tests and to maximize the

execution reuse of the implicit setup methods, Estόria

starts by the biggest transitive closure and creates, from

it, the ESISTM according to the reverse topological

ordering. Next, the framework starts the execution of the

methods according to the ESISTM. This process

continues until all implicit setup methods and safe test

methods are executed. Unsafe tests are scheduled to be

run later, i.e., after the execution of all safe test methods.

For each unsafe test, all chain of implicit setup methods

must be run again, except for the first unsafe test of a

source vertex. As the safe test methods do not change the

fixtures of the implicit setup methods, then the first

unsafe test can reuse the previous execution.

Figure 15 shows the execution of the EG shown in

Fig. 14 considering the reuse mode enabled. Each test

1 @FixtureSetup(DepositTest.class)

2 public class WithdrawTest {

3 @Usafe @Test public void lessThanBalance() { ... }

4 @Safe @Test public void moreThanBalance() { ... }

5 }

WithdrawTest

+five()

+fifteen()

+<<unsafe>><<running>>lessThanBalance()

+<<safe>><<running>>moreThanBalance()

DepositTest

+setup()

+<<safe>><<running>>test()

AccountTest MintTest

BankTest

+setup()

+<<safe>><<running>>test()

+setup()

+<<safe>><<running>>test()

+setup()

+<<safe>><<running>>test()

+setup()

+<<safe>><<running>>test()

BankingSystemTest

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

102

class and its implicit setup methods serve as starting

point for the next test class in the dependency chain.

Hence, it is possible to promote the execution reuse of

the implicit setup methods. It is worth mentioning that

even the lessThanBalance method, an unsafe test, can

reuse the execution of the previous implicit setup

methods. This is possible because Estόria schedules this

method as the first one to be run after the last safe

method. Thus, the test can reuse the previous implicit

setup methods because the previous safe tests do not

change the internal state of the SUT. In Fig. 16, the same

scenario is shown but without the execution mode

enabled. It is important to note that before each test, all

implicit setup methods in the dependency chain are

executed. While in Fig. 15 the execution of all tests

involves 7 implicit setup method executions, in Fig. 16

this number increases to 27.

Estόria Algorithms

In this section, we describe the algorithms used by

Estόria. Algorithm 1 and Algorithm 2 generate ESISTMs

for the running tests and Algorithm 3 shows the general

algorithm of Estόria to run the tests based on the

generated ESISTMs.

Fig. 15: Flow of execution for all tests with the execution reuse mode

Fig. 16: Flow of execution for all tests without the execution reuse mode

BankingSystemTest

setup()
BankingSystemTest

test()

BankTest

setup()

BankTest

test()
AccountTest

test()

AccountTest

setup()

MintTest

setup()

MintTest

test()

Deposit

setup()

Deposit

test()
WithdrawTest

five()

WithdrawTest

fifteen()

WithdrawTest

moreThanBalance()
WithdrawTest

lessThanBalance()

BankingSystemTest

setup()
BankingSystemTest

setup()

BankingSystemTest

setup()

BankingSystemTest

setup()

BankingSystemTest

setup()

BankingSystemTest

setup()
BankingSystemTest

setup()

BankingSystemTest

test()

BankTest

setup()

BankTest

setup()

BankTest

setup()

BankTest

setup()
BankTest

setup()

BankTest

setup()

BankTest

test()

AccountTest

setup()
AccountTest

setup()

AccountTest

setup()
AccountTest

setup()

MintTest

test()

MintTest

setup()
AccountTest

test()

MintTest

setup()

MintTest

setup()

Deposit

setup()

Deposit

setup()
Deposit

setup()

Deposit

test()

WithdrawTest

five()
WithdrawTest

five()

WithdrawTest

fifteen()

WithdrawTest

fifteen()

WithdrawTest

moreThanBalance()

WithdrawTest

lessThanBalance()

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

103

Algorithm 1 shows the algorithm to generate

ESISTMs considering the execution without reuse. First,

from line 1 to 8, the algorithm creates a set including the

tests to run. In line 9, the set of ESISTMs is initialized.

Next, from line 10 to 26, the algorithm generates one

ESISTM for each test. In line 11, the ESISTM for the

current test is initialized. Besides that, a set for controlling

the addition of implicit setup methods from singular test

classes is initialized in line 12. Next, from line 13 to 15, a

stack representing the dependency chain is initialized and

the owner test class of the current test is pushed to the stack.

In line 16, the current test method to run is pushed into the

current ESISTM stack. Then, from line 17 to 24, the

algorithm iterates over each test class of the dependency

chain and pushes the implicit setup methods into the current

ESISTM stack. It is worth mentioning that in line 19 the

algorithm checks if the current class in the dependency

chain was already added as a singular test class. If it was

not, then, in line 20, the algorithm pushes the setup methods

of the current class into the ESISTM stack. In line 21, the

algorithm pushes the direct dependent classes of the current

class in the chain stack. In line 22, the algorithm checks if

the current class is singular. If it is, then it is added to the

singular test classes set. This is done to avoid adding

implicit setups from singular classes again in the same

ESISTM. Next, in line 25, the algorithm puts the

generated ESISTM in the set of ESISTMs. Finally, in line

27, the algorithm returns the set of ESISTMs to be run.

Algorithm 2 is used to generate the ESISTMs
considering the execution with reuse. It has a behavior
similar to the Algorithm 1 but has a special treatment for
safe and unsafe tests. The first main difference is that the
algorithm does not iterate over all tests. Instead of that,

the algorithm starts the execution, from line 1 to 6, by
initializing and populating the list of source vertex, i.e.,
the list of classes that are sources in EG. In line 7, the
list of sources is ordered according to the length of the
transitive closure of each source. This is important for
optimizing the execution reuse of Estόria. In line 8, the

set of ESISTMs is initialized. Next, a set for controlling
the already added tests is initialized in line 9. This set is
used to avoid adding a given test in more than one
ESISTM. Next, from line 10 to 39, the algorithm
generates an ESISTM for each source test class. These
ESISTMs will contain all safe test methods in the

dependency chain (line 20 to 22) and may have the last
unsafe test method that is a member of the current
source test class (line 24 to 28). This unsafe test method
can be added to the ESISTM because it will be the last
method to be run. Finally, in line 40, the algorithm
returns the set of ESISTMs to be run.

Algorithm 1 contains a ESISTM for each test and

Algorithm 2 contains a ESISTM for each source test

class. Except for only one unsafe test method in each

source test class, the ESISTMs of Algorithm 2 do not

contain unsafe test methods. Algorithm 3 uses the other

two algorithms in order to generate the ESISTMs and

run the tests. The algorithm starts by creating the sets of

ESISTMs from line 1 to 6. If reuse mode is enabled, then

the Algorithm 2 is used (line 3), otherwise, it is not used,

and an empty set is initialized (line 5). In line 7, a test

report is initialized. In line 8, a set of already executed test

is initialized. Because the ESISTMs without reuse have

tests that also appear in the ESISTMs with reuse, then this

set is used for avoiding running a given test twice. From

line 9 to 11 the algorithm creates a list of ESISTMs. This

list is ordered, first the ESISTMs with code reuse and next

the ESISTMs without code reuse. Next, from line 12 to

24, the algorithm runs the ESISTMs. In line 14, it is

verified if the first test was not executed yet. This can be

the case of tests that appear both in the ESISTMs with

reuse and in the ESISTMs without reuse. Thus, these

tests are run only in the ESISTM with reuse. From line

15 to 22, the algorithm runs the methods of the given

ESISTM until it has no more methods to run. The result

of the method execution is stored in line 17. If the

executed method is a test (line 18), then the algorithm

puts the result in the report (line 19) and puts the test

method in the set of executed tests (line 20). Finally, in

line 25, the algorithm returns the test report.

Algorithm 1: Generation of ESISTMs without execution

reuse.

 Input: H = (W, F) such that H is an EG

 Output: The set of ESISTMs without execution reuse

1 testsToRun  0

2 foreach rW do

3 foreach test  r do

4 if isRunning(test) then

5 put(testsToRun, test);

6 end

7 end

8 end

9 esistmsWithoutExecutionReuse  0 ;

10 foreach test 2 testsToRun do

11 esistm  0 ;

12 singularsAdded  0 ;

13 chain  0 ;

14 ownerTestClass  getTestClass(test);

15 push(chain, ownerTestClasse);

16 push(esistm, test);

17 repeat

18 class  pop(chain);

19 if class  singularsAdded then

20 foreach setup  class do push(esistm,

setup);

21 foreach dependent  class do

 push(chain, dependent);

22 if isSingular(class) then

 put(singularsAdded, class);

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

104

23 end

24 until chain  0 ;

25 put(esistmsWithoutExecutionReuse, esistm);

26 end

27 return esistmsWithoutExecutionReuse

Algorithm 2: Generation of ESISTMs with execution

reuse.

 Input: H = (W, F) such that H is an EG

 Output: The set of ESISTMs with execution reuse

1 sources  0 ;

2 foreach rW do

3 if isSource(H, r) then

4 add(sources, r);

5 end

6 end

7 sources 

 sortByBiggestTransitiveClosure(sources);

8 esistmsWithExecutionReuse  0 ;

9 testsAdded  0 ;

10 foreach source  sources do

11 unsafeTestAddedLast  false;

12 esistm  0 ;

13 singularsAdded  0 ;

14 chain  0 ;

15 push(chain, source);

16 repeat

17 class  pop(chain);

18 foreach test  class do

19 if isRunning(test) test  testsAdded

 then

20 if isSafe(test) then

21 push(esistm, test);

22 put(testsAdded, test);

23 else

24 if source = class 

 unsafeTestAddedLast then

25 unshift(esistm, test);

26 put(testsAdded, test);

27 unsafeTestAddedLast 

 true;

28 end

29 end

30 end

31 end

32 if class  singularsAdded then

33 foreach setup  class do push(esistm,

 setup);

34 foreach dependent  class do

 push(chain, dependent);

35 if isSingular(class) then

 put(singularsAdded, class);

36 end

37 until chain  0 ;
38 put(esistmsWithExecutionReuse, esistm);

39 end

40 return esistmsWithExecutionReuse

Algorithm 3: Execution of Estόria.

 Input: H = (W, F) such that H is an EG

 Input: a reuse flag indicating if execution reuse

mode is or not enabled

 Output: a test report

1 esistmsWithoutReuse 

 generateEsistmsWithoutExecutionReuse;

2 if reuse then

3 esistmsWithReuse 

 generateEsistmsWithExecutionReuse;

4 else

5 esistmsWithReuse  0 ;

6 end

7 report  0 ;

8 executed  0 ;

9 allEsistms  0 ;

10 add(allEsistms, esistmsWithReuse);

11 add(allEsistms, esistmsWithoutReuse);

12 foreach esistm  allEsistms do

13 firstTest first(esistm);

14 if firstTest  executed then

15 repeat

16 method  pop(esistm);

17 result  run(method);

18 if isTest(method) then

19 put(report, result);

20 put(executed, method);

21 end

22 until esistm  0 ;

23 end

24 end

25 return report

Evaluation

In this section, we show the evaluation of Estόria

through three different perspectives: (1) Code reuse; (2)

execution reuse; and (3) usage. In the first and second

perspectives, we investigate the efficiency of Estόria in

promoting code and execution reuse, respectively. In the

third perspective, we investigate the usage of Estόria

through an experiment in which Estόria is used by

programmers of a software company. Next, we present the

experiments and our findings in each experiment as well.

Code Reuse Experiment

In this section we show an experiment conducted to

investigate the efficiency of Estόria in promoting code

reuse. To conduct the experiment, we used an event

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

105

scheduling system that was developed as part of a

project of a Computer Science graduate curse of the

Universidade Federal de Santa Catarina (UFSC). To

develop this system, the students used a set of agile

practices, including software testing.
First, we selected a set containing 24 tests grouped in 4

test classes. We named this set as control group. The tests
of the control group were written by graduate students
enrolled in the course. In this project, the students created
unit tests for an event scheduling system. The tests of the
control group were written using classical fixture setup
strategies, i.e., inline setup, implicit setup and delegated
setup. Next, after the end of the course, we manually
created the experimental group by rewriting the tests of
the control group using the dependency setup strategy
available in Estόria. The experimental group was
composed by the same 24 tests, but we redistributed
them in 14 test classes. The tests of both control and
experimental groups were written in Java. The control
group tests were written for JUnit, while the
experimental group tests were written for Estόria.

Next, we collected the following measurements from

both groups: (1) Number of code lines of test and helper

classes; (2) sum of the number of repeated lines, excluding

assertions; (3) sum of distinct repeated lines, excluding

assertions; (4) sum of the number of repeated lines,

including assertions; and (5) sum of distinct repetitions,

including assertions. In the measurements 2, 3, 4 and 5 the

following symbols were not counted as repetitions:

@Test, @Before and @Fixture annotations, identical

method declarations and block delimiter symbols.

Figure 17 shows the collected measurements for
control and experimental groups. The experimental
group presented a considerable reduction in the number
of duplicate lines. The control group reached a total of
126 duplicate lines, excluding assertions, while the
number of duplicate lines was reduced to 66 in the
experimental group. Considering the total number of test
code lines of each group, 40.91% of the lines of the
control group corresponded to duplicate lines, while in
the experimental group it was 20.37%. Comparing the
control group with the experimental group, the latter had
a reduction of 47.62% of the duplicate lines considering
absolute values. It is interesting to note that the tests of
the experimental group, i.e., the tests written for Estόria,
led to a considerable increase in test classes. While the
control group had 4 test classes, the experimental group
had 14 test classes. This behavior is expected because in
Estόria the reuse of fixture setups is strongly affected by
the distribution of test classes. Estόria motivates the use
of the test class per fixture strategy (Meszaros, 2007). In
the usage experiment we evaluate better the impact of
increasing the number of test classes.

It is worth mentioning that the control group was

written by four graduate students, including the first

author of this work and the experimental group was

written only by the first author of this work. Thus, we can

cite as a treat to the validity of this experiment an implicit

bias involved. The other students were not involved in the

written of the experimental group because the scope of the

course did not include Estόria. To write the experimental

group we preserved the tests behavior. We did not change

any assertion of test setup code. The modifications made

were only structural changes, i.e., we only moved test

code for another classes and methods in order to apply

the dependency setup of Estόria. The sources used in the

experiment can be found on GitHub7.

Execution Reuse Experiment

To evaluate the execution reuse capabilities of
Estόria we conducted another experiment. The goal of
the experiment was to identify potential differences in
the time needed to run tests with and without the
execution reuse mode of Estόria. In the experiment, we
extracted 32 acceptance tests of a system for course
assessment developed to the Brazilian Ministry of
Education and Culture (MEC). As these tests correspond
to a feature that was being developed along with the
realization of the experiment, it was easier to rewrite the
tests from JUnit to Estόria. Furthermore, we chose to use
acceptance tests for Graphical User Interface (GUI)
instead of unit tests because the typical slower execution
of GUI tests facilitates the human perception of potential
differences in execution times.

Once the tests were converted to Estόria, we run them

twice, with the execution reuse mode enabled and with

the execution reuse mode disabled. In Fig. 18 we show

the test report of the execution without reuse and in Fig.

19 we show the test report of the execution with reuse.

While the execution of the tests without reuse took 1089

seconds to be completed, the execution with reuse took

131 seconds. This represents a reduction of

approximately 8 times the execution time when the

execution reuse mode is enabled. The sources used in the

experiment can be found on GitHub8.

Usage Experiment

To evaluate Estόria usage by different participants,

we conducted an experiment divided into four phases:

(1) Preparation, (2) learning, (3) usage and (3)

assessment. In the preparation phase, we gave the

participants an ad hoc application, the Banking System,

developed specifically for the experiment. We showed

the participants the system requirements and a class

diagram of the system as well. Next, in the learning

phase, we explained to the participants four fixture setup

strategies: Inline setup, implicit setup, delegated setup

and the dependency setup strategy available in Estόria.

The goal was to establish a common base between all

participants because some participants were more

7 https://github.com/lucasPereira/alocacaoDeHorarios/tree/testesestoria
8 https://github.com/lucasPereira/saas-teste-estoria

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

106

experienced in test development than others. In the usage

phase, we asked each participant to finish the

implementation of two tests for each fixture setup

strategy learned in the previous phase. In total, each one

of the 13 participants had to finish the implementation of

8 tests. In this phase, for each fixture setup strategy we

collected the time needed to finish the implementation

and verified if the strategy was implemented properly.

Finally, in the last phase, the assessment, we asked each

participant to answer a questionnaire.

Fig. 17: Measurements of the code reuse experiment

Fig. 18: Test report of the execution experiment without reuse

Control group Experimental group

Test code lines Duplicates Different duplicates Duplicates Different duplicates
 (w/o assertions) (w/o assertions) (w/ assertions) (w/ assertions)

300

200

100

0

324
308

66

126

37
22

144

84

46
31

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

107

Fig. 19: Test report of the execution experiment with reuse

Table 1: Usage phase results of case of study

Strategy Average Std. Deviation Shortest Largest Incorrect

Inline setup 13.9 11.7 3 40 3

Implicit setup 9.1 5.3 5 20 4

Delegated setup 9.3 5.5 5 20 5

Dependency setup 10.6 9.6 5 34 4

Table 1 summarizes the experiment results from the

usage phase. The table shows the average time needed

by all the 13 participants to finish the implementation

considering each fixture setup strategy. Each participant

implemented 2 tests for each strategy. Standard

deviation, shortest time and largest time to complete the

task are also shown in the table. These metrics are only

relative to the tests implemented properly. In addition,

the total number of tests not properly implemented

considering each strategy is shown in the last column of

the table, e.g., in inline setup, 3 out of 26 tests were

implemented incorrectly. While the implicit setup

strategy had the best average time compared to the

others, the inline setup had the worst results.

In the beginning of the assessment phase, we tried

to identify the experience of the participants regarding

the following topics: Software development, software

testing, Java language and fixture setup strategies. The

main goal of the initial part of the questionnaire was to

trace a profile of the participants. The results presented

in Table 2 show a quite heterogeneous environment

regarding the experience of the participants. In total, 13

employees of a technology company participated in the

experiment. All participants reported having at least

some experience with software development.

Regarding software testing, the experience of the

participants was considerably low, 3 participants

reported not having any experience and no participant

reported having high experience with software testing.

Regarding experience with the Java language, the

language used in the experiment, a high number of

participants declared themselves without Java

experience. In total, 4 participants reported not having

any experience with Java at all.

Table 3 shows the participants’ experience with

fixture setup strategies before the experiment. We can

observe that 7 of 13 participants declared they knew

the inline setup strategy; 4 participants knew the

implicit setup and only 2 participants knew the

delegated setup strategy.

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

108

Table 2: Participants experience results of case of study

Topic No experience Low Medium High

Software development 0 5 4 4

Software testing 3 5 5 0

Java language 4 3 4 2

Table 3: Participants experience with fixture setup strategies results of case of study

Strategy Knew before the experiment Did not know before the experiment

Inline setup 7 6

Implicit setup 4 9

Delegated setup 2 11

Dependency setup 0 13

Fig. 20: Effort to learn and use results of the study of case

Next, we asked each participant to measure the effort

needed to learn and to use the dependency setup

available in Estόria. We also asked them to evaluate how

useful they considered the dependency strategy to be.

Figure 20 shows the results considering the effort needed

to learn and to use the dependency setup. Regarding the

effort to learn, 1 participant considered that the effort

was high, while the other 12 participants were equally

divided into low and medium effort. The results of the

effort to use were similar, but with fewer low-effort

evaluations and more medium-effort evaluations.

Moreover, we asked the participants to answer how

useful they considered the dependency setup. In total, 10

participants considered it useful and 3 considered it very

useful. No participant considered the dependency setup

strategy to be not useful at all.

In the last question of the questionnaire, each

participant could write comments about the fixture

setup strategy. Only two participants answered this

question. One participant said that the proposal is

“interesting and easy to use”. The other participant

argued that Estόria facilitates the removal of

redundancies in test code, but he added that

redundancies sometimes are useful to identify potential

problems in test code. The participant said that “it is

easy to write some field wrong, but it is harder to make

the same mistake again” and that “redundancy

facilitates the identification of this type of error”.

Analysis of the Experiments

In this section, we presented three experiments to

evaluate Estόria. The first two experiments investigated

the reuse capabilities of the framework and the last one

investigated the adherence to Estόria considering the use

by programmers from industry. Our goal was to establish

a foundation to evaluate the effectiveness and efficiency

of Estόria. Regarding the effectiveness, we wanted to

know if Estόria is suitable to promote code and

execution reuse. Regarding the efficiency, we wanted to

know whether Estόria is simple and fast to use. While

Low Medium High

Effort to learn Effort to use

10

8

6

4

2

0

6 6

1

3

9

1

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

109

reuse experiments cover the evaluation in terms of the

effectiveness, the usage experiment covers the evaluation

in terms of the efficiency.

According to the results of the experiments, Estόria

seems to be effective considering the used projects. In the

code reuse experiment, the framework promoted a

reduction of 47.62% of the duplicate lines, while in the

execution reuse experiment, the framework achieved a

reduction of approximately 8 times the execution time. It

worth mentioning some treats to validity regarding these

two experiments. In the code reuse experiment the first

author of this work participate of the implementation of

the control group tests and was responsible for writing the

experimental group tests. Thus, there is an intrinsically

bias involved. The execution reuse experiment has the

same treat to validity because the first author of this work

also wrote the tests of this experiment. Besides that,

regarding the external treat to validity, i.e., the capacity to

generalize the results for other projects, we can cite that

we used only one project for each experiment. This

reduced the internal treat to validity because we performed

the experiments in a more controlled environment but

reduced the capacity to generalize the results.

Estόria also has been shown to be efficient, since in

the usage experiment no significant difference between

Estόria and classical fixture setup strategies, such as

implicit and delegated setup, was observed. Furthermore,

the framework was assessed by programmers from

industry and it was considered useful by most of them.

In total, 10 participants considered it useful and 3

considered it very useful. No participant considered

Estόria to be not useful at all. It worth mentioning that

the participants do not knew Estόria before the

experiment and do not have any relationship with the

authors of this work. However, we also need to point out

that only 13 programmers participated of the experiment.

In order to generalize the results, we need to perform the

experiment with more participants.

Conclusion and Future Works

In this study we presented a model called dependency

model, which defines a new relationship between test

classes. The dependency model establishes a

consumer/provider relationship in which a consumer test

class may have one or more provider test classes. This

relationship implies that the consumer class will use the

implicit setup of the provider classes. From the

dependency model, we developed a new fixture setup

strategy, namely the dependency setup and implemented

the strategy in Estόria, a JUnit extension framework.

Estόria enables the use of dependency setup through two

different modes: One that promotes code reuse and

another that promotes both code and execution reuse.

Unlike other fixture setup strategies, dependency

setup enables the reuse of code between test classes

without affecting the structure of the involved classes.

Thus, it is possible to use the implicit setup of a test class

as starting point for the implicit setup of another test

class. This enables the creation of a chain of reuse,

reducing the test code duplication. Furthermore, the

dependency setup strategy was implemented in a

framework with a built-in mechanism to promote

execution reuse. It is important to note that test

frameworks typically do not provide execution reuse

built-in mechanisms.

Initial experiments showed that the dependency

strategy leads to a reduction of 47.62% of the duplicate

lines of the test code. In addition, execution reuse mode

of Estόria allowed us to reduce the execution time by a

ratio of 8. We also conducted an experiment to evaluate

the usage of Estόria by different participants of a

technology company. Out of 13 participants, 10

considered the strategy to be useful and 3 considered the

strategy very useful.

We also compared our model with other models for

reusing code or execution of tests. Estόria and DbUnit

(Christensen et al., 2006) models were similar regarding

the approach, i.e., both approaches promote code and

execution reuse through definition of dependencies

between test classes. However, unlike DbUnit, Estόria is

application independent. Also, fixture objects in Estόria

can be shared across test classes, which it is not possible

in DbUnit. The model proposed by Mugridge and

Cunningham (2005) was compared with the Estόria model

as well. Both approaches promote code and execution

reuse, but the work of Mugridge and Cunningham (2005)

is applied to Fit specifications while our approach is

applied to test code. Besides that, in our model tests can

be run individually, while in Mugridge and Cunningham

(2005) the tests are connected together and are run as a

whole, loosing traceability. Comparing Estόria model

with Picon (Longo et al., 2015), we observed that both

models promote code reuse. However, Picon cannot be

used to promote execution reuse. Also, Picon can only

be applied to promote reuse of POJOs. The most similar

model to Estόria that was found in literature was SolUnit

(Medeiros et al., 2019). Regarding execution reuse,

SolUnit model has one advantage when compared with

Estόria model: SolUnit automatically identifies test

setups that can be reused by other tests and in Estόria

this is done manually by developers. However, Estόria is

application independent while SolUnit can be applied

only to smart contract tests. Besides that, Estόria also

promotes code reuse, while SolUnit does not.

To summarize our contribution to the research in the

testing area, we presented a generic model to promote

both code and execution reuse between test classes. We

also developed a testing framework (available at

https://github.com/lucasPereira/estoria) that implements

this model as a new fixture setup strategy. This testing

framework has a built-in mechanism that promotes both

https://github.com/lucasPereira/estoria

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

110

code and execution reuse. As future work, we intend to

investigate the possibility of automatic identification of

safe tests. In this way, Estόria could automatically infer

if a test is safe or not. Currently, the test developer must

explicitly mark a test as safe to promote execution reuse.

We also expect to use Estόria in real projects.

Author’s Contributions

Lucas Pereira da Silva: Proposed and defined the

dependency model, implemented Estόria, carried out the

experiments and wrote the paper.

Patrícia Vilain: Proposed and defined the

dependency model, carried out the experiments and

wrote the paper.

Ethics

The authors confirms that this article has not been

published in any other journal. The corresponding author

confirms that all the authors have read and approved the

manuscript and there are no ethical issues involved.

References

Adamoli, A., Zaparanuks, D., Jovic, M., & Hauswirth,

M. (2011). Automated GUI performance testing.

Software Quality Journal, 19(4), 801-839.

Agrawal, H., Horgan, J. R., Krauser, E. W., & London,

S. A. (1993, September). Incremental regression

testing. In 1993 Conference on Software

Maintenance (pp. 348-357). IEEE.

Alvestad, K. (2007). Domain Specific Languages for

Executable Specifications (Master's thesis, Institutt

for datateknikk og informasjonsvitenskap).

Beneden, P. J. (1876). Animal parasites and messmates.

HS King & Company.

Berner, S., Weber, R., & Keller, R. K. (2005, May).

Observations and lessons learned from automated

testing. In Proceedings of the 27th international

conference on Software engineering (pp. 571-579).

Bertolino, A. (2007, May). Software testing research:

Achievements, challenges, dreams. In Future of

Software Engineering (FOSE'07) (pp. 85-103). IEEE.

Borg, R., & Kropp, M. (2011, May). Automated

acceptance test refactoring. In Proceedings of the

4th Workshop on Refactoring Tools (pp. 15-21).

Bourque, P., Fairley, R. E., & Society, I. C. (2014).

Guide to the Software Engineering Body of

Knowledge (SWEBOK(R)): Version 3.0. IEEE

Computer Society Press, Washington, DC, USA.

Christensen, C. A., Gundersborg, S., De Linde, K., &

Torp, K. (2006, December). A unit-test framework

for database applications. In 2006 10th International

Database Engineering and Applications Symposium

(IDEAS'06) (pp. 11-20). IEEE.

da Silva, L. P., & Vilain, P. (2016, June). Execution and

code reuse between test classes. In 2016 IEEE 14th

International Conference on Software Engineering

Research, Management and Applications (SERA)

(pp. 99-106). IEEE.

da Silva, L. P., & Vilain, P. (2017). Reuse of Fixture

Setup between Test Classes. In SEKE (pp. 224-229).

Dalal, S. R., Jain, A., Karunanithi, N., Leaton, J. M.,

Lott, C. M., Patton, G. C., & Horowitz, B. M. (1999,

May). Model-based testing in practice. In

Proceedings of the 21st international conference on

Software engineering (pp. 285-294).

Destefanis, G., Marchesi, M., Ortu, M., Tonelli, R.,

Bracciali, A., & Hierons, R. (2018, March). Smart

contracts vulnerabilities: a call for blockchain

software engineering?. In 2018 International

Workshop on Blockchain Oriented Software

Engineering (IWBOSE) (pp. 19-25). IEEE.

Erdogmus, H., Morisio, M., & Torchiano, M. (2005). On

the effectiveness of the test-first approach to

programming. IEEE Transactions on software

Engineering, 31(3), 226-237.

Essam, J. W., & Fisher, M. E. (1970). Some basic

definitions in graph theory. Reviews of Modern

Physics, 42(2), 271.

Fowler, M. (2018). Refactoring: improving the design of

existing code. Addison-Wesley Professional.

Freeman, S., & Pryce, N. (2009). Growing object-oriented

software, guided by tests. Pearson Education.

Garousi, V., & Küçük, B. (2018). Smells in software test

code: A survey of knowledge in industry and

academia. Journal of systems and software, 138, 52-81.

Greiler, M., Van Deursen, A., & Storey, M. A. (2013a,

March). Automated detection of test fixture

strategies and smells. In 2013 IEEE Sixth

International Conference on Software Testing,

Verification and Validation (pp. 322-331). IEEE.

Greiler, M., Zaidman, A., Van Deursen, A., & Storey,

M. A. (2013b, May). Strategies for avoiding text

fixture smells during software evolution. In 2013

10th Working Conference on Mining Software

Repositories (MSR) (pp. 387-396). IEEE.

Haugset, B., & Hanssen, G. K. (2008, August).

Automated acceptance testing: A literature review

and an industrial case study. In Agile 2008

Conference (pp. 27-38). IEEE.

Kamalrudin, M., Sidek, S., Aiza, M. N., & Robinson, M.

(2013). Automated acceptance testing tools

evaluation in Agile software development. Sci. Int,

(4), 1053-1058.

Kumar, D., & Mishra, K. K. (2016). The impacts of test

automation on software's cost, quality and time to

market. Procedia Computer Science, 79, 8-15.

Lucas Pereira da Silva and Patrícia Vilain / Journal of Computer Science 2021, 17 (2): 90.111

DOI: 10.3844/jcssp.2021.90.111

111

Lambiase, S., Cupito, A., Pecorelli, F., De Lucia, A., &

Palomba, F. (2020, July). Just-In-Time Test Smell

Detection and Refactoring: The DARTS Project. In

Proceedings of the 28th International Conference on

Program Comprehension (pp. 441-445).

Longo, D. H., Wilges, B., Vilain, P., & Cislaghi, R.

(2015). Fixture Setup through Object Notation for

Implicit Test Fixtures. Journal of Computer Science,

11(6), 794.

Mattsson, M., Bosch, J., & Fayad, M. E. (1999).

Framework integration problems, causes, solutions.

Communications of the ACM, 42(10), 80-87.

Medeiros, H., Vilain, P., Mylopoulos, J., & Jacobsen, H.

A. (2019, November). Solunit: A framework for

reducing execution time of smart contract unit tests.

In Proceedings of the 29th Annual International

Conference on Computer Science and Software

Engineering (pp. 264-273).

Meszaros, G. (2007). xUnit test patterns: Refactoring test

code. Pearson Education.

Meszaros, G., Smith, S. M., & Andrea, J. (2003,

August). The test automation manifesto. In

Conference on Extreme Programming and Agile

Methods (pp. 73-81). Springer, Berlin, Heidelberg.

Mugridge, R., & Cunningham, W. (2005, June). Agile

test composition. In International Conference on

Extreme Programming and Agile Processes in

Software Engineering (pp. 137-144). Springer,

Berlin, Heidelberg.

Nofer, M., Gomber, P., Hinz, O., & Schiereck, D.

(2017). Blockchain. Business & Information

Systems Engineering, 59(3), 183-187.

Ramler, R., & Wolfmaier, K. (2006, May). Economic

perspectives in test automation: balancing

automated and manual testing with opportunity cost.

In Proceedings of the 2006 international workshop

on Automation of software test (pp. 85-91).

Sobernig, S., & Zdun, U. (2010, July). Inversion-of-

control layer. In Proceedings of the 15th

European Conference on Pattern Languages of

Programs (pp. 1-22).

Sweet, R. E. (1985). The Mesa programming environment.

ACM SIGPLAN Notices, 20(7), 216-229.

Tiwari, R., & Goel, N. (2013). Reuse: reducing test

effort. ACM SIGSOFT Software Engineering Notes,

38(2), 1-11.

Tonelli, R., Destefanis, G., Marchesi, M., & Ortu, M.

(2018). Smart contracts software metrics: a first

study. arXiv preprint arXiv:1802.01517.

Tsai, W. T., Saimi, A., Yu, L., & Paul, R. (2003,

November). Scenario-based object-oriented

testing framework. In Third International

Conference on Quality Software, 2003.

Proceedings. (pp. 410-417). IEEE.

