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Abstract: Cancer is one of the leading causes of death in the world. It is 
the main reason why research in this field becomes challenging. Not only 
for the pathologist but also from the view of a computer scientist. 
Hematoxylin and Eosin (H&E) images are the most common modalities 
used by the pathologist for cancer detection. The status of cancer with 
histopathology images can be classified based on the shape, morphology, 
intensity, and texture of the image. The use of full high-resolution 
histopathology images will take a longer time for the extraction of all 
information due to the huge amount of data. This study proposed advance 
texture extraction by multi-patch images pixel method with sliding 
windows that minimize loss of information in each pixel patch. We use 
texture feature Gray Level Co-Occurrence Matrix (GLCM) with a mean-
shift filter as the data pre-processing of the images. The mean-shift filter 
is a low-pass filter technique that considers the surrounding pixels of the 
images. The proposed GLCM method is then trained using Deep Neural 
Networks (DNN) and compared to other classification techniques for 
benchmarking. For training, we use two hardware: NVIDIA GPU GTX-980 
and TESLA K40c. According to the study, Deep Neural Network 
outperforms other classifiers with the highest accuracy and deviation 
standard 96.72±0.48 for four cross-validations. The additional information 
is that training using Theano framework is faster than Tensorflow for both 
in GTX-980 and Tesla K40c. 
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Introduction 

Cancer is one of the leading diseases that cause high 
levels of mortality worldwide. The statistics of the 
National Center for Health Statistics presents in 2018 
shows that more than 1.7 million new cancer cases 
existed and about six hundred thousand death occurred 
in the United States (US) (Siegel et al., 2018). The 
development of new image processing techniques and 
Computer-Assisted Diagnosis (CAD) play the main 
role in the analysis of histopathology tissues from full 
images (Gurcan et al., 2009) as the basic tools for 
analysis, segmentation, and automatic detection. 
Research about histopathology images is very 

challenging due to the specific structure of the images 
that tend to misidentified or misclassified. After the 
whole image scanner for capturing histopathology data 
discovered, it is then possible to analyze images with 
high-resolution directly (Mukhopadhyay et al., 2018). 
Nevertheless, the problem for histopathology images is 
that the cancer cell is indicated by the nucleus whereas 
images include an enormous number of the nucleus that 
must be analyzed. Therefore, it is necessary to divide 
the full image to high-resolution patches and analyze 
high-resolution patches one by one to locate accurate 
pixel location and extract the relevant information. The 
second problem is related to the size of full-size images 
that consume a lot of processing time to complete the 
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analysis. The whole process can be divided into three 
subsequent steps: (1) Texture Extraction, (2) Training 
and (3) Classification or Identification. 

Features of texture will be the first information 
extracted from the images to get histopathology 
information. There are various techniques for 
extracting texture from the images. One of the 
techniques that have been widely used in many 
research fields is Gray Level Co-Occurrence Matrix 
(GLCM) proposed by Haralick et al. (1973). The idea 
of GLCM is focusing on the spatial relationship of the 
pixel (angle and distance) in the gray level images. 
GLCM is used as the base texture feature extraction 
method and combined with other features like shape, 
temporal and spatial features that have been 
successfully applied in Dynamic Contrast-Enhanced 
Magnetic Resonance Imaging (DCE-MRI) data (Banaie 
et al., 2018). The research managed to achieve accuracy 
up to 98.87% after combining spatial and temporal 
features. However, the accuracy is lower than 98.87% 
when using only spatial or temporal features. 

There are four contributions to this research. First, the 
feature extraction from a multi-patch pixel that is applied 
to whole histopathology images. Second, handling the 
loss of information by using 15 pixels of the window-
size on sliding windows step. Third, the elimination of 
noise by using the mean moving filter (Comaniciu and 
Meer, 2002). The last, design of DNN architecture for 
training the models of classification. The DNN models 
are also compared to other classifiers such as K-Nearest 
Neighbors (KNN), Linear Discriminant Analysis 
(LDA) and Decision Tree.  

This article is divided into six sections described 
below. The first section is an introduction including 
background, motivation purposes, and contribution of 
the research. The second section is related to research in 
histopathology texture analysis and classification. The 
third section explains the histopathology dataset used in 
this research and also the multi-patch GLCM feature 
extraction methodology. This section also explains the 
theory related to the applied method. The results and 
discussion are described in sections four and five. The 
last section is the conclusion of the research.  

Related Works 

Handcrafted Feature Extraction  

The study of feature extraction using GLCM 
combined with the Gabor filter conducted by Ali et al. 
(2018) is called G2LCM. The G2LCM is a hybrid 
method between Gabor and GLCM feature extraction 
that applied to histopathology images. These methods 
implemented on Chromoendoscopy (CH) images. The 
CH images are being classified into two types: Normal 

and abnormal frames using Support Vector Machine 
(SVM) as the classifier algorithm. In this research, SVM 
has revealed to have the best performance compared to 
other classifiers in terms of sensitivity, specificity, and 
accuracy up to 91%, 82%, and 87% respectively. The 
GLCM is also successfully applied as a technique for 
feature extraction on histopathological images and is 
also combined with local binary patterns, called 
LBGLCM (Öztürk and Akdemir, 2018). Another 
research is proposed by Peyret et al. (2018) propose the 
multiscale multispectral local binary pattern and 
combine it with GLCM for histology tumor 
classification. The images are classified by Support 
Vector Machine and obtain the highest accuracy (%) up 
to 99.6±0.4 for Qatar dataset (Peyret et al., 2018). 

Other previous research is combining GLCM and 
some texture extraction methods such as first-order 
statistics, local binary pattern discrete wavelet and gray-
level run-length matrix. In this case, the GLCM is used 
for the characterization of coronary plaque region for 
Intravascular Ultrasound (IVUS) images. The 
classification of data using ensemble classifiers in this 
study reveals the characterization accuracy of about 81% 
for Fibro-Fatty Tissue (FFT) and 75% for Necrotic Core 
(NC) images. In some cases, GLCM is often combined 
with other texture extracting methods to obtain higher 
accuracy (Dhahbi et al., 2018). It is possible to combine 
GLCM with other handcrafted feature extraction not 
only texture-based but also shape-based or color-based. 
In this research, in order to accelerate and optimize the 
extraction, GPU is used in the GLCM feature extraction 
technique (Men et al., 2013).  

Mean-Shift Algorithm  

The mean-shift algorithm is a robust method for 
feature space analysis proposed by Comaniciu and Meer 
(2002). The mean-shift filter algorithm has been applied 
for filtering, segmenting and clustering images. The 
challenge in the mean-shift algorithm is finding the proof 
convergence of the algorithm in high dimensional space. 
The characteristic of mean-shift is a nonparametric – 
iterative algorithm. The extension paper related to the 
mean-shift algorithm that proof the convergence step in 
the mean-shift algorithm is proposed by Ghassabeh 
(2013). In the medical field, the mean-shift algorithm has 
been applied to medical research (Vallabhaneni and 
Rajesh, 2017), (Aparajeeta et al., 2018), (Guo et al., 
2018; Mure et al., 2015; Bai et al., 2013; Yang et al., 
2013). The idea of mean-shift algorithm is to find pixel 
with similar characteristics of the density and save the 
distinct pixel value. The mean-shift algorithm is widely 
used for image or object video tracking. Furthermore, the 
use of Graphics Processing Unit (GPU) on mean-shift 
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segmentation algorithm is aimed to accelerate the 
computation time (Men et al., 2013).  

Deep Neural Network  

A Deep Neural Network (DNN) is a neural network 
with multiple hidden layers between input and output 
(Bengio, 2009; Schmidhuber, 2014). DNN had been 
proven successful in solving complex problems 
mathematically (Bianchini and Scarselli, 2014). In 
medical field, DNN has been implemented to classify 
brain tumors images and outperform other conventional 
classification techniques (Mohsen et al., 2017). 
Recently, deep learning becomes state-of-the-art 
techniques in many research areas, including medical 
image processing. There are various deep learning 
architecture such as RNN, LSTM, CNN, DBN, LSTM, 
DSN, and GAN. Deep Neural Network is a type of deep 
learning. Usually, training using Deep Neural Network is 
very time-consuming due to a large amount of data, high 
dimensionality, and complexity of the neural network. 
However, the learning process can be accelerated by 
GPU computing. The research about GPU acceleration 
in Convolutional Neural Network has been conducted in 
medical image applications (Li et al., 2017a; Du et al., 
2017; Zhang et al., 2017; Li et al., 2017b). Besides, a 
GPU-accelerated library called CNNdroid has been 
introduced. This library can execute trained CNN on 
Android-based mobile devices (Oskouei et al., 2015). 

Material and Methods 

Histopathological Images Dataset  

Histopathology images ware obtained from the 
MICCAI 2015 contest. MICAAI is a non-profit society 
to collaborate in research, education, and practice in the 
field of image computing and computer-assisted medical 
intervention. This society organizing and operating the 
annual high quality of the international conference, 
workshop, contest, and publication. The real data consist 
of two classes of cancer status: Benign and malignant. It 
is proposed by previous research on nuclei detection and 
classification (Sirinukunwattana et al., 2016). The data 
have been annotated by experts and ware obtained from 
sixteen patients. The real images of the data have 
755×522 pixels. The data comprises of 74 benign and 91 
malignant of cancer grade. For training in machine 
learning, we have to enrich the data. Random subsample 
sampling is implemented to these data and yields 
200×200 pixels images. This process resulted in 941 
benign and 910 malignant images. After that, we use the 
sliding windows technique with 15-pixel size to obtain 
pixel patch of the images. Finally, we have about 29617 
datasets for benign and malignant images.  

Multipatch GLCM 

The equations are an exception to the prescribed 
specifications of this template.  

In this section, we will explain multipatch GLCM as 
one technique for texture feature extraction on 
histopathology images. Actually, GLCM can be directly 
applied to 200×200 pixels images. However, not all of 
the nucleus area is clearly differentiated or at times 
poorly differentiated between benign and malignant 
types. Cancer identification can be analyzed with the 
structure of the nucleus. Normal tissues usually have a 
regular shape of the nucleus. Meanwhile, the malignant 
tissue has an irregular shape of the nucleus. However, 
tissues with poor differentiation occasionally is 
indistinguishable. This technique will be able to capture 
detail pixel by pixel and that the texture information will 
deliver different information.  

The whole images of tissues are filtered by the mean-
shift filter algorithm for noise reduction of the structure 
of tissues. We start from the pixel {0,0} then we capture 
pixel patch with various dimension where {length = 
weight: 80, 100, 120,140 and 160}. Next pixel move 
with sliding 15-window so that the pixel information in 
each image patch preserved. This mechanism will 
produce more sub-image as the new dataset significantly. 
In this research, we can produce more than fourteen 
thousand images for each class. Subsequently, the RGB 
images are converted to the gray image before six 
variables of GLCM extracted. There are main variables 
of GLCM: Contrast, dissimilarity, homogeneity, angular 
second moment, energy, and correlation. The detail steps 
of the proposed technique illustrated in Fig. 1.  

Mean-Shift Filter Algorithm 

The mean-shift filter applied in our research is aimed 
to reduce noise before the texture information is 
extracted. The basic concept of this technique is for a 
low-pass filter by considering the surrounding pixels 
algorithm and is described in the pseudocode.  

In mean-shift filtering, defining s or spatial radius is 
not trivial and that we have to select it experimentally. In 
this research, we adjust the value for s = 21. The value of 
r refers to parameters of the color distance of the mean-
shift algorithm. We use r = 51 experimentally.  

The idea of the mean-shift filter is to compute a new 
spatial center, and new color means. The procedure will 
iterate until spatial and color mean will stop changing or 
stoped by the maximum of iteration is achieved. 
Algorithm 1 describes the pseudo-code mean-shift filter. 
According to the algorithm, g is kernel function derived 
from Gaussian kernel or Parzen windows to determine 
probability density function. In the mean-shift filter, the 
value of the deviation standard σ will be replaced with 
the h parameters of the mean-shift filter. 
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Algorithm 1. Mean-shift filter  

Input            : images ( ), , 1...
s r

n n n
x x x n N= =           

parameters   : h = (s,r)                                                                    
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             yi,j+1 is a new position of the kernel windows   

            n: the number of point in the spatial kernel   

                 centered on yi,j 

       yi,conv = yi,j+1 

         assign zi = yi,conv   

 

The filtering process using mean-shift with g kernel 
function will be affected by the h parameter which 
replaces the mean and standard deviation if we use a 
Gaussian filter. The final output is filtered or smooth 
image with a similar dimension as the input image. 
Figure 2 depicts several results of the mean-shift filter 
for benign and malignant tissue.  

Design GLCM Scenario  

Pixel information from GLCM can be obtained from 
a distance and angle orientation. Too near distance 
causes the information in each pixel to be relatively 
homogenous. However, too far also cause the 
information between pixel not relevant. Therefore, we 
determine the distance d = 5 and design the scenario to 
cover four angles including {00, 450, 900 and 1350}. 
Because we have some multipatch images, the scenario 
will be implemented to all of the patch images. The table 
below describes the scenario. 

The output of the scenario above is table data which 
comprises six columns as features of GLCM images and 
29617 rows of all total data benign and malignant. 
Overall, we have twelve sets of data before processing 
them in the Deep Neural Network. 

 
 

Fig. 1: Illustration of Multipatch-GLCM 
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Fig. 2: Sample of mean shift filtering algorithm on histopathology images 

 

 
 

Fig. 3: Illustration of GLCM with angle (00,450,900, 1350) and distance (d = 2) orientation from reference pixel 

 
Table 1: Scenario of GLCM feature extraction with d = 5 and angle {00,450,900,1350}  

Angle  Pixel patch  GLCM variables 

00 120×120, 140×140, 160×160 contrast, dissimilarity, homogeneity, energy, angular second moment (asm),correlation 

450 120×120, 140×140, 160×160 contrast, dissimilarity, homogeneity, energy, angular second moment (asm), correlation 

900 120×120, 140×140, 160×160 contrast, dissimilarity, homogeneity, energy, angular second moment (asm), correlation 

1350 120×120, 140×140, 160×160 contrast, dissimilarity, homogeneity, energy, angular second moment (asm), correlation 

 
Feature extraction with GLCM is used to extract 
information with some variables. The main variables 
used in this research are Contrast, dissimilarity, 
homogeneity, energy, and correlation. GLCM will 
extract pixel information after RGB images converted 
to gray images. As mention above, two orientations in 

GLCM are: Distance and angle. Fig. 3 will illustrate 
how the GLCM works. 

Before calculating the variable of GLCM, the co-
occurrence matrix will be normalized first. The 
normalization is calculated by dividing the total number 
of accumulated co-occurrence. After normalizing, the 
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element of the resulting sum to 1. Six variables as 
mention above will be calculated, this refers to the 
Haralick papers as a founder of GLCM (Haralick et al., 
1973). All of the variables are defined below: 
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p(i,j) with (i,j)th

 is the element of normalized symmetric 
of the co-occurrence matrix of GLCM. Contrast refers to 
the measurement of the intensity between the reference 
pixel and its neighboring pixels with the specified angle 
and distance. If there is a large amount of variation in an 
image, the contrast will be high. Dissimilarity will 
measure the distance between the pair of the object 
(pixels) in the region interest (distance and angle). A 
larger value implies a greater disparity in intensity values 

among neighboring pixels. Homogeneity measures how 
close the distribution of a pixel is in a GLCM. This value 
will be inversely proportional to contrast. If homogeneity 
increases, the contrast decreases. ASM measures the 
uniformity of pixels in GLCM. As the pixels get more 
similar, the ASM value is also large. The energy in 
GLCM is derived from ASM. Energy is the root of ASM. 
Correlation shows the linear dependency of the gray level 
value in the GLCM that indicates a local gray-level 
dependency on the texture image. Higher values of 
correlation can be obtained for a similar gray-level area. 
The final target of all equations is six texture features for 
each image patch as the input for the deep neural network 
training process. 

From Fig. 3 we can understand how the GLCM 
variables obtained. The various angles (00, 450, 900 and 
1350) represent the focus pixels position. Meanwhile, d = 2 
is the distance from reference pixel to neighbor pixel. After 
the position is determined each variable is calculated.  

Designing Deep Neural Network Architecture  

Deep Neural Network is a network with the multi 
hidden layer between output and output. The study of 
the deep neural network gives upper bound and lower 
bound of activation function for the network with h 
hidden unit, l hidden layers and n input (Bianchini and 
Scarselli, 2014). According to this research, Deep 
Neural Network is able to address more difficult 
problems than other methods. 

This research inspires us to design the two deep 
neural network architectures for our experiment. Our 
network has six input vector features obtained from 
GLCM and will be trained to various networks to the 
output layer. Illustration of our architecture 1 with four 
hidden layers shown in Fig. 4. 

 

 
Fig. 4: Deep neural network in architecture 1 with 4 hidden layer 
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Fig. 5: Deep neural network in architecture 2 with 7 hidden layer 
 

Our network is also modified to be deeper which we 
called architecture 2. In this architecture, we apply the 
additional hidden layers which become seven (l = 7). 
Some papers propose the number of hidden units which 
try to cover the optimal number of hidden units 
theoretically and experimentally (Sheela and Deepa, 
2013). Too many hidden units will cause a network to be 
more complex and overfitting. On the contrary, too little 
hidden units will cause underfitting. The detail of the 
first architecture is illustrated in Table 2. Meanwhile, the 
second architecture is described in Fig. 5. 

Adjusting parameters in a deep neural network is not 
trivial. For activation function, we use a Rectified Linear 
unit (ReLu) because of the ability to avoid vanishing 
gradient (Qayyum et al., 2017) and to make training 
faster. The formula of Relu is shown in Equation (7): 
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To reduce the bias, k-fold cross-validation is 

implemented when training with a neural network or 
deep neural network. In our model, we use four cross-
validations. The accuracy with deviation standard is 
used to measure the validity of our data set. Deep 

Neural Network needs to be tuned and optimized for 
obtaining a good model. One of the parameters is 
Adam for optimizing. Combining Adam with ReLu 
activation function results in the lowest training cost 
experimentally. Adam is an algorithm for first-order 
gradient-based optimization. In the training step, adam 
has some advantages such as little memory 
requirement, computationally efficient and the suite 
from the problem with large in terms of data and 
parameters (Kingma and Ba, 2015). Therefore, this 
technique is suitable for our case.  

 In the output layer, a softmax function is used. 
Softmax function will calculate the probabilities of each 
target class of the overall possible target class. The 
formula is shown in Equation (8): 
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The softmax function is used to classify the status of 

cancer at the end of architecture with a probability value 
for each predicted class. This value is straightforward to 
understand by the pathologist in practice. The sum of the 
probability value of all class is 1. 
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Table 2: Design of proposed deep neural network architecture 

Architectures Input Output Hidden layer (l), hidden unit (h) Parameters 

1 6 2 l1: h = 600, l2: h = 500, hidden layer activation: relu 
   l3: h = 300, l4: h = 100 output layer activation: softmax 
2 6 2 l1: h = 600, l2: h = 500, batchsize = 60 
   l3: h = 400, l4: h = 300, epoch = 5000 
   l5: h = 200, l6: h = 100, l7: h = 50 optimizer = Adam  
    learning rate = 0,0001 
    loss = binary cross entropy 

 
Table 3: Machine specification for training deep neural network 

 Specification 
 ---------------------------------------------------------- 
 Machine 2 Machine 1 

Processor Intel core i7® 5960X  AMD Opteron 6344 
 16 cores @ 3.00 Ghz 12 cores @ 1,3 GHz 
RAM 65 GB 32 GB 
GPU NVIDIA GTX-980 NVIDIA Tesla K40c 
 Number cores: 2048 Number cores: 2888 
 Clock: 1280 MHz Clock: 745 Mhz 
 GPU-RAM: 4GB GPU-RAM: 11 GB 

 

 
 
Fig. 6: Software and hardware layer for deep learning application 
 
Experimental Setup 

Training Deep Neural Network requires machine 
infrastructure with high specifications for computation. 
Therefore, in our experiment, we use two GPU 
machines, as listed in Table 3.  

For the training architecture of DNN, we use Keras as 
the tool. Keras is a high-level framework for running deep 
learning. It needs the middle library to be able to run on 
GPU. Keras can run with Tensorflow and Thenao backend 
and access low-level library “cudnn” from Nvidia. 
Hierarchically, the software and hardware model layer of 
Deep Neural Network illustrated in Fig. 6 (Fallis 2013). 

Our research is conducted on Linux 16.04 LTS (Long 
Term Support) and Debian 8.9 operating system with 
CUDA 9.0 version. Linux 16.04 LTS is a stable version 
of Ubuntu in this version with long support of packages.  

Result 

Gray Level Co-Occurrence Matrix Information 

Handcrafted feature extraction using GLCM in this 
research is obtained from six variables for textures 

information. The example of GLCM information is 
described in Fig. 7.  

Training Step and Performance of Accuracy 

The performance of accuracy also measured with 
various mini-batch that will become the basis of the 
number of the mini-batch size chosen. Mini-batch size 
is the number of the dataset in the feed-forward 
process in the training step to update the weight of our 
network. During training, we record the training step 
as shown in Fig. 8. 

The detail of accuracy is represented by the accuracy 
rate for two types of our network architectures run on 
each machine (Fig. 9 and Fig. 10). Fig. 9 shows the 
accuracy with some number of batch-size that is 
conducted experimentally on Tesla. We also record the 
performance run on the other machine GTX-980.  

The architectures are trained using four cross-
validations to obtain the validation dataset. To reduce 
bias,  we calculate the deviation standard for accuracy. 
The result of accuracy also will be compared to several 
supervised techniques such as K-Nearest Neighbors 
(KNN), Linear Discriminant Analysis (LDA) and 
Decision Tree. Table 4 shows the accuracy of our 
experiment.  

Training Time  

Deep learning commonly needs training time to 
build a model for classification. According to the 
performance of accuracy in Table 4, Deep Neural 
Network (DNN) outperforms other methods. 
However, there is a trade-off between accuracy and 
computation or training time to build the DNN model. 
For that, we use two machines with NVIDIA GPU for 
training our models. Graphics in Fig. 11 and 12 show 
the training time of DNN by NVIDIA Tesla K40c and 
GTX-980 for the proposed architectures. 

Tensorflow is one of the famous Deep Learning 
framework developed by Google (Abadi et al., 2015). 
Meanwhile, Theano is a simple framework which is 
originated from the University of Montreal. The 
framework is developed by individual researchers and 
by a team of researchers under their collaborative 
work (TDT, 2016).  

Keras, Cafee 

TensorFlow/Theano/CNTK/… 

CUDA/cuDNN BLAS, Eigen 

GPU CPU 
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Table 4: Cross-validation accuracy of histopathology images with multiple patches  

 Patch-size 
 ------------------------------------------------------------------------------------------------- 
 120 140 160 

Angle = 0, Distance = 5 
KNN 70.57 (0.87) 72.23 (0.23) 73.51 (0.62) 
LDA 72.35 (0.43) 73.75 (0.66) 74.73 (0.68) 
Decision Tree 84.34 (0.34) 88.40 (0.13) 90.64 (0.12) 
DNN-Architecture 1 Machine 1 88.02(1.33) 92.36 (0.49) 93.24 (0.93) 
DNN-Architecture 2 Machine 1  90.69 (1.43) 93.80 (0.89) 95.65 (0.60) 

DNN-Architecture 1 Machine 2 87.93 (1.32) 90.88 (2.14) 93.50 (0.72) 
DNN-Architecture 2 Machine 2 90.67 (0.55) 94.37 (0.85) 95.34 (0.38) 
Angle = 45, Distance = 5 
KNN 71.05 (0.82) 72.32 (1.13) 73.60 (0.57) 
LDA 73.04 (0.37) 74.63 (0.39) 75.46 (0.30) 
Decision Tree 84.60 (0.05) 88.42 (0.32) 90.55 (0.39) 
DNN-Architecture 1 Machine 1 89.73 (0.23) 92.46 (0.62) 92.20 (2.58) 
DNN-Architecture 2 Machine 1  89.02 (1.29) 94.39 (0.44) 95.52 (0.95) 

DNN-Architecture 1 Machine 2 89.30 (0.54) 92.29 (1.24) 94.78 (0.83) 
DNN-Architecture 2 Machine 2 89.54 (2.89) 92.79 (2.62) 94.75 (1.44) 
Angle = 90, Distance = 5 
KNN 69.84 (0.88) 71.48 (0.86) 72.97 (0.95) 
LDA 72.39 (0.30) 73.67 (0.58) 74.50 (0.50) 
Decision Tree 84.00 (0.7) 87.41 (0.21) 90.50(0.19) 
DNN-Architecture 1 Machine 1 87.58 (2.46) 90.91 (1.18) 94.10 (1.70) 
DNN-Architecture 2 Machine 1  91.73 (0.54) 94.53 (1.02) 96.72 (0.48) 

DNN-Architecture 1 Machine 2 87.2(2.16) 91.73 (1.10) 94.98 (0.20) 
DNN-Architecture 2 Machine 2 91.13 (0.67) 91.97 (1.98) 95.53 (1.72) 
Angle = 135, Distance = 5 
KNN 70.27 (0.67) 72.03 (0.81) 73.18 (0.73) 
LDA 71.08 (0.41) 72.32 (0.64) 72.52 (0.67) 
Decision Tree 84.34 (0.42) 88.43 (0.13) 90.82 (0.17) 
DNN-Architecture 1 Machine 1 88.88 (1.10) 90.97 (1.05) 92.50 (2.65) 
DNN-Architecture 2 Machine 1  89.95 (1.88) 93.95 (1.09) 93.60 (1.06) 
DNN-Architecture 1 Machine 2 89.06 (0.32) 89.99 (3.23) 93.68 (1.58) 
DNN-Architecture 2 Machine 2  90.84 (1.03) 94.53 (0.56) 94.60 (1.22) 
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Fig. 7: Result of GLCM features extraction for angle 00  with the distance d = 5 
 
Discussion 

Histopathology image classification is still 
challenging to be exploited. Not only for a computer 
scientist but also for a pathologist. Feature extraction is 
an important part of histopathology classification. The 
GLCM is basically one of the texture features for image 
processing in many research field including 
histopathology. In this research, whole slide images are 
filtered using a mean-shift filter first. This filtering 

process is aimed to reduce the noise. Then, the images 
are converted to gray images based on the formula (10): 
 

: 0.299* 0.587* 0.114*RGB Gray Y R G B→ ← + +   (10) 
 
where, R, G, and B are red, green and blue channels. 
Before applying GLCM, the sliding windows step is 
conducted to enrich the dataset. To minimize the loss of 
information, we use 15 pixels of windows-size. The 
windows-size is used to minimize the selected images.  
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Fig. 8: Graphics of loss and accuracy from architecture 1 and architecture 2 
 

 
 

Fig. 9: Performance of accuracy based on the number of batch-size on Tesla K40C 
 

 
 

Fig. 10: Performance of accuracy based on the number of batch-size on GTX-980 
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Fig. 11: The training time of two proposed DNN architectures on Tesla K40c using Theano and Tensorflow 

 

 
 

Fig. 12: Training time of two proposed DNN architectures on GTX-980 using Theano and Tensorflow 

 
For each window, various pixel patches are captured 

and become the essence of our research. The usage of 
multipatch is that it can produce more images features 
significantly for the training set. In our research, there are 
15056 images for benign and 14561 images for malignant. 
GLCM has some features to be extracted, and for this 
research, we use six parameters: contrast, dissimilarity, 
homogeneity, angular second moment, energy, and 
correlation.  

In GLCM, the orientation of angle and distance of 
pixel will determine the information texture produced. 
Therefore, we design various angles from 00, 450, 900, and 
1350 as illustrated in Fig. 3 to cover the surrounding pixels. 
Meanwhile, for the distance, we choose d = 5 combined 
with various angles experimentally. The result of GLCM is 
shown in the box-plot graphics in Fig. 7. From these 
figures, we understand the characteristic of the 

parameters. The outlier of the parameters is applied to k-
fold cross validation when training and validating the 
Deep Neural Network model.  

In our study, we propose two types of architectures 
as shown in Fig. 4 and 5. The second architecture is 
deeper than the first one with seven hidden layers. 
Deeper architecture should produce a better model for 
predicting or classifying. The performance accuracy 
of our model is described in Table 4. From Table 4, it 
can be explained that the accuracy of multiple pixel 
patches calculated from 120, 140, and 160. Overall, 
Deep Neural Network (DNN) outperforms other 
classification methods such as KNN, LDA, and 
Decision Tree. Table 4 also explains that the highest 
accuracy for the validation dataset achieved on 160 
pixels. There are two cases when the 140 pixels patch 
reveals higher accuracy 92.46 (0.62) and 93.95 (1.09) 
for angle 450 and 1350 respectively.  
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Table 5: Accuracy of new dataset  

Architecture 1 Architecture 2 

0.78 0.80 

 
Our model also tests the new dataset, as described in 

Table 5. The new dataset is data that never used for 
validating the model.  

According to the hardware resources described in 
Table 3, the machine with Tesla K40c has more the 
number of cores than GTX-980. However, the clock 
speed of the Tesla K40c is not as fast as GTX-980. 
K40c has 745 MHz and GTX-980 has 1280 MHz of 
processor speed. In this research, we also record the 
training time for both the GPU machines when 
training the architectures. The fast performance of 
GTX-980 is due to the floating-point performance, 
which is 4.6 TFLOPS while Tesla is 4.29 TFLOPS. 
Tera-Floating Point Operation Per Second (TFLOPS) 
is a way of measuring the power of computer based 
more on computer mathematical capability. The 
TFLOPS refers to the capability of a processor to 
calculate one trillion floating-point operations per 
second. GTX-980 has 4.6 TFLOPS means this 
processor of GPU can calculate 4.6 floating-point 
operations every second on average. Meanwhile, 
Tesla K40c only calculate 4,2 floating-point 
operations every second. GTX-980 also has 1216 
MHz GPU Turbo speed 341 higher than Tesla K40c 
with 875 MHz GPU turbo speed.  

Conclusion 

This research has succeeded in implementing 
multipatch GLCM as the feature extractor for 
histopathology images with its performance of accuracy 
that outperforms other classifiers. The Deeper 
architecture will result in better models for classification; 
however, the trade-off is the cost in training time. 
Nevertheless, the presence of GPU computing can solve 
the gap between accuracy and training time.  
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