

 © 2021 Douglas Hiura Longo, Patrícia Vilain and Lucas Pereira da Silva . This open access article is distributed under a

Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Measuring Test Data Uniformity in Acceptance Tests for the

FitNesse and Gherkin Notations

Douglas Hiura Longo, Patrícia Vilain and Lucas Pereira da Silva

Department of Informatics and Statistics, Federal University of Santa Catarina, Florianópolis, Brazil

Article history

Received: 23-11-2020

Revised: 24-02-2021

Accepted: 25-02-2021

Corresponding Author:

Douglas Hiura Longo

Department of Informatics and

Statistics, Federal University of

Santa Catarina, Florianópolis,

Brazil

Email: douglashiura@gmail.com

Abstract: This paper presents two metrics designed to measure the data

uniformity of acceptance tests in FitNesse and Gherkin notations. The

objective is to measure the data uniformity of acceptance tests in order

to identify projects with lots of random and meaningless data. Random

data in acceptance tests hinder communication between stakeholders

and increase the volume of glue code. The main contribution of this

paper is the implementation of the proposed metrics. This paper also

evaluates the uniformity of test data from several FitNesse and Gherkin

projects found on GitHub, as a means to verify if the metrics are

applicable. First, the metrics were applied to 18 FitNesse project

repositories and 18 Gherkin project repositories. The measurements

taken from these repositories were used to present cases of irregular and

uniform test data. Then, we have compared the notations from FitNesse

and Gherkin in terms of projects and features. In terms of projects, no

significant difference was observed, that is, FitNesse projects have a

level of uniformity similar to Gherkin projects. However, in terms of

features and test documents, there was a significant difference. The

uniformity scores of FitNesse and Gherkin features are 0.16 and 0.26,

respectively. These uniformity scores are very low, which means that

test data for both notations are very irregular. Thus, we can infer that

test data are more irregular in FitNesse features than in Gherkin

features. The evaluation also shows that 28 of 36 projects (78%) did not

reach the minimum recommended measure, i.e., 0.45 of test data

uniformity. In general, we can observe that there are still many

challenges in improving the quality of acceptance tests, especially in

relation to the uniformity of test data.

Keywords: Software Testing, Acceptance Test, Agile Software

Development, Uniformity, Metric, Gherkin, FitNesse, Glue Code, Automated

Tests, Cucumber

Introduction

Analogous to Test-Driven Development (TDD)

(Beck, 2003), Acceptance Test-Driven Development

(ATDD) includes different stakeholders (client,

developer, tester) who collaborate to write acceptance

tests before implementing system functionality (Gärtner,

2012). Teams involved with ATDD generally find that,

only by defining acceptance tests and discussing test

specifications, there will be a better understanding of the

requirements. This happens because acceptance tests

tend to force the need for a solid agreement on the exact

behavior that is expected from a software (Hendrickson,

2008). According to Santos, (Longo and Vilain, 2018),

there are 21 techniques used to specify acceptance tests.

Acceptance tests specifications can be done by using

semi-structured formats, tables, diagrams, or other

Domain-Specific Languages (DSLs).

It is estimated that 85% of software defects originate

from ambiguous, incomplete and illusory requirements

(Torchiano et al., 2007). Specifying software requirements

using acceptance tests is an attempt to improve the

quality of requirements. However, several problems can

arise from the specification of requirements using

acceptance tests, as it also happens with the specification

of requirements using natural language. For example, by

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

136

using natural language, readers and writers may use the

same word to name different concepts, or even express

the same concept in completely different ways

(Sommerville, 2011).

Most notations of acceptance tests are composed of

functional data and test data (Druk and Kropp, 2013).

Functional data is an artifact that is used to connect test

data to the System Under Test (SUT). The connection is

done through glue code, which must follow the template

of the framework that is being used to execute the tests.

Test data are used to set up the SUT and the output data

expected from the SUT. Test data are represented by

words or expressions, usually with a flag to

differentiate it from functional data. Longo and Vilain

(2018; Longo et al., 2019) define that the test data can

be either uniform or irregular. Uniform test data are

expressions that are common to various test documents

and irregular test data are composed by single

expressions that are not repeated through test documents.

Figure 1 shows an example of an acceptance test in

Gherkin notation with uniform and irregular test data.

This acceptance test in the Gherkin notation deals with

the login functionality feature and has two scenarios.

The uniformity and irregularity of test data can be

verified by comparing the test data from the two

scenarios. For example, the test data value

‘SOFTWARETETINGHELP.COM’ appears in both

scenarios and is considered, therefore, uniform.

Nevertheless, the test data values ‘Mary’ and ‘John’ and

‘PASSWORD’ and ‘PASSWORD1’ are considered

irregular because they are not repeated in both scenarios.

In general, several features are specified for the

development of an application in which acceptance

tests are included. These features are usually organized

into separate documents, they can be specified at

various times throughout the development process and

their specifications can be done by different people. In

this way, maintaining the uniformity of test data can

be a challenge because there can be a lot of test data

that are expressed in completely different ways but

with the same meaning. For those involved in

specifying a test, communication between tests using

irregular data may be feasible, with little or no

information loss, since humans are able to interpret

the irregularities of test data and understand the

meaning of the test. However, there may be problems

associated with unintentionally irregular data and glue

code reuse for test automation (Longo et al., 2019). For

example, in order to automate the scenarios of the login

functionality feature (Fig. 1), some settings of the SUT

are required. It is necessary to set up ‘Mary’ for the

first scenario and ‘John’ for the second scenario.

Nonetheless, the setup could be more easily reused if test

data were uniform. According to Greiler et al. (2013a),

test code duplication should be avoided by code reuse.

Code reuse can facilitate maintenance activities, as a

smaller volume of code is easier to handle.

Example of Improving Data Uniformity and

Decreasing Glue Code

Figure 2 shows an improvement in the uniformity of

the test data presented in Fig. 1. The improvement refers

to the uniformization of usernames ‘Mary’ and ‘John’. In

the example in Fig. 1, the test can be understood and

performed with unformalized test data. More uniform

test data can cause a reduction in the fixture settings in

the glue code. Figure 3 shows the glue code for the

examples in Fig. 1 and 2. In the glue code example, lines

6 and 7 are highlighted because they can be discarded for

the example with the most uniform data (Fig. 1).

Fig. 1: Sample of acceptance test in Gherkin with uniform and irregular test data (adaptation from Softwaretestinghelp, 2020)

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

137

Fig. 2: The acceptance test example from Fig. 1 with improved data uniformity (adaptation from Softwaretestinghelp, 2020)

Fig. 3: Glue code for the tests from Fig. 1 and 2 with highlighting of lines neglected by the better data uniformity (adaptation from

Softwaretestinghelp, 2020)

This lower volume of glue code achieved by more
uniform test data means less development and
maintenance effort. Still, some gain in communication
can be obtained, because if we compare the test
example in Fig. 2 and the test example in Fig. 1, we can

observe that the more uniform test data clarifies the
meaning of the scenarios in Fig. 1: The first scenario
with a successful authentication system and the
second with an incorrect password failure. In the test
example in Fig. 2, this communication by test is vague
and cannot be perceived through the test data.

However, it is worth mentioning that irregular test
data is important in certain occasions. For example,
the fact that test data ‘PASSWORD’ and
‘PASSWORD1’ are irregular helps to understand the
difference between the first and second scenarios.

Hence, typically, irregular test data should be avoided,
unless there is a strong semantic motivation to
distinguish one test data from another.

Acceptance test in FitNesse and Gherkin notations
are widely adopted according to (Park and Maurer,

2008; Dos Santos et al., 2018; Coutinho et al., 2019).
Thus, in this study we propose specific metrics to be
used for these notations. These metrics are based on the
one proposed to the User Scenarios through User
Interaction Diagram (USUID notation) (Longo and
Vilain, 2018). We also evaluate the uniformity of the

acceptance test data of several projects that use these
notations and present a comparison of the uniformity
between FitNesse and Gherkin.

The evaluated acceptance tests were collected from

GitHub, a platform that hosts millions of open-source

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

138

projects. Thirty-six projects from GitHub were extracted,

18 projects using FitNesse notation and 18 projects using

Gherkin notation. For each project, we collect data

uniformity measures and descriptive measures as well.

Then, from the collected measures for each project, we

compare FitNesse and Gherkin notations in order to

investigate if there is a difference between the uniformity

of these notations.

This article is organized as follows: Section two

presents some related works. Sections three and four

present the metrics proposed for the FitNesse and

Gherkin notations. Sections five and six present two case

studies showing the applicability of the proposed

metrics. Section seven presents a comparison between

these case studies. Section eight presents potential

threats to the validity. Section nine presents the paper's

discussions and conclusions.

Related Works

The two main related works are (Longo and Vilain,

2018; Longo et al., 2019). Longo and Vilain (2018) propose

a kind of metric for measuring data uniformity in automated

acceptance tests in the notation of User Scenarios through

User Interaction Diagrams (US-UIDs). Longo et al. (2019),

the authors elaborate an experiment with the treatment of

data uniformity as the control factor. The conclusions

were that with the treatment of data uniformity, both the

required volume of glue code and the time spent to

automate the tests were reduced.

Some studies that are focused on acceptance tests

investigate whether non-technical individuals could

write executable specifications based on notations like

FitNesse, US-UIDs and Gherkin (Melnik and Maurer,

2005; Alvestad, 2007; Longo and Vilain, 2015a; 2015b;

Dos Santos and Vilain, 2018). Other studies focused

exclusively on FitNesse notation were conducted by

(Ricca et al., 2008; 2009). Most of these studies use

qualitative measures as expressed in (IEEE Std 830,

1998) or quantitative measures such as time, for

evaluation or comparison. Metrics that are more

accurate for evaluating user stories were proposed by

(Lucassen et al., 2015; 2016) and applied by

(Lucassen et al., 2017). However, these kinds of metrics

are specific to the user story format and have not been

adapted for automated acceptance test notations.

Other studies, such as (Greiler et al., 2013a; 2013b),

focus on problems in automated tests known as bad code

smells. The solution to identifying bad code smells is

usually the generation of a report with a set of specific

measures. With the help of these reports, programmers

can make balanced decisions and refactor test code in

order to avoid bad smells.

These previous studies have focused on general

metrics looking to evaluate and compare automated

acceptance tests, as well as to identify test problems.

Yet, none of them have proposed metrics for data

uniformity that are specific to FitNesse and Gherkin

notations. In other words, to the best of our

knowledge, no other objective metrics to assess the

uniformity of acceptance test data has been found,

other than (Longo and Vilain, 2018; Longo et al.,

2019), especially for FitNesse and Gherkin

techniques. In addition, there is lack of basic studies

comparing the different notations of automated

acceptance tests that consider a large volume of projects.

Metrics of Data Uniformity for FitNesse

As mentioned before, this paper proposes two kinds

of metrics for measuring the uniformity of acceptance

test data for the FitNesse and Gherkin notations,

respectively. For the FitNesse notation, in general, the

metrics are applied to a set of wiki pages that represents

acceptance tests. A set of pair-wise wiki pages is

generated from the page set. The uniformity values for

each pair of wiki pages are calculated by counting the

number of uniform test data that are common to both

wiki pages and the number of test data that are only

presented in one of them. Finally, general uniformity is

the average of uniformity of the pairs in the set.

This section presents the metrics for measuring

uniformity of tests in FitNesse notation. The proposed

metrics are based on the work of (Longo and Vilain,

2018) in which a metric for calculating uniformity of

tests using the US-UID notation is proposed. We present

the metric to calculate the data uniformity for Fitnesse

through a math model. By applying this math model we

can calculate the data uniformity of each pair of Fitnesse

feature and the data uniformity of entire project as well.

The Table 1 shows the related works.

Table 1: Related works

Reference Requirement format Applied technique Quality criteria assessed

Greiler et al. (2013a; 2013b) Unit test (Java) Metricsbased framework Bad code smells

Lucassen et al. (2015; 2016; 2017) User story Metricsbased framework Atomic, Minimum, well

 formed, uniform and etc.

Longo and Vilain (2018) US-UIDs Metric Uniformity

Longo et al. (2019) US-UIDs Metric Uniformity and Glue Code

This paper FitNesse and Gherkin Metric Uniformity

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

139

Fig. 4: Example of a FitNesse feature with input and output data (adapted from FitNesse, 2019)

Metric Input

Metric input is a set of FitNesse features. A

FitNesse feature is a wiki page with tests. This set of

features is used to measure data uniformity. Figure 4

presents an example of a feature and the indication of

input and output elements of the test data that will be

used as input for the proposed metrics. The set of

features that will be the input of the metrics is

represented by the following equation:

 1 2, , ,..., 1; 1t d t t d d (1)

Where:

ω = A set of features

τt = The t-eth feature of set ω and must be denoted

according to Eq. 2

d = The number of features within set ω

FitNesse Feature

Test data of the features are organized into tables, as

seen on Fig. 4. The table caption (i.e., “should I buy

milk”) and column headers (e.g., “cash in wallet” and

“go to store?”) consists of functional data. The proposed

metric does not use functional data. The input and output

data are shown in the body of the table. Thus, a feature is

represented as follows:

1 2

1 2

, , ,...,
, 1; ,

, , ,...,

t t tj tn

t

t t tj tm

j j n
o o o o

 (2)

Where:

𝜐tj = The j-eth input data of the t-eth feature of set ω

otl = The l-eth output data of the t-eth feature of set ω

n = The number of output data of t

m = The number of input data of t

Feature Pairs Generation

A set of pairwise combination of features is

generated from the input ω. The pairs in this set are

used later for calculating the metrics. The set of pairs

is denoted as follows:

1 2 1 3

1 1

, , , ,..., , ,...,
,

, ,..., ,

1; , 1; ,

t t

d dd d

t t d q t d t t

 (3)

Where:

ψ = The set of feature pairs generated from ω

(t, t) = A pair of features generated from different

features that belong to ω

t = The t-eth feature that belongs to set ω. The

variable t assumes the same values as t, that

is, (q(t = 1; d))

t t determines that the pair must consist of different

t-eth and t-eth features. For each pair (t, t), auxiliary

metrics of absolute uniformities is obtained. Auxiliary

metrics of absolute uniformities are obtained by counting

uniform and irregular data. In this way, these auxiliary

measurements are used for the creation of the metric for

relative uniformity, which is applied to each pair of

features. The goal of the relative uniformity metric is to

obtain a uniformity value that can be applied in the

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

140

comparison between different pairs of features. The

pairs of features will be used in the metrics of relative

and absolute uniformity and that is why they were

defined before the metrics.

Auxiliary Metrics of Absolute Uniformities

The metrics of absolute uniformity are sectioned by

input and output data. The metric for absolute uniformity

of input data is represented by the following equation:

,
1

1
,

0

|

t t

n
tj t

j

tj tj t

if
UniformInput

otherwise

 (4)

The metric for absolute uniformity of the input data is

the sum of the input data from the t test page that also

belongs to t. The expression tjt means that input

data tj which belongs to t, also belongs to t.

The metric for absolute uniformity of output data is

represented by the following equation:

,
1

1
,

0

|

t t

m
tl t

l

tl tl t

if o
UniformOutput

otherwise

o o

 (5)

The metric for absolute uniformity of the output data

is the sum of all outputs of t that also belong to t. The

expression otl t means that the output data of the test

otl, which belongs to t also belongs to t.

Relative Uniformity Metric

The relative uniformity metric is defined from the

auxiliary metrics of absolute uniformity. Its goal is to

assign a numerical value to the uniformity of the data.

The metric is applied to a pair of features and the

result is the ratio between the sum of the absolute

uniformity metrics and the amount of input and output

data for a pair of features. Thus, the relative

uniformity metric for a given pair of features is

represented by the following equation:

,

, ,

,

0, | , |

t t

t t t t

t t

Unifomity

UniformInput UniformOutput

n m

n m n n m m

 (6)

The relative uniformity metric is a value within the [0,

1] interval (zero to one interval). Relative uniformity

metric always assumes values in the 0 to 1 interval,

regardless of the number of inputs and outputs contained

in the features and for this reason, it is called relative

uniformity. Value 1 (one) represents the maximum

uniformity and value 0 (zero) represents the maximum

irregularity. If (n + m) = 0, then the uniformity value is 1,

i.e., in the case that there is no test data on the feature,

then a uniformity value of 1 is adopted. The main goal of

relative uniformity is to create a normalized scale that

enables the comparison between distinct pairs of features.

The relative uniformity metric is calculated for each

pair of features, so the arithmetic mean between them can

be adopted as the descriptive measure of uniformity for all

pairs of a project. Thus, from the relative uniformity

metric for feature pairs, we propose the relative uniformity

metric for the entire project. The relative uniformity

metric for a project is the sum of the uniformity metric

values of each pair of features divided by the total number

of pairs. The relative uniformity metric for a project is

obtained from the following equation:

, ,

1
,

, | ,

t t t t

t t t t

UniformInput Unifomity

 (7)

Metric Implementation

The implementation1 of the metrics is performed with

the FitNesse tool, making it possible to extract the

uniformity measures by running the FitNesse tool. The

entire code for calculating data uniformity was written in

the Java programming language. In the source code of

the FitNesse tool, the class fitnesse.testsystems.

TestSystemListener allows the interception and

monitoring of the execution of tests. Thus, this class was

used to obtain input and output data of the tests. After

obtaining the test data, the proposed metrics are applied

and the uniformity measures of each FitNesse project is

extracted. In order to obtain the test input and output

data, it is necessary to run the tests using FitNesse.

However, there can be some computational costs for the

processing of the tests.

Metrics of Data Uniformity for Gherkin

Data uniformity metrics for the Gherkin notation is

similar to the uniformity metrics for the FitNesse

notation, except that there is no classification of input

data and output data in the Gherkin notation. Input and

output data in the Gherkin notation are only classified

by the developer according to the meaning of the test

information. Thus, Gherkin itself does not distinguish

between one type of test data from another, i.e., for

Gherkin, everything is just test data. Figure 5 shows an

example of a feature in Gherkin notation with a

highlight in the test data.

1 https://github.com/douglashiura/fitnesse-uniformity-data.git

https://github.com/douglashiura/fitnesse-uniformity-data.git

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

141

Fig. 5: Example of a Gherkin feature with test data (adapted

from Cucumber, 2019)

Test data are encapsulated within the descriptions and

they are identified by being in quotes, by its formatting

or by the developer's understanding upon reading the

test. An example of test data, in Fig. 5, is the expression

“Expensive Therapy”. This test data appears along with

the text describing the keyword When and it is enclosed

in quotation marks, which identify it as a test data.

We present the metric to calculate the data uniformity

for Gherkin through a math model. By applying this

math model we can calculate the data uniformity of

each pair of Gherkin feature and the data uniformity of

entire project as well. The metrics can be applied to a

set of features with acceptance tests. Then, a set of

pairwise feature combinations is generated from the set

of features. The uniformity of each feature pair is

calculated by counting the uniform and irregular data

points and applying them to an equation. The equation

is the ratio between irregular test data and the total

amount of test data. The total uniformity for a pair of

features is the arithmetic mean between the uniformity of

each feature from the pair.

Metric Input

A metric input is any set of features. Data uniformity

metrics is extracted from these features. The notation for

the set of input features is:

 1 2, , ,..., 1; 1t d t t d d (8)

Where:

 = Any set of features in the Gherkin notation

t = The t-eth feature in set and must be denoted

according to Eq. 9

d = The number of features in

Gherkin Feature

A Gherkin feature is a test document and is denoted

as follows:

 1 2, , ,..., 1;t t t tj tn j j n (9)

Where:

tj = The j-eth test data of the t-eth feature

n = The number of test data in t

Feature Pairs Generation

A set of pairwise combination of features is

generated from the ω input. The pairs in this set are

used later for the metrics calculation. The set of feature

pairs is denoted as follows:

1 2 1 3

1 1

, , , ,..., , ,...,
,

, ,..., ,

1; ,

1; ,

t t

d dd d

t t d

q t d t t

 (10)

Where:

φ = The set of feature pairs generated from

(t, t) = A pair of features generated from different

features that belong to set

t = The t-eth feature that belongs to set . The

variable t assumes the same values as t, that

is, (q (t = 1; d))

t t = A restriction rule, that is, a pair must be

formed by distinct features.

For each pair (t, t) the auxiliary metric, called

metric of absolute uniformity, is obtained. Then, using

the auxiliary metric, the metric for relative uniformity is

formulated. The objective of the relative uniformity

metric is to obtain a uniformity value that can be applied

to compare different pairs of features.

Absolute Uniformity Metric

The absolute uniformity metric is represented by the

following equation:

,
1

1
,

0

|

t t

n
tj t

j

tj tj t

if
AbsolutUniform

otherwise

 (11)

The absolute uniformity metric is the sum of test data

from feature t, which also belongs to t. The expression

tj t means that test data tj, which belongs to t, also

belongs to t.

Relative Uniformity Metric

The relative uniformity metric for Gherkin features is

elaborated from the absolute uniformity metric. The

objective of the relative uniformity metric is to summarize

the uniformity of the data in a numerical value. The metric

corresponds to the ratio between the absolute uniformity

metric and the bulk of data. Thus, the relative uniformity

metric is represented by the equation:

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

142

,

,
,

0, |

t t

t t

t

AbsolutUniform

Unifomity
n

n n n

 (12)

The relative uniformity metric is a value within the

[0, 1] interval (zero to one interval). The relative
uniformity metric always assumes values in the 0 to 1
interval, regardless of the amount of data that is
contained in the test documents. Because of that, it is
called relative uniformity. A metric value of 1 (one)
represents the maximum uniformity and a metric value
of 0 (zero) represents the maximum irregularity. If n = 0,
the uniformity value is 1. If there is no test data on the
feature, the uniformity value 1 is adopted.

The relative uniformity metric is calculated for each
pair of features, so the arithmetic mean between all
values can be adopted for measuring uniformity in a
project. The relative uniformity metric for a project is the
sum of the uniformity metric values of each pair of
features divided by the total number of pairs. Thus, the
relative uniformity metric for a project can be obtained
by the following equation:

, ,

1
,

, | ,

t t t t

t t t t

Unifomity Unifomity

 (13)

Metric Implementation

The metric is implemented2 in the Cucumber tool, so,
it is possible to extract the uniformity metrics through
computing. The entire code for calculating data
uniformity was written in the Java programming
language. The data for each test document is extracted
with the help of the Cucumber implementation.
Cucumber processes the documents and sets up the tests.
Then, a listener that collects the test data is implemented
in the cucumber.runner.TesteCase class. The metrics are
applied after the test data is collected by the listener. It is
necessary to run the tests in order to collect the test data.

Case Study I

The first case study investigates the uniformity of
data from FitNesse projects in the GitHub repository
through the application of the first proposed metrics.
Figure 6 shows the general process of searching for
FitNesse projects in the GitHub repository. The value
inside each rectangle corresponds to the number of
repositories found in each step. The process consists of
four activities presented in the following subsections.

Searching FitNesse Projects on GitHub

The search for FitNesse projects was carried out on
the GitHub platform. GitHub was used because it houses

2https://github.com/douglashiura/cucumber-data-uniformity.git

a wide variety of open-source projects. GitHub provides
a word search function. The search was carried out with
the word “FitNesse” and a filter (size > 1KB). The
search result returned 577 projects, of which 274 projects
were developed with the Java language, 57 projects with
JavaScript and 39 projects with C#. Still, all projects add
up to 12K of commits. The search and data collection on
GitHub took place in February 2019.

Filtering FitNesse Projects with Relevant Tests

The 577 repositories found in the previous activity
were manually filtered according to four steps:

 First step: Filter and select all projects that contain the

‘FitNesseRoot’ directory, ‘*.wiki’ files, or ‘content.txt’
files, because such files contain acceptance tests.
Therefore, 392 repositories remained

 Second step: Filter and select all projects that contain
more than four features and that are not the tests of
FitNesse itself. Thereby, 68 repositories remained

 Third step: Remove duplicate projects.
Consequently, 22 projects remained

 Fourth step: Filter and select only executable
projects. As 4 projects were removed, because
FitNesse (release 20180127) did not execute them
properly, 18 projects remained. Table 2 presents the
18 selected projects

Fig. 6: General search and analysis process for FitNesse projects

Table 2: FitNesse projects selected from GitHub

Project URL

P1 .../ManishDua90/DemoQASiteAutomation.git
P2 .../andrealbinop/fitnesse-selenium-slim.git
P3 https://...com/HeIsIdeus/CarRental_fitnesse.git
P4 …github.com/ernanics/bankapp-FitNesse.git
P5 https://github.com/yarec/fitnis.git
P6 https://github.com/Suptzs/OnlineLottery.git
P7 …github.com/ohardeng/fitnesseworkshop.git
P8 https://...com/bzon/PetClinicFitnesseSamples.git
P9 ...fredericmarchand/AgricolaFitNesseTesting.git
P10 …github.com/lsu-ub-uu/diva-cora-fitnesse.git
P11 ..github.com/RobteSpenke/FirstFitnesse.git
P12 https://github.com/8thlight/cob_spec.git
P13 https://github.com/xebia/Xebium.git
P14 .../PennAssuranceSoftware/inspro-fitnesse-tests.git
P15 https://...com/paytonrules/HuntTheWumpus.git
P16 …/pwojtkow/fitnesseTestsWithOracleExpress.git
P17 …github/maikelgithub/WorkshopCTFitNesse.git
P18 ...github.com/lsu-ub-uu/cora-fitnesse.git

Projects from github.com

Search

projects in

GitHub

Filter

projects

FitNesse
with

relevant

tests

Apply the

proposed

metric

Analyze

the data

577 18 18 18

https://github.com/douglashiura/cucumber-data-uniformity.git
https://...com/HeIsIdeus/CarRental_fitnesse.git
https://github.com/yarec/fitnis.git
https://github.com/Suptzs/OnlineLottery.git
https://...com/bzon/PetClinicFitnesseSamples.git
https://github.com/8thlight/cob_spec.git
https://github.com/xebia/Xebium.git
https://...com/paytonrules/HuntTheWumpus.git

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

143

Application of the Proposed Metrics and Data

Analysis

The application of the proposed metrics was performed

using the FitNesse framework and the implementation of

the proposed metrics. The projects were executed and the

uniformity metrics, number of features and number of test

data per feature were collected. The collected data were

presented in graphic charts. The charts and analyses are

presented in the next subsection.

Results of the FitNesse Projects

Descriptive Measures of the FitNesse Projects

Descriptive measures consist of general information

about the projects. Figure 8 shows the number of test

data for each project. Project P1 is the smallest project

and consists of only 14 test data (input and output data).

Project P18 is the largest project and consists of 12707

test data. Projects are ranked by the number of test data,

from the smallest to the largest amount.

Figure 9 presents the descriptive metrics of FitNesse

projects. Descriptive metrics are defined as the average

of the test data per feature (input and output data) and the

total number of features for each project. Regarding the

average test data per feature, project P1 has an average

of 2.8 test data per feature and is composed of only five

features, thus being the smallest project. Project P18 has

an average of 186.87 test data per feature and is

composed of 68 features, so, it has the highest average of

test data. Project P16 consists of 160 features, which is

the largest one in number of features.

There is a wide variety in the number of features per

project, as the projects differ a lot in terms of domain,

number of people involved and total commits. For

example, project P18 has 4 contributors and 469 commits,

while project P1 has only one contributor and 6 commits.

Thus, the average number of test data per feature may also

vary significantly. As an example, project P16 has many

features (160) and a small number for the average of test

data per feature (9.01), when compared to P18 which has

less features (68) and a high number for the average of test

data per feature (186,87). This means that the size

(number of words written in the document) of the features

in project P18 is larger than the one in project P16.

In addition, eight projects (44% of total) have

between 10 and 41 test data per feature. Project P18 has

an outlying average number of test data per feature and

this indicates that having this amount of data in features

is not a common thing. Each project has an average of 34

test data per feature and a median of 22 test data per

feature. Regarding the total number of features for each

project, nine projects (50% of the total projects) have

between 9 and 36 features. Each project has an average

of 31 features and a median of 16 features. Projects P11,

P16 and P18 have distinct amounts of features, that is,

they have many more features than the other projects.

Data Uniformity on FitNesse Projects

Average data uniformity was measured by the metric

proposed in Eq. 7. Figure 10 shows the average data

uniformity for each project. Project P2 has the lowest

uniformity rate (0.03) and project P10, the highest one

(0.73). Only four projects (22% of total) show data

uniformity rates above 0.5. Five projects (28%) are less

than 0.1 data uniformity rates, that is, extremely low

compared to the recommended value (Longo and Vilain,

2018). The average uniformity rate is 0.31 and the

median uniformity rate is 0.27.

Informal Assessment

In order to point out evidence that the use of the

proposed metric helps to measure the uniformity of

pairs of features with irregular or uniform test data in

FitNesse projects, an informal assessment was carried

out. The evaluation considers some pairs of features

from three projects (P5, P6 and P18). The three

projects were selected at random. Table 3 shows the

result of this informal assessment. The objective was

to find out if the measured value of the feature pair,

using the proposed metric, is related to an informal

assessment that intends to classify the feature pairs as

irregular or uniform.

The informal assessment was carried out more

easily for the P5 and P6 projects in relation to the P18

project, as the features of the P5 and P6 project are

smaller in relation to the features of the P18 project.

The P5 project, which has a uniformity of 0.08,

showed irregularity in all three of its evaluated pairs.

The P18 project, with 0.66 uniformity, showed

uniformity in its three pairs, but one of its pairs (N

and O) showed both uniformity and irregularity. The

value 0 represented the maximum irregularity and is

consistent with the metric proposal. The highest

uniformity value assessed informally was a pair with

0.81. The value 0.49 with the large size of a feature

indicated a gray area.

Fig. 7: General search and analysis process of Gherkin projects

Projects from github.com

Search
projects in

GitHub

Select the
projects

Gherkin

with
relevant

tests

Apply the
proposed

metric

Analyze

the data

959 18 18 18

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

144

Table 3: Informal assessment of data uniformity for some pairs of features

 Project Pair
Project uniformity uniformity Checked uniformity Pair

P5 0,08 0,00 Uniformity is very low. A1 and B2
 0,33 The features are small and have a uniform test data. C3 and D4
 0,00 The features are relatively large to be evaluated manually with E5 and F6
 precision, however they look very irregular.
P6 0,26 0,00 The test data is irregular and variables are used in the test G7 and H8
 instead of the test data.
 0,13 They don't have a lot of test data, but the data that exists that can I9 and J10
 be uniformized is already uniformized. It is important to
 note that there is no strong relationship between the tests.
 0,44 An important part of the data is uniform, which reinforces a L11 and M12
 relationship between the two tests, but the data that are
 irregular are numbers and are associated with complex rules
 (lottery system) that are difficult to understand to improve uniformity.
P18 0,66 0,49 The features are large, making manual evaluation difficult, but N13 and O14
 you can see that some data is repeated. The test data “OK” is
 used a lot. However, there are irregular data, which makes it
 difficult to decide between uniformity and irregularity.
 0,81 The feature P is small in relation to J, this reason favors the pair to P15 and Q16
 be more uniform. The inverse pair (Q and P) has less uniformity
 (0.25), closely linked to the difference in size of the features.
 0,65 The features are large, but uniformity prevails. R17 and S18
1https://github.com/yarec/fitnis/blob/master/ExTest/ExampleHtmlTest/HtmlTest/content.txt
2https://github.com/yarec/fitnis/blob/master/ExTest/ExampleHtmlTest/RestTest/content.txt
3https://github.com/yarec/fitnis/blob/master/ExTest/MysqlTest/ExecuteTest/content.txt
4https://github.com/yarec/fitnis/blob/master/ExTest/MysqlTest/ConnectTest/content.txt
5https://github.com/yarec/fitnis/blob/master/ExTest/ExampleProgramTest/DateUtilTest/content.txt
6https://github.com/yarec/fitnis/blob/master/ExTest/MysqlTest/QueryTest/content.txt
7https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/PlayerRegistration.wiki
8https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/PurchaseTicketTestSuite/BasicCase.wiki
9https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/PrizeCalculation.wiki
10https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/TicketReview/TwoAccountsOneDraw.wiki
11https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/TicketReview/SeveralTicketsOneDraw.wiki
12https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/PurchaseTicketTestSuite/NotEnoughMoney.wiki
13https://github.com/lsu-ub-uu/cora-fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/Authorization/Rule/content.txt
14https://github.com/lsu-ub-uu/cora-fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/Filter/Filter.wiki
15https://github.com/lsu-ub-uu/corafitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughRest/TheRestTest/content.txt
16https://github.com/lsu-ub-uu/cora-fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/Search/Index.wiki
17https://github.com/lsu-ub-uu/cora-
fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/BuiltInPresentation/BasicPresentation/PresentationGroupAn
dContainer/content.txt
18https://github.com/lsu-ub-uu/cora-
fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/BuiltInMetadata/PreDefinedMetadata/Login/content.txt

Fig. 8: Total number of test data for each project

1
4

14000

10500

7000

3500

0

1
1
0

1
5
5

1
6
0

1
6
1

2
0
7

2
3
4

2
7
8

3
2
3

4
4
6

4
6
8

4
6
8

5
6
5

8
7
0

9
7
5

1
4
4
1

2
5
9
5

1
2
7
0

7

#
 o

f
te

st
 d

at
a

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

FitNesse projects

https://github.com/yarec/fitnis/blob/master/ExTest/ExampleHtmlTest/
https://github.com/yarec/fitnis/blob/master/ExTest/ExampleHtmlTest/
https://github.com/yarec/fitnis/blob/master/ExTest/MysqlTest/Execute
https://github.com/yarec/fitnis/blob/master/ExTest/MysqlTest/Connect
https://github.com/yarec/fitnis/blob/master/ExTest/ExampleProgramTe
https://github.com/yarec/fitnis/blob/master/ExTest/MysqlTest/QueryTe

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

145

Fig. 9: Descriptive metrics of FitNesse projects

Fig. 10: Average test data uniformity rate for each project

Case Study II

Case study II investigates the uniformity of data

from Gherkin notation projects in the GitHub

repository. In this case study, the second proposed

metrics are applied. Figure 7 shows the general

process of searching for Gherkin projects in GitHub.

The process consists of four activities presented in the

following subsections.

Searching Gherkin Projects on GitHub

The search for Gherkin projects was carried out in

GitHub. GitHub repository was selected because it

houses a wide variety of projects and many of them

with public access. The repository provides an

advanced search function that is specific to the

Gherkin language and a filter (size > 1KB), which

caused the search to return only Gherkin language

repositories. The search found 959 projects, ranked by

“Best match”. Search and data collection on GitHub

were carried out in June of 2019.

Filtering Gherkin Projects with Relevant Tests

The activity of selecting Gherkin projects with tests

was limited to selecting only the first 18 projects from

the 959 repositories found in the previous activity,

ranked by “Best match”. The limit of 18 projects was

applied in order to reduce the research effort

requirements and to have the same number of projects

that were found for the FitNesse notation. Thus, from

the projects ranked by “Best match”, only the first 18

repositories with more than four features were selected.

In addition, it was required that the project ran properly

with the Cucumber framework. Table 4 presents the 18

selected projects.

Application of the Proposed Metrics and Data

Analysis

The application of the proposed metrics was

carried out with the Cucumber framework and the

implementation of the metrics. The projects were

executed and uniformity metrics, number of total

features and total test data information were collected.

Average (# of test data) by feature

2
.8

0

of features

5

1
0
.0

0

2
2
.1

4

2
2
.8

6

1
7
.8

9

1
1

 7

7
 9

1
3

1
5
.9

2

2
3
.4

0

1
5
.4

4

1
0
.0

9

6
3
.7

1

6
.0

8

2
2
.2

9

2
8
.2

5

4
8
.3

3

6
9
.6

4

1
6
0

9
.0

1

4
0
.5

5

1
8
6
.8

7

1
8

3
2

7

7
7

1
0

2
1

2
0

1
8

1
4

6
4

6
8

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

FitNesse projects

0.8

0.6

0.4

0.2

0

D
at

a
u
n

if
o

rm
it

y

0.4

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18

FitNesse projects

0.03

0.37

0.67

0.08

0.26

0.14

0.04

0.44

0.73

0.06

0.27 0.26

0.52 0.49

0.07
0.15

0.66

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

146

The collected data was presented in graphic charts.

These results, analyses and charts are presented in the

next subsection.

Results of the Gherkin Projects

Descriptive Measures of the Gherkin Projects

Descriptive metrics consists of general information

about the measured projects. Figure 11 shows the

number of test data for each project. Project C1 is the

smallest project and consists of only 10 test data. Project

C18 is the largest project and consists of 6,085 test data.

The projects are ranked by the amount of test data.

Figure 12 shows the descriptive metrics of the

projects. These are the average test data per feature

and the total of features for each project. Project C1

has an average of two test data per feature and it

consists of only five features, making it the smallest

project. Project C18 has an average of 132.28 test data

per feature and it is composed of 46 features, thus

being the highest average of test data. Project C16 is

composed of 109 features, which makes it the largest

one in number of features.

Table 4: Gherkin projects selected from GitHub

C1 https://.../danbuckland/crudecumber.git

C2 https:/.../CU-CommunityApps/kuality-kfs-cu.git

C3 https://github.com/bulletproofnetworks/ript.git

C4 https://../ucsf-drupal/ucsf_installprofile.git

C5 VaishnaviGunwante/selenium-cucumber-java.git

C6 https://...FreeFeed/acceptance-tests.git

C7 https://../MorkovkAs/SmokeTestsRiskGap.git

C8 https://github.com/ajspadial/canciella.git

C9 https://github.com/rejeep/ruby-tools.el.git

C10 /deepstreamIO/deepstream.io-client-specs.git

C11 ucsf-web-services/ucsf_www.ucsf.edu_tests.git

C12 /douglashiura/ucsf_www.ucsf.edu_tests.git

C13 https://git.../SoftServeUniversity/yunakquiz.git

C14 https://github.com/deformio/cli-deform.git

C15 https://github.com/jakobmattsson/locke-api.git

C16 https://../pumbaEO/vanessa-behavior-tets.git

C17 https://github.com/Vardot/varbase-behat.git

C18 https://github.com/IntersectAustralia/dc21.git

Fig. 11: Total test data for each Gherkin project

Fig. 12: Descriptive metrics of Gherkin projects

7000

5250

3500

1750

#
 o

f
te

st
 d

at
a

10

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

Gherkin projects

54 72 134 149 207 210 241 270 271 297 297 360 393 517 667
1018

6085

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

Gherkin projects

Average (# of test data) by feature # of features

2
.0

0

1
.3

2

1
0
.2

9

1
6
.7

5

1
6
.6

5

5

4
1

7

8

9
 5

4
1

.4
0

1
2

.3
5

1

7

6

2
.9

8

8
1

4
5
.0

0

8
.7

4

3
1
 1
2
.9

1

2
3

2
3

3
9

3
9

8

1
2

.9
1

9
.2

3

1
0
.0

8

6
4
.6

3

6
.1

2

3
3
.9

3

3
0

4
6

1
0
9

1
3
2

.2
8

https://.../danbuckland/crudecumber.git
https://github.com/bulletproofnetworks/ript.git
https://../ucsf-drupal/ucsf_installprofile.git
https://...freefeed/acceptance-tests.git
https://../MorkovkAs/SmokeTestsRiskGap.git
https://github.com/ajspadial/canciella.git
https://github.com/rejeep/ruby-tools.el.git
https://git.../SoftServeUniversity/yunakquiz.git
https://github.com/deformio/cli-deform.git
https://github.com/jakobmattsson/locke-api.git
https://../pumbaEO/vanessa-behavior-tets.git
https://github.com/Vardot/varbase-behat.git
https://github.com/IntersectAustralia/dc21.git

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

147

The wide diversity in the number of features per
project is likely to be caused by the domain of each
project, the number of people involved and the total
commits. As an example, project P18 has 18 contributors
and 1.642 commits while project C1 has only one
contributor and 129 commits. The average number of

test data per feature is significantly variable, as well. For
instance, project C16 has a combination of many features
(109) with a small average of test data per feature (6.12),
when compared to C18. In project C18, however, this
relationship is reversed, as it has an average of 132.28
test data and just 46 features. This means that, in project

C16, the features are smaller (few words in the
document); while in project C18, the features are bigger
(many words in the document).

Data Uniformity on Gherkin Projects

The average data uniformity was measured by the

metric proposed in Eq. 13. Figure 13 shows the average

data uniformity for each project. Projects C3, C11 and

C12 have the smallest uniformity (0.02) and project C1

has the highest uniformity (0.64). Six (33%) projects

(C3, C4, C11, C12, C14 and C17) present data

uniformity levels below 0.01, that is, data uniformity in

these projects is very low and it was probably careless

during the specification of the tests. Only two projects

(C1 and C2) have the uniformity score greater than 0.5.

Informal Assessment

In order to point out evidence that the use of the

metric helps to measure the uniformity of irregular or

uniform feature pairs, an informal assessment was

carried out. The evaluation was done on some pairs of

features of three Gherkin projects (C5, C6 and C18).

Table 5 presents the informal assessment of the

uniformity of some pairs of features. The objective was

to find out if the measured value of the feature pair is

related to an informal assessment that intends to classify

the feature pairs as irregular or uniform.

Table 5: Informal assessment of data uniformity for some pairs of features

 Project Pair

Project uniformity uniformity Pair Checked uniformity

C5 0,42 0,03 A1 and B2 One feature is huge in relation to the other and therefore uniformity is low.

 0,57 C3 and A The first feature is small and with similar or uniform data.

 0,40 B and D4 One feature is small and another is large and some data is uniform.

 It presents a cloudy area between uniformity and irregularity.

C6 0,45 0,40 E5 and F6 There is uniform data, but there is also irregular data. However, it could be

 more uniform if the test was less vague or avoided using expressions like

 “When I enter incorrect information” and as an alternative, define what

 the test data is for the expression “incorrect information”.

 0,00 E and G7 Feature G is incomplete and without data.

 0,01 H8 and E There is some uniform data, however in both tests many scenarios are

 elaborated and the scenarios attempt to cover the Registration

 and Authentication features. The coverage is in the sense of testing

 a wide range of data possibilities. These coverage scenarios are

 different from the acceptance testing proposal.

C18 0,15 0,12 I9 and J10 Both features are large and difficult to evaluate. Apparently, the

 uniformity is low.

 0,24 L11 and M12 There is a lot of test data in the features. There is uniform data, but

 visually it is difficult to say that the features are uniform.

 0,00 N13 and O14 The features do not have a very large size, which facilitates an

 evaluation. The data is very irregular, however, similar data such as

 "Facility" and "Facility0" are used, which could be uniformized.
1https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/AssertSteps.feature
2https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/ClickSteps.feature
3https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/progressSteps.feature
4https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/navigationSteps.feature
5https://github.com/FreeFeed/acceptance-tests/blob/master/features/authorization.feature
6https://github.com/FreeFeed/acceptance-tests/blob/master/features/Pages.feature
7https://github.com/FreeFeed/acceptance-tests/blob/master/features/viewfeed.feature
8https://github.com/FreeFeed/acceptance-tests/blob/master/features/registration.feature
9https://github.com/IntersectAustralia/dc21/blob/master/features/aaf_login.feature
10https://github.com/IntersectAustralia/dc21/blob/master/features/add_to_cart.feature
11https://github.com/IntersectAustralia/dc21/blob/master/features/api_package_create.feature
12https://github.com/IntersectAustralia/dc21/blob/master/features/publish_collection.feature
13https://github.com/IntersectAustralia/dc21/blob/master/features/view_data_file.feature
14https://github.com/IntersectAustralia/dc21/blob/master/features/api_facility_and_experiment_list.feature

https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/AssertSteps.feature
https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/ClickSteps.feature
https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/progressSteps.feature
https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/navigationSteps.feature
https://github.com/FreeFeed/acceptance-tests/blob/master/features/authorization.feature
https://github.com/FreeFeed/acceptance-tests/blob/master/features/Pages.feature
https://github.com/FreeFeed/acceptance-tests/blob/master/features/viewfeed.feature
https://github.com/FreeFeed/acceptance-tests/blob/master/features/registration.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/aaf_login.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/add_to_cart.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/api_package_create.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/publish_collection.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/view_data_file.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/api_facility_and_experiment_list.feature

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

148

Fig. 13: Test data uniformity average for each project

The informal assessment was carried out with some

difficulty, especially because the application domains

of the tests are not familiar and, in some cases, because

of the size of the features. When the size of the features

increases, human evaluation can be impaired by

limiting the mental capacity to memorize data.

However, the value 0 represented the maximum

irregularity and was easily perceived. The highest

uniformity value assessed informally was a pair with

0.57. The value 0.40 associated with the large size of a

feature indicated a nebulous zone.

FitNesse Vs. Gherkin

The application of the uniformity metrics has yielded

quantitative data from both case studies. In this way,

quantitative data, such as test data uniformity, can be

compared in order to determine whether there are

differences between notations. This comparison can be

done between the descriptive metrics of the two case

studies looking to identify the projects similarities.

Additionally, for a deeper investigation on uniformity,

the uniformity of the two notations is compared against

each other to determine whether there is any relationship

between descriptive metrics and uniformity. With the

result of the investigation, we look to answer the

following questions:

RQ1: Are there any difference between the numbers of

features in the samples of the two acceptance test

notations?

RQ2: Is there a difference in the average of test data per

feature between the notations?

RQ3: Is there a difference in data uniformity between

the two notations?

RQ4: Is there a correlation between number of features,

average of test data by feature and data

uniformity? That is, does the size (features and

test data) of the project influence data uniformity?

These research questions are linked to the case

studies and they are intended to further deepen the

study by comparing the two notations. In this way,

decisions that are more assertive can be done

regarding the uniformity of the two notations. Boxplot

diagrams and a hypothesis test are used to analyze the

differences between notations in questions RQ1, RQ2

and RQ3. So, by using the boxplot diagram, we look

to present data for a visual assessment and by using

the hypothesis test, we aim to determine if there are

any differences between the samples. The RQ4

question is analyzed using a scatter diagram of the

variables number of features, average number of test

data per features and data uniformity. The RQ4

question is also analyzed using a regression model.

Answering RQ1

In order to answer RQ1, regarding the number of

features per project of case studies I and II, FitNesse

and Gherkin, respectively, must be used. Figure 14

shows the visual comparison among the numbers of

features of the projects between the two notations.

The number of features per project is considered (Fig.

9 and 12), with 18 FitNesse projects and 18 Gherkin

projects. FitNesse projects have a median of 16

features per project, an average of 31.16 features per

project, with a standard deviation of 39.19 features.

Gherkin projects have a median of 23 features per

project and an average of 29.27 features per project,

with a standard deviation of 28.07 features. However,

the distribution of the number of features per project

was analyzed via a T-Test, at a significance level of

(𝛼 = 0.05) and no statistically significant difference

between the number of features of the two notations

(Pvalue = 0.8691) was found. Thus, regarding the

number of features, it was not possible to observe

statistically significant changes between the projects

of each notation.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18

Gherkin projects

0.64

0.56

0.02 0.04

0.42
0.45

0.10

0.33

0.40

0.21

0.02 0.02

0.14

0.05

0.33
0.29

0.09

0.15 D
at

a
u
n

if
o

rm
it

y

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

149

Fig. 14: Visual comparison among the number of features between notations

Fig. 15: Visual comparison between the number of features for each notation

Answering RQ2

In order to answer RQ2, the average number of test

data per feature of each project is used, respectively, in

FitNesse and Gherkin notations, from the case studies

previously mentioned. Figure 15 shows the visual

comparison between the average numbers of data per

features for each notation.

The average number of test data per feature is

considered per project (Fig. 9 and 12), with 18 FitNesse

projects and 18 Gherkin projects. FitNesse notation has a

median of 22.21 test data per feature, an average of 34.18

and a standard deviation of 42.54. Gherkin notation has a

median of 12.63 test data per feature, an average of 24.41

and a standard deviation of 31.89. The distribution of the

average number of test data per feature was analyzed via a

T-Test, at a significance level of (𝛼 = 0.05), with the result

that there is no statistically significant difference in the

average number of test data per feature between the two

notations (Pvalue = 0.4417). Thus, regarding the average

number of test data per feature, it was not possible to

observe statistically significant changes between the

projects of each notation. The conclusion reached is that

the amount or number of test data in each feature is

similar for both notations.

150

100

50

0

FitNesse Gherkin

#
 o

f
fe

at
u

re

Projects

150

100

50

0

FitNesse Gherkin

A
v

er
ag

e
(#

 o
f

d
at

a
te

st
)

b
y

 f
ea

tu
re

Projects

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

150

Answering RQ3

Question RQ3 can be interpreted in two ways. The

first way is whether there are differences in data

uniformity between the projects of each acceptance test

notation. The second way is whether there are differences

in data uniformity between the pairs of features of the

FitNesse and Gherkin notations, regardless of the projects.

In order to answer the first interpretation of the question, if

there is a difference in uniformity between FitNesse and

Gherkin projects, the average uniformity metrics for

each project must be used (Fig. 10 and 13). Figure 16

shows the visual comparison of the average uniformity

between each project of the two notations.
Figure 16 considers the uniformity of 18 FitNesse

projects and 18 Gherkin projects. The FitNesse notation
has a median of data uniformity of 0.26, an average of
0.31 and a standard deviation of 0.23. The Gherkin
notation has a median of data uniformity of 0.18 an
average of 0.24 and a standard deviation of 0.19. The

uniformity of the 36 projects analyzed does not have a
regular distribution. Therefore, a transformation must be
applied to the data. The transformation applied was the
square root. After data was transformed from the
application of the square root, distribution was normalized
and the variances were equal. Thus, the distribution of
data uniformity per project was analyzed via a T-Test, at a
significance level of (𝛼 = 0.05), with the result that there is
no statistically significant difference in data uniformity per
project between the two notations (Pvalue = 0.2961). So,
regarding data uniformity per project, it was not possible
to observe statistically significant changes between
notations. The conclusion reached is that test data
uniformity of the projects is similar in both notations.

Longo and Vilain (2018) advocate a 0.45 uniformity
value as the minimum value to be reached before the
automation of the tests. As Fig. 16 displays, most projects
tend to be irregular rather than uniform when using this
minimum value. Only 8 (22%) of the 36 projects reached
the minimum measure of 0.45 data uniformity.

Fig. 16: Visual comparison of the average uniformity between each project of the two notations

Fig. 17: Visual comparison of the uniformity of pairs of features between projects of the two notations

1.0

0.8

0.6

0.4

0.2

0.0

FitNesse Gherkin

D
at

a
u
n

if
o

rm
it

y

Projects

+ Irregular

+ Uniform

Cut line to classify

acceptance tests as
uniform and irregular

(Longo and Vilain, 2018)

1.0

0.8

0.6

0.4

0.2

0.0

FitNesse Gherkin

Feature pairs

D
at

a
u
n

if
o

rm
it

y

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

151

In order to answer the second interpretation of the
question, if there is a difference in uniformity between
the pairs of features of FitNesse and Gherkin, the
uniformity metrics of all feature pairs for all projects
must be used. Figure 17 shows the visual comparison of
the uniformity distribution of each feature pair for each
project split by notations. For the FitNesse notation,
43.040 pairs of features extracted from 18 projects are
considered. For the Gherkin notation, 28.306 pairs of
features are considered.

Analyzing the pairs of features, the FitNesse notation

has a median of uniformity of 0.00, an average of 0.16

and a standard deviation of 0.27. The 0.00 median of

uniformity is justified by the fact that most of the

FitNesse feature pairs are irregular between each other.

The Gherkin notation has a median of uniformity of

0.08, an average of 0.26 and a standard deviation of 0.34.

Thus, in a preliminary analysis, the uniformity metrics

value is lower than 0.5. According to the scale, one is the

most uniform value and zero is the most irregular value.

Therefore, it can be stated that the projects from both

notations are more irregular than regular.

The distribution of data uniformity of the feature

pairs of each notation was analyzed via a Z-Test, at a

significance level of (= 0.05), resulting on a

statistically significant difference in the uniformity of the

features between the two notations (Pvalue = 0.0008967).

Thus, regarding data uniformity by pairs of features, it

was possible to observe statistically significant changes

between notations. Since the uniformity metrics values

are lower than 0.5, the conclusion reached is that the

features are more irregular in the FitNesse notation when

compared to the Gherkin notation.

To summarize the answer to question RQ3, the

conclusion reached is that the data uniformity of the

projects is similar between FitNesse and Gherkin

notations. When the analysis is expanded to features, it

can be said that the data of the FitNesse features is more

irregular than the data of the Gherkin features.

Fig. 18: Scatter diagrams of the variables number of features, average number of test data per feature and data uniformity of the 36

FitNesse and Gherkin projects

1.00

0.50

0.00

0.00 50.00 100.00 150.00 200.00

Average (# of test data) by feature

D
at

a
u
n

if
o

rm
it

y

Gherkin uniformity FitNesse uniformity

Gherkin uniformity FitNesse uniformity

0 50 100 150 200

0.00 50.00 100.00 150.00 200.00

Gherkin # of features FitNesse # of features

Average (# of test data) by feature

of features

1.00

0.50

0.00

D
at

a
u
n

if
o

rm
it

y

200

100

0 D

at
a

u
n

if
o

rm
it

y

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

152

Answering RQ4

In order to answer question RQ4, the variables of

number of features, average number of test data per by

feature and data uniformity of each project are used.

Figure 18 presents the dispersion diagrams for the

variables of the 36 projects. From a visual perspective,

the scatter diagrams do not show correlation between the

variables. Linear regression was used for the analysis

and discrepant data were excluded at first. These

outlying data are from projects, P11, P16, P17, P18, C16

and C18. Therefore, an attempt was done to build a

suitable model. However, none of the independent

variables, number of features and average number of test

data per feature have a significant correlation with the

variable response (data uniformity). At a significance

level of (𝛼 = 0.05), with Pvalue = 0.1361, first-degree

linear regression is not adequate, namely, there is no

model to characterize the data. Thus, it is concluded that

the variables number of feature and average number of

test data per feature have no correlation with data

uniformity. That is, the size of the project does not

influence the uniformity of the data.

Threats to Validity

The case studies are incomplete without discussing

the concerns that can threaten the validity of the results.

Internal validity refers to causal inferences based on

experimental data (Yin, 2003). As for the case studies,

the scope of the work was limited to projects found

exclusively as public GitHub repositories. The GitHub

platform was chosen because it has more than 10

million repositories and is becoming one of the most

important sources of software artifacts on the Internet

(Kalliamvakou et al., 2014). The GitHub platform was

used in order to mitigate any bias regarding size,

human qualification and type of the repository. In this

way, the GitHub platform provided projects from all

around the world. Above all, only public projects were

used, which may represent a difference in results when

compared to private projects. In both case studies, only

projects with more than five features were selected.

This restriction was intended to avoid extremely small

and/or premature projects. The sample of projects for

case study I was composed of all executable projects

that could have the metrics applied on them. So, for case

study I, accurate decisions can be done regarding

FitNesse projects on GitHub.

The sample of case study II is composed only of the

18 executable repositories that could have the metrics

applied on them, so not all GitHub repositories, but a

sample of 18 out of 959. This sample was limited by the

application effort of the metrics, because the metrics was

applied with the Cucumber framework and, depending

on the project, several interventions were necessary for

the correct execution. Still, there is some bias to case

study II, that is, the first 18 repositories ranked by “Best

match” were selected. This bias occurred because,

initially, the intention was to investigate all GitHub

repositories, but the time and effort required to do so

discouraged a complete investigation. Above all, it is

highlighted that there is no difference between FitNesse

and Gherkin between the number of features and average

number of test data per feature of the projects. This

equality between FitNesse and Gherkin projects

mitigates the bias in the selection of Gherkin projects

and contributes to the validity of the conclusions.

The construction of validity refers to the appropriate

use of metrics and evaluation measurements (Yin, 2003).

In the case studies, uniformity measures were obtained

according to the proposed metrics. In order to calculate

other statistical metrics, statistics were used upon

agreement and the recommended practices for applying

them were scrupulously followed.

External validity refers to the ability to generalize the

findings to other domains (Yin, 2003). The external

validity of the research poses a threat to both case

studies. The threat is that the scope is limited to the

public GitHub repositories. In private repositories, there

may be longer and larger projects, additionally, there

may be better qualified teams involved in the task of

treating the data to improve the quality of acceptance

tests. However, the sample was made up of public

repositories from around the world and for various

purposes of applicability of acceptance tests. Reliability

refers to the ability of other researchers to replicate a

methodology (Massey et al., 2014). The metric proposal

for the two notations, the evaluation technique of the

case studies and its results were detailed. Still, we

consider that it is important for other researchers to be

able to reproduce the study, for which the

implementation and all the collected data were done

available on GitHub3,4.

Discussion

The applicability of the proposed metrics was

feasible because their implementation was included in

the FitNesse and Cucumber frameworks. The proposed

metrics were applied to 18 FitNesse projects and 18

Gherkin projects. Uniformity measurements were done

at two levels: At the level of pairs of features and at the

project level. At the project level, the uniformity metrics

presents a more general view. However, the uniformity

metrics at the project level was low, that is, most of the

analyzed projects, regardless of their rating, had less than

0.45 of data uniformity. Longo and Vilain (2018)

classified projects with less than 0.45 uniformity as

3https://github.com/douglashiura/fitnesse-data-uniformity.git
4https://github.com/douglashiura/cucumber-data-uniformity.git

https://github.com/douglashiura/fitnesse-data-uniformity.git
https://github.com/douglashiura/cucumber-data-uniformity.git

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

153

irregular. The reason why many projects have irregular

data has not been identified; however, it is assumed that

data uniformity has not been addressed in these projects.

A simple training can be effective in the treatment of

uniformity in the specification of acceptance tests by a

single person. However, when a team is responsible for

the specification and development, complications in the

uniformity can arise. In a team specification, individuals

can know different examples of data that can be easily

used at the time of specification. However, during the

test automation, when the tester implements the glue

code, doubts may arise when test data are irregular. Due

to not being close to test specifiers, testers can often

follow through with their doubts and produce a glue

code with some bad smell. Thus, this can accumulate

bad smell throughout the development of the tests. If

these doubts are associated with the irregularity of the

test data, the ideal solution is to review the uniformity

before implementing the glue code. This way, the metric

can be useful for an overall evaluation of the project and

an evaluation of the pairs of features.

Upon evaluating the project, we do not have a

specific number to indicate whether a FitNesse or

Cucumber project is uniform or not. Longo and Vilain

(2018) suggest a minimum uniformity value of 0.45 for

US-UID projects. Above all, the impact of uniformity in

the automation of tests has already been studied in this

other notation. The application of the metrics can be

used for any type of project, regardless of the uniformity

metrics, but it is unclear which minimum uniformity

value could be indicated in the process of test

specification and automation in order to obtain better

communication advantages and high-quality glue code.

In that sense, it is recommended that the minimum

value of 0.45 of data uniformity of a project be reached

before starting the test automation process. In addition,

during the application of the metric in the case studies, it

was possible to observe some quality criteria in the

projects with more uniformity. One of the quality criteria

was clarity, that is, one can read and understand most

tests with greater uniformity. Above all, there are many

factors that can influence clarity, such as knowledge of

the problem and the language used to write the test. Not

all evaluated projects had glue code available, which

suggests low quality works5. However, even in projects

with glue code available, a low quality was observed, that

is, the glue code was written with several responsibilities,

including loop (for) and deviations (if's). As stated by

(Meszaros, 2007), conditional test logic becomes tests

harder to understand and should be avoid whenever

possible, as it was possible to understand, the deviations

were just being used to enable the SUT configuration and

were used because of irregular test data.

5https://github.com/Vardot/varbase-behat/blob/8.x-

4.x/features/bootstrap/SelectorsContext.php

Conclusion

The comparison between FitNesse and Gherkin

suggests that there are no differences in project sizes.

There is also no difference in uniformity between

projects. However, when comparing pairs of features,

there is a significant difference. The pairs of features of

FitNesse have less uniformity than the pairs of Gherkin

features. Above all, data uniformity values in the

evaluated projects are low, that is, notations from both

projects have high amounts of irregular test data.

The main contributions of this article are the two

proposed metrics. These metrics can be applied to any

project with Gherkin or FitNesse notation and can be a

good quantitative assessment tool. A contribution that

can be used in future research is the information

collected from the 36 GitHub projects. The metric has

potential for applicability throughout the specification of

acceptance tests. The teams using the metrics can go

through the measurements and make interferences to

improve uniformity before the test automation. The other

contributions of this work include the findings from the

case of studies. First, we found out that there are no

statistical differences between FitNesse and Gherkin

notations regarding the uniformity. We also found out

that the size of the project does not appear to have

impact in the uniformity. Above all, we discovered that

projects with a greater uniformity tend to have a better

glue code with better reuse.
An investigation of the impact of uniformity on

communication throughout development is suggested as a
future work, as well as experiments evaluating the effort
and volume of the glue code for projects with different
levels of uniformity. Another potential future work is to
investigate the use of test data recommendation systems to
assist the construction of tests, by recommending uniform
data. Also, the measurement of uniformity could be
included in the editing tools of FitNesse and Cucumber
tests as a guide to test specifiers. Actually, the application
of the proposed metrics took place through
implementation that consider the execution of the
FitNesse and Cucumber testing frameworks.

Acknowledgment

This work was partially supported by the Brazilian

Federal Agency for the Support and Evaluation of

Graduate Education (CAPES) and by the Brazilian

Council for Scientific and Technological Development

(CNPq) through M.Sc. and Ph.D. grants.

Authors Contributions

Douglas Hiura Longo: Defined the metrics,
implemented Metrics in Cucumber and FitNesse
Frameworks, carried out the study cases and wrote the
paper.

https://github.com/Vardot/varbase-behat/blob/8.x

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

154

Patrícia Vilain and Lucas Pereira da Silva:

Proposed and defined the metrics, carried out the study

cases and wrote the paper.

Ethics

All authors have been personally and actively

involved in substantial work leading to the paper and

will take public responsibility for its content.

References

Alvestad, K. (2007). Domain Specific Languages for

Executable Specifications (Master's thesis, Institutt

for datateknikk og informasjonsvitenskap).

https://ntnuopen.ntnu.no/ntnu-

xmlui/handle/11250/250512

Beck, K. (2003). Test-driven development: by example.

Addison-Wesley Professional.

Coutinho, J. C., Andrade, W. L., & Machado, P. D.

(2019, September). Requirements engineering and

software testing in Agile methodologies: A

systematic mapping. In Proceedings of the XXXIII

Brazilian Symposium on Software Engineering (pp.

322-331). https://doi.org/10.1145/3350768.3352584

Cucumber. (2019). BDD Testing; Tools and techniques

that elevate teams to greatness. Cucumber.

https://cucumber.io.

Dos Santos, E. C., Vilain, P., & Longo, D. H. (2018,

May). Poster: A Systematic Literature Review to

Support the Selection of User Acceptance Testing

Techniques. In 2018 IEEE/ACM 40th International

Conference on Software Engineering: Companion

(ICSE-Companion) (pp. 418-419). IEEE.

dos Santos, E. C., & Vilain, P. (2018, May). Automated

acceptance tests as software requirements: An

experiment to compare the applicability of fit tables

and gherkin language. In International Conference

on Agile Software Development (pp. 104-119).

Springer, Cham. https://doi.org/10.1007/978-3-319-

91602-6_7
Druk, M., & Kropp, M. (2013, May). ReFit: A Fit test

maintenance plug-in for the Eclipse refactoring
plug-in. In 2013 3rd International Workshop on
Developing Tools as Plug-Ins (TOPI) (pp. 7-12).
IEEE. https://doi.org/10.1109/TOPI.2013.6597187

FitNesse. (2019). FitNesse. http://fitnesse.org

Gärtner, M. (2012). ATDD by example: a practical

guide to acceptance test-driven development.

Addison-Wesley.

Greiler, M., Van Deursen, A., & Storey, M. A. (2013a,

March). Automated detection of test fixture

strategies and smells. In 2013 IEEE Sixth

International Conference on Software Testing,

Verification and Validation (pp. 322-331). IEEE.

https://doi.org/10.1109/ICST.2013.45

Greiler, M., Zaidman, A., Van Deursen, A., & Storey,

M. A. (2013b, May). Strategies for avoiding text

fixture smells during software evolution. In 2013

10th Working Conference on Mining Software

Repositories (MSR) (pp. 387-396). IEEE.

https://doi.org/10.1109/MSR.2013.6624053

Hendrickson, E. (2008). Driving development with tests:

ATDD and TDD. STARWest 2008.

Kalliamvakou, E., Gousios, G., Blincoe, K., Singer, L.,

German, D. M., & Damian, D. (2014, May). The

promises and perils of mining github. In

Proceedings of the 11th working conference on

mining software repositories (pp. 92-101).

https://doi.org/10.1145/2597073.2597074

Longo, D. H., & Vilain, P. (2018). Metrics for Data

Uniformity of User Scenarios through User

Interaction Diagrams (S). In SEKE (pp. 592-591).

https://doi.org/10.18293/SEKE2018-075

Longo, D. H., & Vilain, P. (2015a). Creating User

Scenarios through User Interaction Diagrams by

Non-Technical Customers. In SEKE (pp. 330-335).

https://doi.org/10.18293/SEKE2015-179

Longo, D. H., & Vilain, P. (2015b). User scenarios

through user interaction diagrams. International

Journal of Software Engineering and Knowledge

Engineering, 25(09n10), 1771-1775.

https://doi.org/10.1142/S0218194015710151

Longo, D. H., Vilain, P., & da Silva, L. P. (2019).

Impacts of Data Uniformity in the Reuse of

Acceptance Test Glue Code. In SEKE (pp. 129-

176). https://doi.org/10.18293/SEKE2019-102

Lucassen, G., Dalpiaz, F., Van Der Werf, J. M. E., &

Brinkkemper, S. (2015, August). Forging high-

quality user stories: towards a discipline for agile

requirements. In 2015 IEEE 23rd international

requirements engineering conference (RE) (pp.

126-135). IEEE.

https://doi.org/10.1109/RE.2015.7320415

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., &

Brinkkemper, S. (2016). Improving agile

requirements: the quality user story framework and

tool. Requirements Engineering, 21(3), 383-403.

https://doi.org/10.1007/s00766-016-0250-x

Lucassen, G., Dalpiaz, F., van der Werf, J. M. E., &

Brinkkemper, S. (2017, February). Improving user

story practice with the Grimm Method: A multiple

case study in the software industry. In International

Working Conference on Requirements Engineering:

Foundation for Software Quality (pp. 235-252).

Springer, Cham. https://doi.org/10.1007/978-3-319-

54045-0_18

IEEE Std 830. (1998). IEEE 830-1998 - IEEE

Recommended Practice for Software Requirements

Specifications.

https://standards.ieee.org/standard/830-1998.html

https://doi.org/10.1145/3350768.3352584
https://cucumber.io/
https://doi.org/10.1007/978-3
https://doi.org/10.1109/TOPI.2013.6597187
http://fitnesse.org/
https://doi.org/10.1109/ICST.2013.45
https://doi.org/10.1109/MSR.2013.6624053
https://doi.org/10.1145/2597073.2597074
https://doi.org/10.18293/SEKE2018-075
https://doi.org/10.18293/SEKE2015-179
https://doi.org/10.1142/S0218194015710151
https://doi.org/10.18293/SEKE2019-102
https://doi.org/10.1109/RE.2015.7320415
https://doi.org/10.1007/s00766-016-0250
https://doi.org/10.1007/978-3-319-54045-0_18
https://doi.org/10.1007/978-3-319-54045-0_18

Douglas Hiura Longo et al. / Journal of Computer Science 2021, 17 (2): 135.155

DOI: 10.3844/jcssp.2021.135.155

155

Massey, A. K., Rutledge, R. L., Antón, A. I., & Swire, P.

P. (2014, August). Identifying and classifying

ambiguity for regulatory requirements. In 2014

IEEE 22nd international requirements engineering

conference (RE) (pp. 83-92). IEEE.

https://doi.org/10.1109/RE.2014.6912250

Melnik, G., & Maurer, F. (2005, October). The practice

of specifying requirements using executable

acceptance tests in computer science courses. In

Companion to the 20th annual ACM SIGPLAN

conference on Object-oriented programming,

systems, languages and applications (pp. 365-370).

https://doi.org/10.1145/1094855.1094974

Meszaros, G. (2007). xUnit test patterns: Refactoring test

code. Pearson Education.

Park, S. S., & Maurer, F. (2008, May). The benefits and

challenges of executable acceptance testing. In

Proceedings of the 2008 international workshop on

Scrutinizing agile practices or shoot-out at the agile

corral (pp. 19-22).

https://doi.org/10.1145/1370143.1370148

Ricca, F., Torchiano, M., Di Penta, M., Ceccato, M., &

Tonella, P. (2008). The use of executable fit tables

to support maintenance and evolution tasks.

Electronic Communications of the EASST, 8.

https://pdfs.semanticscholar.org/82ed/31abd3c57f87

bbfc6f3696980b9b6d1e401e.pdf

Ricca, F., Torchiano, M., Di Penta, M., Ceccato, M., &

Tonella, P. (2009). Using acceptance tests as a

support for clarifying requirements: A series of

experiments. Information and Software Technology,

51(2), 270-283.

https://doi.org/10.1016/j.infsof.2008.01.007

Softwaretestinghelp. (2020). Software Testing Help.

https://www.softwaretestinghelp.com/

Sommerville, I. (2011). Software Engineering. 9th ed.

Pearson, Boston. ISBN-13: 978-0-13-703515-1.

Torchiano, M., Ricca, F., & Di Penta, M. (2007,

September). " Talking tests": a Preliminary

Experimental Study on Fit User Acceptance Tests.

In First International Symposium on Empirical

Software Engineering and Measurement (ESEM

2007) (pp. 464-466). IEEE.

https://doi.org/10.1109/ESEM.2007.76

Yin, R. K. (2003). Case study research: design and

methods (ed.). Applied social research methods

series, 5.

https://doi.org/10.1109/RE.2014.6912250
https://doi.org/10.1145/1094855.1094974
https://doi.org/10.1145/1370143.1370148
https://doi.org/10.1016/j.infsof.2008.01.007
https://doi.org/10.1109/ESEM.2007.76

