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Abstract: This paper presents two metrics designed to measure the data 

uniformity of acceptance tests in FitNesse and Gherkin notations. The 

objective is to measure the data uniformity of acceptance tests in order 

to identify projects with lots of random and meaningless data. Random 

data in acceptance tests hinder communication between stakeholders 

and increase the volume of glue code. The main contribution of this 

paper is the implementation of the proposed metrics. This paper also 

evaluates the uniformity of test data from several FitNesse and Gherkin 

projects found on GitHub, as a means to verify if the metrics are 

applicable. First, the metrics were applied to 18 FitNesse project 

repositories and 18 Gherkin project repositories. The measurements 

taken from these repositories were used to present cases of irregular and 

uniform test data. Then, we have compared the notations from FitNesse 

and Gherkin in terms of projects and features. In terms of projects, no 

significant difference was observed, that is, FitNesse projects have a 

level of uniformity similar to Gherkin projects. However, in terms of 

features and test documents, there was a significant difference. The 

uniformity scores of FitNesse and Gherkin features are 0.16 and 0.26, 

respectively. These uniformity scores are very low, which means that 

test data for both notations are very irregular. Thus, we can infer that 

test data are more irregular in FitNesse features than in Gherkin 

features. The evaluation also shows that 28 of 36 projects (78%) did not 

reach the minimum recommended measure, i.e., 0.45 of test data 

uniformity. In general, we can observe that there are still many 

challenges in improving the quality of acceptance tests, especially in 

relation to the uniformity of test data. 

 

Keywords: Software Testing, Acceptance Test, Agile Software 

Development, Uniformity, Metric, Gherkin, FitNesse, Glue Code, Automated 
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Introduction 

Analogous to Test-Driven Development (TDD) 

(Beck, 2003), Acceptance Test-Driven Development 

(ATDD) includes different stakeholders (client, 

developer, tester) who collaborate to write acceptance 

tests before implementing system functionality (Gärtner, 

2012). Teams involved with ATDD generally find that, 

only by defining acceptance tests and discussing test 

specifications, there will be a better understanding of the 

requirements. This happens because acceptance tests 

tend to force the need for a solid agreement on the exact 

behavior that is expected from a software (Hendrickson, 

2008). According to Santos, (Longo and Vilain, 2018), 

there are 21 techniques used to specify acceptance tests. 

Acceptance tests specifications can be done by using 

semi-structured formats, tables, diagrams, or other 

Domain-Specific Languages (DSLs). 

It is estimated that 85% of software defects originate 

from ambiguous, incomplete and illusory requirements 

(Torchiano et al., 2007). Specifying software requirements 

using acceptance tests is an attempt to improve the 

quality of requirements. However, several problems can 

arise from the specification of requirements using 

acceptance tests, as it also happens with the specification 

of requirements using natural language. For example, by 
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using natural language, readers and writers may use the 

same word to name different concepts, or even express 

the same concept in completely different ways 

(Sommerville, 2011). 

Most notations of acceptance tests are composed of 

functional data and test data (Druk and Kropp, 2013). 

Functional data is an artifact that is used to connect test 

data to the System Under Test (SUT). The connection is 

done through glue code, which must follow the template 

of the framework that is being used to execute the tests. 

Test data are used to set up the SUT and the output data 

expected from the SUT. Test data are represented by 

words or expressions, usually with a flag to 

differentiate it from functional data. Longo and Vilain 

(2018; Longo et al., 2019) define that the test data can 

be either uniform or irregular. Uniform test data are 

expressions that are common to various test documents 

and irregular test data are composed by single 

expressions that are not repeated through test documents. 

Figure 1 shows an example of an acceptance test in 

Gherkin notation with uniform and irregular test data. 

This acceptance test in the Gherkin notation deals with 

the login functionality feature and has two scenarios. 

The uniformity and irregularity of test data can be 

verified by comparing the test data from the two 

scenarios. For example, the test data value 

‘SOFTWARETETINGHELP.COM’ appears in both 

scenarios and is considered, therefore, uniform. 

Nevertheless, the test data values ‘Mary’ and ‘John’ and 

‘PASSWORD’ and ‘PASSWORD1’ are considered 

irregular because they are not repeated in both scenarios. 

In general, several features are specified for the 

development of an application in which acceptance 

tests are included. These features are usually organized 

into separate documents, they can be specified at 

various times throughout the development process and 

their specifications can be done by different people. In 

this way, maintaining the uniformity of test data can 

be a challenge because there can be a lot of test data 

that are expressed in completely different ways but 

with the same meaning. For those involved in 

specifying a test, communication between tests using 

irregular data may be feasible, with little or no 

information loss, since humans are able to interpret 

the irregularities of test data and understand the 

meaning of the test. However, there may be problems 

associated with unintentionally irregular data and glue 

code reuse for test automation (Longo et al., 2019). For 

example, in order to automate the scenarios of the login 

functionality feature (Fig. 1), some settings of the SUT 

are required. It is necessary to set up ‘Mary’ for the 

first scenario and ‘John’ for the second scenario. 

Nonetheless, the setup could be more easily reused if test 

data were uniform. According to Greiler et al. (2013a), 

test code duplication should be avoided by code reuse. 

Code reuse can facilitate maintenance activities, as a 

smaller volume of code is easier to handle. 

Example of Improving Data Uniformity and 

Decreasing Glue Code 

Figure 2 shows an improvement in the uniformity of 

the test data presented in Fig. 1. The improvement refers 

to the uniformization of usernames ‘Mary’ and ‘John’. In 

the example in Fig. 1, the test can be understood and 

performed with unformalized test data. More uniform 

test data can cause a reduction in the fixture settings in 

the glue code. Figure 3 shows the glue code for the 

examples in Fig. 1 and 2. In the glue code example, lines 

6 and 7 are highlighted because they can be discarded for 

the example with the most uniform data (Fig. 1). 

 

 

 
Fig. 1: Sample of acceptance test in Gherkin with uniform and irregular test data (adaptation from Softwaretestinghelp, 2020) 
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Fig. 2: The acceptance test example from Fig. 1 with improved data uniformity (adaptation from Softwaretestinghelp, 2020) 

 

 
 
Fig. 3: Glue code for the tests from Fig. 1 and 2 with highlighting of lines neglected by the better data uniformity (adaptation from 

Softwaretestinghelp, 2020) 

 

This lower volume of glue code achieved by more 
uniform test data means less development and 
maintenance effort. Still, some gain in communication 
can be obtained, because if we compare the test 
example in Fig. 2 and the test example in Fig. 1, we can 

observe that the more uniform test data clarifies the 
meaning of the scenarios in Fig. 1: The first scenario 
with a successful authentication system and the 
second with an incorrect password failure. In the test 
example in Fig. 2, this communication by test is vague 
and cannot be perceived through the test data. 

However, it is worth mentioning that irregular test 
data is important in certain occasions. For example, 
the fact that test data ‘PASSWORD’ and 
‘PASSWORD1’ are irregular helps to understand the 
difference between the first and second scenarios. 

Hence, typically, irregular test data should be avoided, 
unless there is a strong semantic motivation to 
distinguish one test data from another. 

Acceptance test in FitNesse and Gherkin notations 
are widely adopted according to (Park and Maurer, 

2008; Dos Santos et al., 2018; Coutinho et al., 2019). 
Thus, in this study we propose specific metrics to be 
used for these notations. These metrics are based on the 
one proposed to the User Scenarios through User 
Interaction Diagram (USUID notation) (Longo and 
Vilain, 2018). We also evaluate the uniformity of the 

acceptance test data of several projects that use these 
notations and present a comparison of the uniformity 
between FitNesse and Gherkin. 

The evaluated acceptance tests were collected from 

GitHub, a platform that hosts millions of open-source 
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projects. Thirty-six projects from GitHub were extracted, 

18 projects using FitNesse notation and 18 projects using 

Gherkin notation. For each project, we collect data 

uniformity measures and descriptive measures as well. 

Then, from the collected measures for each project, we 

compare FitNesse and Gherkin notations in order to 

investigate if there is a difference between the uniformity 

of these notations. 

This article is organized as follows: Section two 

presents some related works. Sections three and four 

present the metrics proposed for the FitNesse and 

Gherkin notations. Sections five and six present two case 

studies showing the applicability of the proposed 

metrics. Section seven presents a comparison between 

these case studies. Section eight presents potential 

threats to the validity. Section nine presents the paper's 

discussions and conclusions. 

Related Works 

The two main related works are (Longo and Vilain, 

2018; Longo et al., 2019). Longo and Vilain (2018) propose 

a kind of metric for measuring data uniformity in automated 

acceptance tests in the notation of User Scenarios through 

User Interaction Diagrams (US-UIDs). Longo et al. (2019), 

the authors elaborate an experiment with the treatment of 

data uniformity as the control factor. The conclusions 

were that with the treatment of data uniformity, both the 

required volume of glue code and the time spent to 

automate the tests were reduced. 

Some studies that are focused on acceptance tests 

investigate whether non-technical individuals could 

write executable specifications based on notations like 

FitNesse, US-UIDs and Gherkin (Melnik and Maurer, 

2005; Alvestad, 2007; Longo and Vilain, 2015a; 2015b; 

Dos Santos and Vilain, 2018). Other studies focused 

exclusively on FitNesse notation were conducted by 

(Ricca et al., 2008; 2009). Most of these studies use 

qualitative measures as expressed in (IEEE Std 830, 

1998) or quantitative measures such as time, for 

evaluation or comparison. Metrics that are more 

accurate for evaluating user stories were proposed by 

(Lucassen et al., 2015; 2016) and applied by   

(Lucassen et al., 2017). However, these kinds of metrics 

are specific to the user story format and have not been 

adapted for automated acceptance test notations. 

Other studies, such as (Greiler et al., 2013a; 2013b), 

focus on problems in automated tests known as bad code 

smells. The solution to identifying bad code smells is 

usually the generation of a report with a set of specific 

measures. With the help of these reports, programmers 

can make balanced decisions and refactor test code in 

order to avoid bad smells. 

These previous studies have focused on general 

metrics looking to evaluate and compare automated 

acceptance tests, as well as to identify test problems. 

Yet, none of them have proposed metrics for data 

uniformity that are specific to FitNesse and Gherkin 

notations. In other words, to the best of our 

knowledge, no other objective metrics to assess the 

uniformity of acceptance test data has been found, 

other than (Longo and Vilain, 2018; Longo et al., 

2019), especially for FitNesse and Gherkin 

techniques. In addition, there is lack of basic studies 

comparing the different notations of automated 

acceptance tests that consider a large volume of projects. 

Metrics of Data Uniformity for FitNesse 

As mentioned before, this paper proposes two kinds 

of metrics for measuring the uniformity of acceptance 

test data for the FitNesse and Gherkin notations, 

respectively. For the FitNesse notation, in general, the 

metrics are applied to a set of wiki pages that represents 

acceptance tests. A set of pair-wise wiki pages is 

generated from the page set. The uniformity values for 

each pair of wiki pages are calculated by counting the 

number of uniform test data that are common to both 

wiki pages and the number of test data that are only 

presented in one of them. Finally, general uniformity is 

the average of uniformity of the pairs in the set. 

This section presents the metrics for measuring 

uniformity of tests in FitNesse notation. The proposed 

metrics are based on the work of (Longo and Vilain, 

2018) in which a metric for calculating uniformity of 

tests using the US-UID notation is proposed. We present 

the metric to calculate the data uniformity for Fitnesse 

through a math model. By applying this math model we 

can calculate the data uniformity of each pair of Fitnesse 

feature and the data uniformity of entire project as well. 

The Table 1 shows the related works.

 
Table 1: Related works 

Reference Requirement format Applied technique Quality criteria assessed 

Greiler et al. (2013a; 2013b) Unit test (Java) Metricsbased framework Bad code smells 

Lucassen et al. (2015; 2016; 2017) User story Metricsbased framework Atomic, Minimum, well 

   formed, uniform and etc. 

Longo and Vilain (2018) US-UIDs Metric Uniformity 

Longo et al. (2019) US-UIDs Metric Uniformity and Glue Code 

This paper FitNesse and Gherkin Metric Uniformity 
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Fig. 4: Example of a FitNesse feature with input and output data (adapted from FitNesse, 2019) 

 

Metric Input 

Metric input is a set of FitNesse features. A 

FitNesse feature is a wiki page with tests. This set of 

features is used to measure data uniformity. Figure 4 

presents an example of a feature and the indication of 

input and output elements of the test data that will be 

used as input for the proposed metrics. The set of 

features that will be the input of the metrics is 

represented by the following equation: 

 

    1 2, , ,..., 1; 1t d t t d d           (1) 

 

Where: 

ω = A set of features 

τt = The t-eth feature of set ω and must be denoted 

according to Eq. 2 

d = The number of features within set ω 
 

FitNesse Feature 

Test data of the features are organized into tables, as 

seen on Fig. 4. The table caption (i.e., “should I buy 

milk”) and column headers (e.g., “cash in wallet” and 

“go to store?”) consists of functional data. The proposed 

metric does not use functional data. The input and output 

data are shown in the body of the table. Thus, a feature is 

represented as follows: 
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Where: 

𝜐tj = The j-eth input data of the t-eth feature of set ω 

otl = The l-eth output data of the t-eth feature of set ω 

n = The number of output data of t 

m = The number of input data of t 

 

Feature Pairs Generation 

A set of pairwise combination of features is 

generated from the input ω. The pairs in this set are 

used later for calculating the metrics. The set of pairs 

is denoted as follows: 
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Where: 

ψ = The set of feature pairs generated from ω 

(t, t) = A pair of features generated from different 

features that belong to ω 

t = The t-eth feature that belongs to set ω. The 

variable t assumes the same values as t, that 

is, (q(t = 1; d)) 

 

t  t determines that the pair must consist of different 

t-eth and t-eth features. For each pair (t, t), auxiliary 

metrics of absolute uniformities is obtained. Auxiliary 

metrics of absolute uniformities are obtained by counting 

uniform and irregular data. In this way, these auxiliary 

measurements are used for the creation of the metric for 

relative uniformity, which is applied to each pair of 

features. The goal of the relative uniformity metric is to 

obtain a uniformity value that can be applied in the 
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comparison between different pairs of features. The 

pairs of features will be used in the metrics of relative 

and absolute uniformity and that is why they were 

defined before the metrics. 

Auxiliary Metrics of Absolute Uniformities 

The metrics of absolute uniformity are sectioned by 

input and output data. The metric for absolute uniformity 

of input data is represented by the following equation: 
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The metric for absolute uniformity of the input data is 

the sum of the input data from the t test page that also 

belongs to t. The expression tjt means that input 

data tj which belongs to t, also belongs to t. 

The metric for absolute uniformity of output data is 

represented by the following equation: 
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The metric for absolute uniformity of the output data 

is the sum of all outputs of t that also belong to t. The 

expression otl t means that the output data of the test 

otl, which belongs to t also belongs to t. 

Relative Uniformity Metric 

The relative uniformity metric is defined from the 

auxiliary metrics of absolute uniformity. Its goal is to 

assign a numerical value to the uniformity of the data. 

The metric is applied to a pair of features and the 

result is the ratio between the sum of the absolute 

uniformity metrics and the amount of input and output 

data for a pair of features. Thus, the relative 

uniformity metric for a given pair of features is 

represented by the following equation: 
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The relative uniformity metric is a value within the [0, 

1] interval (zero to one interval). Relative uniformity 

metric always assumes values in the 0 to 1 interval, 

regardless of the number of inputs and outputs contained 

in the features and for this reason, it is called relative 

uniformity. Value 1 (one) represents the maximum 

uniformity and value 0 (zero) represents the maximum 

irregularity. If (n + m) = 0, then the uniformity value is 1, 

i.e., in the case that there is no test data on the feature, 

then a uniformity value of 1 is adopted. The main goal of 

relative uniformity is to create a normalized scale that 

enables the comparison between distinct pairs of features. 

The relative uniformity metric is calculated for each 

pair of features, so the arithmetic mean between them can 

be adopted as the descriptive measure of uniformity for all 

pairs of a project. Thus, from the relative uniformity 

metric for feature pairs, we propose the relative uniformity 

metric for the entire project. The relative uniformity 

metric for a project is the sum of the uniformity metric 

values of each pair of features divided by the total number 

of pairs. The relative uniformity metric for a project is 

obtained from the following equation: 
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Metric Implementation 

The implementation1 of the metrics is performed with 

the FitNesse tool, making it possible to extract the 

uniformity measures by running the FitNesse tool. The 

entire code for calculating data uniformity was written in 

the Java programming language. In the source code of 

the FitNesse tool, the class fitnesse.testsystems. 

TestSystemListener allows the interception and 

monitoring of the execution of tests. Thus, this class was 

used to obtain input and output data of the tests. After 

obtaining the test data, the proposed metrics are applied 

and the uniformity measures of each FitNesse project is 

extracted. In order to obtain the test input and output 

data, it is necessary to run the tests using FitNesse. 

However, there can be some computational costs for the 

processing of the tests. 

Metrics of Data Uniformity for Gherkin 

Data uniformity metrics for the Gherkin notation is 

similar to the uniformity metrics for the FitNesse 

notation, except that there is no classification of input 

data and output data in the Gherkin notation. Input and 

output data in the Gherkin notation are only classified 

by the developer according to the meaning of the test 

information. Thus, Gherkin itself does not distinguish 

between one type of test data from another, i.e., for 

Gherkin, everything is just test data. Figure 5 shows an 

example of a feature in Gherkin notation with a 

highlight in the test data. 

                                                           
1 https://github.com/douglashiura/fitnesse-uniformity-data.git 

https://github.com/douglashiura/fitnesse-uniformity-data.git
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Fig. 5: Example of a Gherkin feature with test data (adapted 

from Cucumber, 2019) 

 

Test data are encapsulated within the descriptions and 

they are identified by being in quotes, by its formatting 

or by the developer's understanding upon reading the 

test. An example of test data, in Fig. 5, is the expression 

“Expensive Therapy”. This test data appears along with 

the text describing the keyword When and it is enclosed 

in quotation marks, which identify it as a test data. 

We present the metric to calculate the data uniformity 

for Gherkin through a math model. By applying this 

math model we can calculate the data uniformity of 

each pair of Gherkin feature and the data uniformity of 

entire project as well. The metrics can be applied to a 

set of features with acceptance tests. Then, a set of 

pairwise feature combinations is generated from the set 

of features. The uniformity of each feature pair is 

calculated by counting the uniform and irregular data 

points and applying them to an equation. The equation 

is the ratio between irregular test data and the total 

amount of test data. The total uniformity for a pair of 

features is the arithmetic mean between the uniformity of 

each feature from the pair. 

Metric Input 

A metric input is any set of features. Data uniformity 

metrics is extracted from these features. The notation for 

the set of input features is: 
 

    1 2, , ,..., 1; 1t d t t d d           (8) 

 
Where: 

 = Any set of features in the Gherkin notation 

t = The t-eth feature in set and must be denoted 

according to Eq. 9 

d = The number of features in  
 

Gherkin Feature 

A Gherkin feature is a test document and is denoted 

as follows: 
 

    1 2, , ,..., 1;t t t tj tn j j n         (9) 

 

Where: 

tj = The j-eth test data of the t-eth feature 

n = The number of test data in t 

Feature Pairs Generation 

A set of pairwise combination of features is 

generated from the ω input. The pairs in this set are 

used later for the metrics calculation. The set of feature 

pairs is denoted as follows: 
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Where: 

φ = The set of feature pairs generated from  

(t, t) = A pair of features generated from different 

features that belong to set  

t = The t-eth feature that belongs to set . The 

variable t assumes the same values as t, that 

is, (q (t = 1; d)) 

t  t = A restriction rule, that is, a pair must be 

formed by distinct features. 

 

For each pair (t, t) the auxiliary metric, called 

metric of absolute uniformity, is obtained. Then, using 

the auxiliary metric, the metric for relative uniformity is 

formulated. The objective of the relative uniformity 

metric is to obtain a uniformity value that can be applied 

to compare different pairs of features. 

Absolute Uniformity Metric 

The absolute uniformity metric is represented by the 

following equation: 
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The absolute uniformity metric is the sum of test data 

from feature t, which also belongs to t. The expression 

tj t means that test data tj, which belongs to t, also 

belongs to t. 

Relative Uniformity Metric 

The relative uniformity metric for Gherkin features is 

elaborated from the absolute uniformity metric. The 

objective of the relative uniformity metric is to summarize 

the uniformity of the data in a numerical value. The metric 

corresponds to the ratio between the absolute uniformity 

metric and the bulk of data. Thus, the relative uniformity 

metric is represented by the equation: 
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The relative uniformity metric is a value within the 

[0, 1] interval (zero to one interval). The relative 
uniformity metric always assumes values in the 0 to 1 
interval, regardless of the amount of data that is 
contained in the test documents. Because of that, it is 
called relative uniformity. A metric value of 1 (one) 
represents the maximum uniformity and a metric value 
of 0 (zero) represents the maximum irregularity. If n = 0, 
the uniformity value is 1. If there is no test data on the 
feature, the uniformity value 1 is adopted. 

The relative uniformity metric is calculated for each 
pair of features, so the arithmetic mean between all 
values can be adopted for measuring uniformity in a 
project. The relative uniformity metric for a project is the 
sum of the uniformity metric values of each pair of 
features divided by the total number of pairs. Thus, the 
relative uniformity metric for a project can be obtained 
by the following equation: 
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Metric Implementation 

The metric is implemented2 in the Cucumber tool, so, 
it is possible to extract the uniformity metrics through 
computing. The entire code for calculating data 
uniformity was written in the Java programming 
language. The data for each test document is extracted 
with the help of the Cucumber implementation. 
Cucumber processes the documents and sets up the tests. 
Then, a listener that collects the test data is implemented 
in the cucumber.runner.TesteCase class. The metrics are 
applied after the test data is collected by the listener. It is 
necessary to run the tests in order to collect the test data. 

Case Study I 

The first case study investigates the uniformity of 
data from FitNesse projects in the GitHub repository 
through the application of the first proposed metrics. 
Figure 6 shows the general process of searching for 
FitNesse projects in the GitHub repository. The value 
inside each rectangle corresponds to the number of 
repositories found in each step. The process consists of 
four activities presented in the following subsections. 

Searching FitNesse Projects on GitHub 

The search for FitNesse projects was carried out on 
the GitHub platform. GitHub was used because it houses 

                                                           
2https://github.com/douglashiura/cucumber-data-uniformity.git 

a wide variety of open-source projects. GitHub provides 
a word search function. The search was carried out with 
the word “FitNesse” and a filter (size > 1KB). The 
search result returned 577 projects, of which 274 projects 
were developed with the Java language, 57 projects with 
JavaScript and 39 projects with C#. Still, all projects add 
up to 12K of commits. The search and data collection on 
GitHub took place in February 2019. 

Filtering FitNesse Projects with Relevant Tests 

The 577 repositories found in the previous activity 
were manually filtered according to four steps: 
 
 First step: Filter and select all projects that contain the 

‘FitNesseRoot’ directory, ‘*.wiki’ files, or ‘content.txt’ 
files, because such files contain acceptance tests. 
Therefore, 392 repositories remained 

 Second step: Filter and select all projects that contain 
more than four features and that are not the tests of 
FitNesse itself. Thereby, 68 repositories remained 

 Third step: Remove duplicate projects. 
Consequently, 22 projects remained 

 Fourth step: Filter and select only executable 
projects. As 4 projects were removed, because 
FitNesse (release 20180127) did not execute them 
properly, 18 projects remained. Table 2 presents the 
18 selected projects 

 

 
 
Fig. 6: General search and analysis process for FitNesse projects 
 
Table 2: FitNesse projects selected from GitHub 

Project URL 

P1  .../ManishDua90/DemoQASiteAutomation.git 
P2  .../andrealbinop/fitnesse-selenium-slim.git 
P3  https://...com/HeIsIdeus/CarRental_fitnesse.git 
P4  …github.com/ernanics/bankapp-FitNesse.git 
P5  https://github.com/yarec/fitnis.git 
P6  https://github.com/Suptzs/OnlineLottery.git 
P7  …github.com/ohardeng/fitnesseworkshop.git 
P8  https://...com/bzon/PetClinicFitnesseSamples.git 
P9  ...fredericmarchand/AgricolaFitNesseTesting.git 
P10  …github.com/lsu-ub-uu/diva-cora-fitnesse.git 
P11  ..github.com/RobteSpenke/FirstFitnesse.git 
P12  https://github.com/8thlight/cob_spec.git 
P13  https://github.com/xebia/Xebium.git 
P14  .../PennAssuranceSoftware/inspro-fitnesse-tests.git 
P15  https://...com/paytonrules/HuntTheWumpus.git 
P16  …/pwojtkow/fitnesseTestsWithOracleExpress.git 
P17  …github/maikelgithub/WorkshopCTFitNesse.git 
P18  ...github.com/lsu-ub-uu/cora-fitnesse.git 
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Application of the Proposed Metrics and Data 

Analysis 

The application of the proposed metrics was performed 

using the FitNesse framework and the implementation of 

the proposed metrics. The projects were executed and the 

uniformity metrics, number of features and number of test 

data per feature were collected. The collected data were 

presented in graphic charts. The charts and analyses are 

presented in the next subsection. 

Results of the FitNesse Projects 

Descriptive Measures of the FitNesse Projects 

Descriptive measures consist of general information 

about the projects. Figure 8 shows the number of test 

data for each project. Project P1 is the smallest project 

and consists of only 14 test data (input and output data). 

Project P18 is the largest project and consists of 12707 

test data. Projects are ranked by the number of test data, 

from the smallest to the largest amount. 

Figure 9 presents the descriptive metrics of FitNesse 

projects. Descriptive metrics are defined as the average 

of the test data per feature (input and output data) and the 

total number of features for each project. Regarding the 

average test data per feature, project P1 has an average 

of 2.8 test data per feature and is composed of only five 

features, thus being the smallest project. Project P18 has 

an average of 186.87 test data per feature and is 

composed of 68 features, so, it has the highest average of 

test data. Project P16 consists of 160 features, which is 

the largest one in number of features. 

There is a wide variety in the number of features per 

project, as the projects differ a lot in terms of domain, 

number of people involved and total commits. For 

example, project P18 has 4 contributors and 469 commits, 

while project P1 has only one contributor and 6 commits. 

Thus, the average number of test data per feature may also 

vary significantly. As an example, project P16 has many 

features (160) and a small number for the average of test 

data per feature (9.01), when compared to P18 which has 

less features (68) and a high number for the average of test 

data per feature (186,87). This means that the size 

(number of words written in the document) of the features 

in project P18 is larger than the one in project P16. 

In addition, eight projects (44% of total) have 

between 10 and 41 test data per feature. Project P18 has 

an outlying average number of test data per feature and 

this indicates that having this amount of data in features 

is not a common thing. Each project has an average of 34 

test data per feature and a median of 22 test data per 

feature. Regarding the total number of features for each 

project, nine projects (50% of the total projects) have 

between 9 and 36 features. Each project has an average 

of 31 features and a median of 16 features. Projects P11, 

P16 and P18 have distinct amounts of features, that is, 

they have many more features than the other projects. 

Data Uniformity on FitNesse Projects 

Average data uniformity was measured by the metric 

proposed in Eq. 7. Figure 10 shows the average data 

uniformity for each project. Project P2 has the lowest 

uniformity rate (0.03) and project P10, the highest one 

(0.73). Only four projects (22% of total) show data 

uniformity rates above 0.5. Five projects (28%) are less 

than 0.1 data uniformity rates, that is, extremely low 

compared to the recommended value (Longo and Vilain, 

2018). The average uniformity rate is 0.31 and the 

median uniformity rate is 0.27. 

Informal Assessment 

In order to point out evidence that the use of the 

proposed metric helps to measure the uniformity of 

pairs of features with irregular or uniform test data in 

FitNesse projects, an informal assessment was carried 

out. The evaluation considers some pairs of features 

from three projects (P5, P6 and P18). The three 

projects were selected at random. Table 3 shows the 

result of this informal assessment. The objective was 

to find out if the measured value of the feature pair, 

using the proposed metric, is related to an informal 

assessment that intends to classify the feature pairs as 

irregular or uniform. 

The informal assessment was carried out more 

easily for the P5 and P6 projects in relation to the P18 

project, as the features of the P5 and P6 project are 

smaller in relation to the features of the P18 project. 

The P5 project, which has a uniformity of 0.08, 

showed irregularity in all three of its evaluated pairs. 

The P18 project, with 0.66 uniformity, showed 

uniformity in its three pairs, but one of its pairs (N 

and O) showed both uniformity and irregularity. The 

value 0 represented the maximum irregularity and is 

consistent with the metric proposal. The highest 

uniformity value assessed informally was a pair with 

0.81. The value 0.49 with the large size of a feature 

indicated a gray area. 

 

 
 
Fig. 7: General search and analysis process of Gherkin projects 
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Table 3: Informal assessment of data uniformity for some pairs of features 

 Project Pair 
Project uniformity uniformity Checked uniformity Pair 

P5 0,08  0,00  Uniformity is very low.  A1 and B2 
  0,33  The features are small and have a uniform test data.  C3 and D4 
  0,00  The features are relatively large to be evaluated manually with E5 and F6 
   precision, however they look very irregular.  
P6 0,26  0,00  The test data is irregular and variables are used in the test G7 and H8 
   instead of the test data.  
  0,13  They don't have a lot of test data, but the data that exists that can I9 and J10 
   be uniformized is already uniformized. It is important to 
   note that there is no strong relationship between the tests. 
  0,44  An important part of the data is uniform, which reinforces a L11 and M12 
   relationship between the two tests, but the data that are 
   irregular are numbers and are associated with complex rules 
   (lottery system) that are difficult to understand to improve uniformity. 
P18  0,66  0,49  The features are large, making manual evaluation difficult, but N13 and O14 
   you can see that some data is repeated. The test data “OK” is 
   used a lot. However, there are irregular data, which makes it 
   difficult to decide between uniformity and irregularity. 
  0,81  The feature P is small in relation to J, this reason favors the pair to P15 and Q16 
   be more uniform. The inverse pair (Q and P) has less uniformity 
   (0.25), closely linked to the difference in size of the features. 
  0,65  The features are large, but uniformity prevails.  R17 and S18 
1https://github.com/yarec/fitnis/blob/master/ExTest/ExampleHtmlTest/HtmlTest/content.txt 
2https://github.com/yarec/fitnis/blob/master/ExTest/ExampleHtmlTest/RestTest/content.txt 
3https://github.com/yarec/fitnis/blob/master/ExTest/MysqlTest/ExecuteTest/content.txt 
4https://github.com/yarec/fitnis/blob/master/ExTest/MysqlTest/ConnectTest/content.txt 
5https://github.com/yarec/fitnis/blob/master/ExTest/ExampleProgramTest/DateUtilTest/content.txt 
6https://github.com/yarec/fitnis/blob/master/ExTest/MysqlTest/QueryTest/content.txt 
7https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/PlayerRegistration.wiki 
8https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/PurchaseTicketTestSuite/BasicCase.wiki 
9https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/PrizeCalculation.wiki 
10https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/TicketReview/TwoAccountsOneDraw.wiki 
11https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/TicketReview/SeveralTicketsOneDraw.wiki 
12https://github.com/Suptzs/OnlineLottery/blob/Development/FitNesseRoot/OnlineLottery/PurchaseTicketTestSuite/NotEnoughMoney.wiki 
13https://github.com/lsu-ub-uu/cora-fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/Authorization/Rule/content.txt 
14https://github.com/lsu-ub-uu/cora-fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/Filter/Filter.wiki 
15https://github.com/lsu-ub-uu/corafitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughRest/TheRestTest/content.txt 
16https://github.com/lsu-ub-uu/cora-fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/Search/Index.wiki 
17https://github.com/lsu-ub-uu/cora-
fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/BuiltInPresentation/BasicPresentation/PresentationGroupAn
dContainer/content.txt 
18https://github.com/lsu-ub-uu/cora-
fitnesse/blob/master/FitNesseRoot/TheRestTests/CallThroughJavaCode/BuiltInMetadata/PreDefinedMetadata/Login/content.txt 
 

 
 

Fig. 8: Total number of test data for each project 
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Fig. 9: Descriptive metrics of FitNesse projects 
 

 
 

Fig. 10: Average test data uniformity rate for each project 

 

Case Study II 

Case study II investigates the uniformity of data 

from Gherkin notation projects in the GitHub 

repository. In this case study, the second proposed 

metrics are applied. Figure 7 shows the general 

process of searching for Gherkin projects in GitHub. 

The process consists of four activities presented in the 

following subsections. 

Searching Gherkin Projects on GitHub 

The search for Gherkin projects was carried out in 

GitHub. GitHub repository was selected because it 

houses a wide variety of projects and many of them 

with public access. The repository provides an 

advanced search function that is specific to the 

Gherkin language and a filter (size > 1KB), which 

caused the search to return only Gherkin language 

repositories. The search found 959 projects, ranked by 

“Best match”. Search and data collection on GitHub 

were carried out in June of 2019. 

Filtering Gherkin Projects with Relevant Tests 

The activity of selecting Gherkin projects with tests 

was limited to selecting only the first 18 projects from 

the 959 repositories found in the previous activity, 

ranked by “Best match”. The limit of 18 projects was 

applied in order to reduce the research effort 

requirements and to have the same number of projects 

that were found for the FitNesse notation. Thus, from 

the projects ranked by “Best match”, only the first 18 

repositories with more than four features were selected. 

In addition, it was required that the project ran properly 

with the Cucumber framework. Table 4 presents the 18 

selected projects. 

Application of the Proposed Metrics and Data 

Analysis 

The application of the proposed metrics was 

carried out with the Cucumber framework and the 

implementation of the metrics. The projects were 

executed and uniformity metrics, number of total 

features and total test data information were collected. 
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The collected data was presented in graphic charts. 

These results, analyses and charts are presented in the 

next subsection. 

Results of the Gherkin Projects 

Descriptive Measures of the Gherkin Projects 

Descriptive metrics consists of general information 

about the measured projects. Figure 11 shows the 

number of test data for each project. Project C1 is the 

smallest project and consists of only 10 test data. Project 

C18 is the largest project and consists of 6,085 test data. 

The projects are ranked by the amount of test data. 

Figure 12 shows the descriptive metrics of the 

projects. These are the average test data per feature 

and the total of features for each project. Project C1 

has an average of two test data per feature and it 

consists of only five features, making it the smallest 

project. Project C18 has an average of 132.28 test data 

per feature and it is composed of 46 features, thus 

being the highest average of test data. Project C16 is 

composed of 109 features, which makes it the largest 

one in number of features. 

 
Table 4: Gherkin projects selected from GitHub 

C1  https://.../danbuckland/crudecumber.git 

C2  https:/.../CU-CommunityApps/kuality-kfs-cu.git 

C3  https://github.com/bulletproofnetworks/ript.git 

C4  https://../ucsf-drupal/ucsf_installprofile.git 

C5  VaishnaviGunwante/selenium-cucumber-java.git 

C6  https://...FreeFeed/acceptance-tests.git 

C7  https://../MorkovkAs/SmokeTestsRiskGap.git 

C8  https://github.com/ajspadial/canciella.git 

C9  https://github.com/rejeep/ruby-tools.el.git 

C10  /deepstreamIO/deepstream.io-client-specs.git 

C11  ucsf-web-services/ucsf_www.ucsf.edu_tests.git 

C12  /douglashiura/ucsf_www.ucsf.edu_tests.git 

C13  https://git.../SoftServeUniversity/yunakquiz.git 

C14  https://github.com/deformio/cli-deform.git 

C15  https://github.com/jakobmattsson/locke-api.git 

C16  https://../pumbaEO/vanessa-behavior-tets.git 

C17  https://github.com/Vardot/varbase-behat.git 

C18  https://github.com/IntersectAustralia/dc21.git 

 

 

 
Fig. 11: Total test data for each Gherkin project 

 

 

 
Fig. 12: Descriptive metrics of Gherkin projects 
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The wide diversity in the number of features per 
project is likely to be caused by the domain of each 
project, the number of people involved and the total 
commits. As an example, project P18 has 18 contributors 
and 1.642 commits while project C1 has only one 
contributor and 129 commits. The average number of 

test data per feature is significantly variable, as well. For 
instance, project C16 has a combination of many features 
(109) with a small average of test data per feature (6.12), 
when compared to C18. In project C18, however, this 
relationship is reversed, as it has an average of 132.28 
test data and just 46 features. This means that, in project 

C16, the features are smaller (few words in the 
document); while in project C18, the features are bigger 
(many words in the document). 

Data Uniformity on Gherkin Projects 

The average data uniformity was measured by the 

metric proposed in Eq. 13. Figure 13 shows the average 

data uniformity for each project. Projects C3, C11 and 

C12 have the smallest uniformity (0.02) and project C1 

has the highest uniformity (0.64). Six (33%) projects 

(C3, C4, C11, C12, C14 and C17) present data 

uniformity levels below 0.01, that is, data uniformity in 

these projects is very low and it was probably careless 

during the specification of the tests. Only two projects 

(C1 and C2) have the uniformity score greater than 0.5. 

Informal Assessment 

In order to point out evidence that the use of the 

metric helps to measure the uniformity of irregular or 

uniform feature pairs, an informal assessment was 

carried out. The evaluation was done on some pairs of 

features of three Gherkin projects (C5, C6 and C18). 

Table 5 presents the informal assessment of the 

uniformity of some pairs of features. The objective was 

to find out if the measured value of the feature pair is 

related to an informal assessment that intends to classify 

the feature pairs as irregular or uniform. 

 
Table 5: Informal assessment of data uniformity for some pairs of features 

 Project Pair 

Project uniformity uniformity Pair Checked uniformity 

C5  0,42 0,03  A1 and B2  One feature is huge in relation to the other and therefore uniformity is low. 

 0,57   C3 and A  The first feature is small and with similar or uniform data. 

  0,40  B and D4  One feature is small and another is large and some data is uniform. 

    It presents a cloudy area between uniformity and irregularity. 

C6  0,45  0,40  E5 and F6  There is uniform data, but there is also irregular data. However, it could be 

    more uniform if the test was less vague or avoided using expressions like 

     “When I enter incorrect information” and as an alternative, define what 

    the test data is for the expression “incorrect information”. 

  0,00  E and G7  Feature G is incomplete and without data. 

  0,01  H8 and E  There is some uniform data, however in both tests many scenarios are 

    elaborated and the scenarios attempt to cover the Registration 

    and Authentication features. The coverage is in the sense of testing 

    a wide range of data possibilities. These coverage scenarios are 

    different from the acceptance testing proposal. 

C18  0,15  0,12 I9 and J10  Both features are large and difficult to evaluate. Apparently, the 

    uniformity is low. 

  0,24  L11 and M12  There is a lot of test data in the features. There is uniform data, but 

    visually it is difficult to say that the features are uniform. 

  0,00  N13 and O14 The features do not have a very large size, which facilitates an 

    evaluation. The data is very irregular, however, similar data such as 

    "Facility" and "Facility0" are used, which could be uniformized. 
1https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/AssertSteps.feature 
2https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/ClickSteps.feature 
3https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/progressSteps.feature 
4https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/navigationSteps.feature 
5https://github.com/FreeFeed/acceptance-tests/blob/master/features/authorization.feature 
6https://github.com/FreeFeed/acceptance-tests/blob/master/features/Pages.feature 
7https://github.com/FreeFeed/acceptance-tests/blob/master/features/viewfeed.feature 
8https://github.com/FreeFeed/acceptance-tests/blob/master/features/registration.feature 
9https://github.com/IntersectAustralia/dc21/blob/master/features/aaf_login.feature 
10https://github.com/IntersectAustralia/dc21/blob/master/features/add_to_cart.feature 
11https://github.com/IntersectAustralia/dc21/blob/master/features/api_package_create.feature 
12https://github.com/IntersectAustralia/dc21/blob/master/features/publish_collection.feature 
13https://github.com/IntersectAustralia/dc21/blob/master/features/view_data_file.feature 
14https://github.com/IntersectAustralia/dc21/blob/master/features/api_facility_and_experiment_list.feature 

https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/AssertSteps.feature
https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/ClickSteps.feature
https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/progressSteps.feature
https://github.com/VaishnaviGunwante/selenium-cucumber-java/blob/master/target/test-classes/features/navigationSteps.feature
https://github.com/FreeFeed/acceptance-tests/blob/master/features/authorization.feature
https://github.com/FreeFeed/acceptance-tests/blob/master/features/Pages.feature
https://github.com/FreeFeed/acceptance-tests/blob/master/features/viewfeed.feature
https://github.com/FreeFeed/acceptance-tests/blob/master/features/registration.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/aaf_login.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/add_to_cart.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/api_package_create.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/publish_collection.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/view_data_file.feature
https://github.com/IntersectAustralia/dc21/blob/master/features/api_facility_and_experiment_list.feature
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Fig. 13: Test data uniformity average for each project 

 

The informal assessment was carried out with some 

difficulty, especially because the application domains 

of the tests are not familiar and, in some cases, because 

of the size of the features. When the size of the features 

increases, human evaluation can be impaired by 

limiting the mental capacity to memorize data. 

However, the value 0 represented the maximum 

irregularity and was easily perceived. The highest 

uniformity value assessed informally was a pair with 

0.57. The value 0.40 associated with the large size of a 

feature indicated a nebulous zone. 

FitNesse Vs. Gherkin 

The application of the uniformity metrics has yielded 

quantitative data from both case studies. In this way, 

quantitative data, such as test data uniformity, can be 

compared in order to determine whether there are 

differences between notations. This comparison can be 

done between the descriptive metrics of the two case 

studies looking to identify the projects similarities. 

Additionally, for a deeper investigation on uniformity, 

the uniformity of the two notations is compared against 

each other to determine whether there is any relationship 

between descriptive metrics and uniformity. With the 

result of the investigation, we look to answer the 

following questions: 

 

RQ1: Are there any difference between the numbers of 

features in the samples of the two acceptance test 

notations? 

RQ2: Is there a difference in the average of test data per 

feature between the notations? 

RQ3: Is there a difference in data uniformity between 

the two notations? 

RQ4: Is there a correlation between number of features, 

average of test data by feature and data 

uniformity? That is, does the size (features and 

test data) of the project influence data uniformity? 

These research questions are linked to the case 

studies and they are intended to further deepen the 

study by comparing the two notations. In this way, 

decisions that are more assertive can be done 

regarding the uniformity of the two notations. Boxplot 

diagrams and a hypothesis test are used to analyze the 

differences between notations in questions RQ1, RQ2 

and RQ3. So, by using the boxplot diagram, we look 

to present data for a visual assessment and by using 

the hypothesis test, we aim to determine if there are 

any differences between the samples. The RQ4 

question is analyzed using a scatter diagram of the 

variables number of features, average number of test 

data per features and data uniformity. The RQ4 

question is also analyzed using a regression model. 

Answering RQ1 

In order to answer RQ1, regarding the number of 

features per project of case studies I and II, FitNesse 

and Gherkin, respectively, must be used. Figure 14 

shows the visual comparison among the numbers of 

features of the projects between the two notations. 

The number of features per project is considered (Fig. 

9 and 12), with 18 FitNesse projects and 18 Gherkin 

projects. FitNesse projects have a median of 16 

features per project, an average of 31.16 features per 

project, with a standard deviation of 39.19 features. 

Gherkin projects have a median of 23 features per 

project and an average of 29.27 features per project, 

with a standard deviation of 28.07 features. However, 

the distribution of the number of features per project 

was analyzed via a T-Test, at a significance level of 

(𝛼 = 0.05) and no statistically significant difference 

between the number of features of the two notations 

(Pvalue = 0.8691) was found. Thus, regarding the 

number of features, it was not possible to observe 

statistically significant changes between the projects 

of each notation. 
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Fig. 14: Visual comparison among the number of features between notations 

 

 
 

Fig. 15: Visual comparison between the number of features for each notation 
 

Answering RQ2 

In order to answer RQ2, the average number of test 

data per feature of each project is used, respectively, in 

FitNesse and Gherkin notations, from the case studies 

previously mentioned. Figure 15 shows the visual 

comparison between the average numbers of data per 

features for each notation. 

The average number of test data per feature is 

considered per project (Fig. 9 and 12), with 18 FitNesse 

projects and 18 Gherkin projects. FitNesse notation has a 

median of 22.21 test data per feature, an average of 34.18 

and a standard deviation of 42.54. Gherkin notation has a 

median of 12.63 test data per feature, an average of 24.41 

and a standard deviation of 31.89. The distribution of the 

average number of test data per feature was analyzed via a 

T-Test, at a significance level of (𝛼 = 0.05), with the result 

that there is no statistically significant difference in the 

average number of test data per feature between the two 

notations (Pvalue = 0.4417). Thus, regarding the average 

number of test data per feature, it was not possible to 

observe statistically significant changes between the 

projects of each notation. The conclusion reached is that 

the amount or number of test data in each feature is 

similar for both notations. 
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Answering RQ3 

Question RQ3 can be interpreted in two ways. The 

first way is whether there are differences in data 

uniformity between the projects of each acceptance test 

notation. The second way is whether there are differences 

in data uniformity between the pairs of features of the 

FitNesse and Gherkin notations, regardless of the projects. 

In order to answer the first interpretation of the question, if 

there is a difference in uniformity between FitNesse and 

Gherkin projects, the average uniformity metrics for 

each project must be used (Fig. 10 and 13). Figure 16 

shows the visual comparison of the average uniformity 

between each project of the two notations. 
Figure 16 considers the uniformity of 18 FitNesse 

projects and 18 Gherkin projects. The FitNesse notation 
has a median of data uniformity of 0.26, an average of 
0.31 and a standard deviation of 0.23. The Gherkin 
notation has a median of data uniformity of 0.18 an 
average of 0.24 and a standard deviation of 0.19. The 

uniformity of the 36 projects analyzed does not have a 
regular distribution. Therefore, a transformation must be 
applied to the data. The transformation applied was the 
square root. After data was transformed from the 
application of the square root, distribution was normalized 
and the variances were equal. Thus, the distribution of 
data uniformity per project was analyzed via a T-Test, at a 
significance level of (𝛼 = 0.05), with the result that there is 
no statistically significant difference in data uniformity per 
project between the two notations (Pvalue = 0.2961). So, 
regarding data uniformity per project, it was not possible 
to observe statistically significant changes between 
notations. The conclusion reached is that test data 
uniformity of the projects is similar in both notations. 

Longo and Vilain (2018) advocate a 0.45 uniformity 
value as the minimum value to be reached before the 
automation of the tests. As Fig. 16 displays, most projects 
tend to be irregular rather than uniform when using this 
minimum value. Only 8 (22%) of the 36 projects reached 
the minimum measure of 0.45 data uniformity. 

 

 
 

Fig. 16: Visual comparison of the average uniformity between each project of the two notations 

 

 
 

Fig. 17: Visual comparison of the uniformity of pairs of features between projects of the two notations 
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In order to answer the second interpretation of the 
question, if there is a difference in uniformity between 
the pairs of features of FitNesse and Gherkin, the 
uniformity metrics of all feature pairs for all projects 
must be used. Figure 17 shows the visual comparison of 
the uniformity distribution of each feature pair for each 
project split by notations. For the FitNesse notation, 
43.040 pairs of features extracted from 18 projects are 
considered. For the Gherkin notation, 28.306 pairs of 
features are considered. 

Analyzing the pairs of features, the FitNesse notation 

has a median of uniformity of 0.00, an average of 0.16 

and a standard deviation of 0.27. The 0.00 median of 

uniformity is justified by the fact that most of the 

FitNesse feature pairs are irregular between each other. 

The Gherkin notation has a median of uniformity of 

0.08, an average of 0.26 and a standard deviation of 0.34. 

Thus, in a preliminary analysis, the uniformity metrics 

value is lower than 0.5. According to the scale, one is the 

most uniform value and zero is the most irregular value. 

Therefore, it can be stated that the projects from both 

notations are more irregular than regular. 

The distribution of data uniformity of the feature 

pairs of each notation was analyzed via a Z-Test, at a 

significance level of ( = 0.05), resulting on a 

statistically significant difference in the uniformity of the 

features between the two notations (Pvalue = 0.0008967). 

Thus, regarding data uniformity by pairs of features, it 

was possible to observe statistically significant changes 

between notations. Since the uniformity metrics values 

are lower than 0.5, the conclusion reached is that the 

features are more irregular in the FitNesse notation when 

compared to the Gherkin notation. 

To summarize the answer to question RQ3, the 

conclusion reached is that the data uniformity of the 

projects is similar between FitNesse and Gherkin 

notations. When the analysis is expanded to features, it 

can be said that the data of the FitNesse features is more 

irregular than the data of the Gherkin features. 

 

 
 
Fig. 18: Scatter diagrams of the variables number of features, average number of test data per feature and data uniformity of the 36 

FitNesse and Gherkin projects 
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Answering RQ4 

In order to answer question RQ4, the variables of 

number of features, average number of test data per by 

feature and data uniformity of each project are used. 

Figure 18 presents the dispersion diagrams for the 

variables of the 36 projects. From a visual perspective, 

the scatter diagrams do not show correlation between the 

variables. Linear regression was used for the analysis 

and discrepant data were excluded at first. These 

outlying data are from projects, P11, P16, P17, P18, C16 

and C18. Therefore, an attempt was done to build a 

suitable model. However, none of the independent 

variables, number of features and average number of test 

data per feature have a significant correlation with the 

variable response (data uniformity). At a significance 

level of (𝛼 = 0.05), with Pvalue = 0.1361, first-degree 

linear regression is not adequate, namely, there is no 

model to characterize the data. Thus, it is concluded that 

the variables number of feature and average number of 

test data per feature have no correlation with data 

uniformity. That is, the size of the project does not 

influence the uniformity of the data. 

Threats to Validity 

The case studies are incomplete without discussing 

the concerns that can threaten the validity of the results. 

Internal validity refers to causal inferences based on 

experimental data (Yin, 2003). As for the case studies, 

the scope of the work was limited to projects found 

exclusively as public GitHub repositories. The GitHub 

platform was chosen because it has more than 10 

million repositories and is becoming one of the most 

important sources of software artifacts on the Internet 

(Kalliamvakou et al., 2014). The GitHub platform was 

used in order to mitigate any bias regarding size, 

human qualification and type of the repository. In this 

way, the GitHub platform provided projects from all 

around the world. Above all, only public projects were 

used, which may represent a difference in results when 

compared to private projects. In both case studies, only 

projects with more than five features were selected. 

This restriction was intended to avoid extremely small 

and/or premature projects. The sample of projects for 

case study I was composed of all executable projects 

that could have the metrics applied on them. So, for case 

study I, accurate decisions can be done regarding 

FitNesse projects on GitHub. 

The sample of case study II is composed only of the 

18 executable repositories that could have the metrics 

applied on them, so not all GitHub repositories, but a 

sample of 18 out of 959. This sample was limited by the 

application effort of the metrics, because the metrics was 

applied with the Cucumber framework and, depending 

on the project, several interventions were necessary for 

the correct execution. Still, there is some bias to case 

study II, that is, the first 18 repositories ranked by “Best 

match” were selected. This bias occurred because, 

initially, the intention was to investigate all GitHub 

repositories, but the time and effort required to do so 

discouraged a complete investigation. Above all, it is 

highlighted that there is no difference between FitNesse 

and Gherkin between the number of features and average 

number of test data per feature of the projects. This 

equality between FitNesse and Gherkin projects 

mitigates the bias in the selection of Gherkin projects 

and contributes to the validity of the conclusions. 

The construction of validity refers to the appropriate 

use of metrics and evaluation measurements (Yin, 2003). 

In the case studies, uniformity measures were obtained 

according to the proposed metrics. In order to calculate 

other statistical metrics, statistics were used upon 

agreement and the recommended practices for applying 

them were scrupulously followed. 

External validity refers to the ability to generalize the 

findings to other domains (Yin, 2003). The external 

validity of the research poses a threat to both case 

studies. The threat is that the scope is limited to the 

public GitHub repositories. In private repositories, there 

may be longer and larger projects, additionally, there 

may be better qualified teams involved in the task of 

treating the data to improve the quality of acceptance 

tests. However, the sample was made up of public 

repositories from around the world and for various 

purposes of applicability of acceptance tests. Reliability 

refers to the ability of other researchers to replicate a 

methodology (Massey et al., 2014). The metric proposal 

for the two notations, the evaluation technique of the 

case studies and its results were detailed. Still, we 

consider that it is important for other researchers to be 

able to reproduce the study, for which the 

implementation and all the collected data were done 

available on GitHub3,4. 

Discussion 

The applicability of the proposed metrics was 

feasible because their implementation was included in 

the FitNesse and Cucumber frameworks. The proposed 

metrics were applied to 18 FitNesse projects and 18 

Gherkin projects. Uniformity measurements were done 

at two levels: At the level of pairs of features and at the 

project level. At the project level, the uniformity metrics 

presents a more general view. However, the uniformity 

metrics at the project level was low, that is, most of the 

analyzed projects, regardless of their rating, had less than 

0.45 of data uniformity. Longo and Vilain (2018) 

classified projects with less than 0.45 uniformity as 

                                                           
3https://github.com/douglashiura/fitnesse-data-uniformity.git 
4https://github.com/douglashiura/cucumber-data-uniformity.git 

https://github.com/douglashiura/fitnesse-data-uniformity.git
https://github.com/douglashiura/cucumber-data-uniformity.git
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irregular. The reason why many projects have irregular 

data has not been identified; however, it is assumed that 

data uniformity has not been addressed in these projects. 

A simple training can be effective in the treatment of 

uniformity in the specification of acceptance tests by a 

single person. However, when a team is responsible for 

the specification and development, complications in the 

uniformity can arise. In a team specification, individuals 

can know different examples of data that can be easily 

used at the time of specification. However, during the 

test automation, when the tester implements the glue 

code, doubts may arise when test data are irregular. Due 

to not being close to test specifiers, testers can often 

follow through with their doubts and produce a glue 

code with some bad smell. Thus, this can accumulate 

bad smell throughout the development of the tests. If 

these doubts are associated with the irregularity of the 

test data, the ideal solution is to review the uniformity 

before implementing the glue code. This way, the metric 

can be useful for an overall evaluation of the project and 

an evaluation of the pairs of features. 

Upon evaluating the project, we do not have a 

specific number to indicate whether a FitNesse or 

Cucumber project is uniform or not. Longo and Vilain 

(2018) suggest a minimum uniformity value of 0.45 for 

US-UID projects. Above all, the impact of uniformity in 

the automation of tests has already been studied in this 

other notation. The application of the metrics can be 

used for any type of project, regardless of the uniformity 

metrics, but it is unclear which minimum uniformity 

value could be indicated in the process of test 

specification and automation in order to obtain better 

communication advantages and high-quality glue code. 

In that sense, it is recommended that the minimum 

value of 0.45 of data uniformity of a project be reached 

before starting the test automation process. In addition, 

during the application of the metric in the case studies, it 

was possible to observe some quality criteria in the 

projects with more uniformity. One of the quality criteria 

was clarity, that is, one can read and understand most 

tests with greater uniformity. Above all, there are many 

factors that can influence clarity, such as knowledge of 

the problem and the language used to write the test. Not 

all evaluated projects had glue code available, which 

suggests low quality works5. However, even in projects 

with glue code available, a low quality was observed, that 

is, the glue code was written with several responsibilities, 

including loop (for) and deviations (if's). As stated by 

(Meszaros, 2007), conditional test logic becomes tests 

harder to understand and should be avoid whenever 

possible, as it was possible to understand, the deviations 

were just being used to enable the SUT configuration and 

were used because of irregular test data. 

                                                           
5https://github.com/Vardot/varbase-behat/blob/8.x-

4.x/features/bootstrap/SelectorsContext.php 

Conclusion 

The comparison between FitNesse and Gherkin 

suggests that there are no differences in project sizes. 

There is also no difference in uniformity between 

projects. However, when comparing pairs of features, 

there is a significant difference. The pairs of features of 

FitNesse have less uniformity than the pairs of Gherkin 

features. Above all, data uniformity values in the 

evaluated projects are low, that is, notations from both 

projects have high amounts of irregular test data. 

The main contributions of this article are the two 

proposed metrics. These metrics can be applied to any 

project with Gherkin or FitNesse notation and can be a 

good quantitative assessment tool. A contribution that 

can be used in future research is the information 

collected from the 36 GitHub projects. The metric has 

potential for applicability throughout the specification of 

acceptance tests. The teams using the metrics can go 

through the measurements and make interferences to 

improve uniformity before the test automation. The other 

contributions of this work include the findings from the 

case of studies. First, we found out that there are no 

statistical differences between FitNesse and Gherkin 

notations regarding the uniformity. We also found out 

that the size of the project does not appear to have 

impact in the uniformity. Above all, we discovered that 

projects with a greater uniformity tend to have a better 

glue code with better reuse. 
An investigation of the impact of uniformity on 

communication throughout development is suggested as a 
future work, as well as experiments evaluating the effort 
and volume of the glue code for projects with different 
levels of uniformity. Another potential future work is to 
investigate the use of test data recommendation systems to 
assist the construction of tests, by recommending uniform 
data. Also, the measurement of uniformity could be 
included in the editing tools of FitNesse and Cucumber 
tests as a guide to test specifiers. Actually, the application 
of the proposed metrics took place through 
implementation that consider the execution of the 
FitNesse and Cucumber testing frameworks. 
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