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Abstract: This study presents an efficient and rapid implementation of 

Stochastic Computing (SC) based Deep Neural Network (DNN) on a low-

cost hardware platform. The proposed technique uses bipolar signal encoding 

in stochastic computing which relatively gives low hardware footprint 

compared to binary computing. Thereinafter, stochastic max function is 

presented and subsequently used to approximate the hyperbolic tangent 

activation function in SC. In addition, saturation arithmetic is proposed to 

reduce down scaling parameters that can further affect precision in 

computation. In this study, we demonstrate our SC-based DNN feasibility 

through a hardware accelerator prototype with the AXI Stream interface on a 

PYNQ Z2 board which is equipped with a XILINX ZYNQ XC7Z020-

1CLG400C. The validity of this study is demonstrated through a MNIST 

handwritten digit recognition task. The experimental result shows our SC-

based DNN model can be easily deployed on the embedded devices. The 

SC-based accelerator with AXI Stream interface performs at 1.877 GOP/s 

processing throughput, achieves higher accuracy with minimum area and 

energy consumption, consuming only 0.61 mm2 area and 1.89W power. 
 

Keywords: Deep Neural Network, FPGA, Accelerator, Optimization, 

Stochastic Computing, Custom Computing 
 

Introduction 

Humans have always dreamt of creating intelligent 

machines that can think. Today, Artificial Intelligence 

(AI) is a thriving field with many active research topics 

and practical applications. Humans seek to automate 

tasks by developing intelligent software to do daily labor 

work, recognize image and speech, medical diagnoses, 

develop virtual assistant and many more. AI systems 

have the capability to acquire knowledge by extracting 

meaningful information from raw data which is also 

known as machine learning (Goodfellow et al., 2016). 

Deep learning has emerged as a new area of machine 

learning research that allows a computer to automatically 

learn complex functions directly from the data by 

extracting representations at multiple levels of abstraction 

(Deng and Yu, 2014; LeCun et al., 2015). Deep Neural 

Networks (DNNs) have achieved unprecedented 

success in many machine learning applications such as 

speech recognition (Abdel-Hamid et al., 2014) and visual 

object recognition (Simonyan and Zisserman, 2014). 

Although such tasks are intuitively solved by humans, 

they originally proved to be the true challenge to 

artificial intelligence. 

Despite their success, when compared with other 
machine learning techniques, DNNs require more 
computations due to the deep architecture of the model. 
Furthermore, developer’s ambition for better performance 
tends to increase the size of the network, leading to longer 
training times as well as a larger number of computational 
resources needed for implementation. Currently, 
researches and practitioners rely on the use of high 
performance servers to practically implement large scale 
DNNs. However, such high performance computing 
clusters incur high power consumption and a large 
hardware cost, thereby limiting their suitability for low-
cost applications such as embedded and wearable IoT 
devices that require low power consumption and small 
hardware footprint (Ren et al., 2017). These 
applications increasingly utilise machine learning 
algorithms to perform fundamental tasks such as natural 
language processing, speech to text transcription as well 
as image and video recognition (LeCun et al., 2015). 
Hence, to implement such compute-intensive models in 
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resource constraint systems an alternative implementation 
needs to be found. In some cases, specialised hardware 
has been designed using Field Programmable Gate Arrays 
(FPGAs) and Application Specific Integraded Circuits 
(ASICs). Nevertheless, there still exists a margin of 
improvement if the inherent properties and structure of 
DNNs are further exploited. 

This study considers Stochastic Computing (SC) as a 
low-cost alternative to conventional binary computing. 
This computing paradigm operates on random bit-
streams, where the signal value is encoded by the 
probability of an arbitrary bit in the sequence being one. 
Such a representation is particularly attractive as it 
enables very low-cost implementations of arithmetic 
operations using simple logic circuits (Alaghi and Hayes, 
2013). For example, multiplication and addition can be 
performed using an AND gate and a Multiplexer (MUX) 
respectively. Stochastic computing offers very low 
computation hardware area, high degree of error 
tolerance and the capability to trade-off computation 
time and accuracy without any hardware changes 
(Brown and Card, 2001). It therefore has the potential to 
implement DNNs with significantly reduced hardware 
footprint and low power consumption. On the other 
hand, SC has several disadvantages including accuracy 
issues due to the inherent variance in estimating the 
probability represented by the stochastic sequence. 
Furthermore, an increase in the precision of a stochastic 
computation requires an exponential increase in the 
length of the bit-stream (Alaghi and Hayes, 2013), 
thereby increasing the overall computation time. In 
general, stochastic arithmetic will be more suitable for an 
application where the accuracy requirements in the 
individual computations are relatively low. 

FPGAs are a very good accelerator of DNNs. It 

comprises of integrated chip that allows gate-level 

reconfiguration of hardware on field. It contains a huge 

number of logic elements also known as Look Up Tables 

(LUTs) which can be reconfigured or programmed 

according to the custom application requirements. Some 

of the advantages of implementing DNNs on FPGAs are 

highlighted below: 
 

 FPGA’s have parallel-processing capability that can be 

used to exploit DNN architecture to inert parallelism, 

accelerating the DNN inference on embedded devices 

 Reconfigurability is the major feature of FPGA that 

allows specially designed hardware accelerator 

synthesis for each model, allowing higher 

optimisation in terms of resource usage and good 

flexibility for custom user applications 

 FPGAs are capable of providing high throughput 

with low power consumption than existing hardware 

platforms (Ma et al., 2019). Power consumption is 

very important for embedded systems that have 

limited area and power supply (such as mobile 

phones and automotive applications) 

The main contributions of our proposed work are: 

 

 A Novel implementation of SC-based DNN on 

PYNQ Z2 FPGA 

 The formulation and implementation of saturation 

arithmetic in SC 

 DNN training using stochastic arithmetic and 

modified neuron architecture is used 

 A scaling scheme is used for DNN inference in SC 

and an optimization-based scaling scheme is used to 

learn optimal saturation levels during training 

 

The remainder of this study is structured as follows. 

Section 1 presents the related work. Section 2 gives 

fundamental principles of stochastic computing. The 

number of proposed stochastic processing elements 

employed in DNNs are presented in section 3. Further, 

section 4 proposes design and implementation of neural 

network inference in stochastic computing. Section 5 gives 

the implementation details and the experimental results. 

Finally, conclusion and future work are given in section 6. 

Related Work 

Deep learning principles have been known for many 

years. However, it wasn’t until the start of the 21st 

century were advances in hardware technology enabled 

the development of capable deep learning models. Even 

today, the training of large scale DNNs is often 

constraint by the available computational resources. 

CPU platforms are in general unable to provide 
enough computation capacity for training large scale 
neural networks. Nowadays, GPU platforms are the 
default choice for neural network training due to the 
high computation capacity and easy to use development 
frameworks (Guo et al., 2017; Jia et al., 2014). 
Krizhevsky et al. (2012) and Facebook AI Group 
(Yadan et al., 2013) train AlexNet, a Convolutional 
Neural Network (CNN), on multiple GPUs. Li et al. 
(2016) study the memory efficiency of various CNN 
layers and reveal the performance implication from both 
data layouts and memory access patterns. Finally, 
(László et al., 2012; Potluri et al., 2012) present a GPU 
based implementation of a cellular neural network, a 
locally connected recurrent neural network which is 
widely used in image processing applications. 

FPGA based neural network acceleration is an 

emerging research topic as well. FPGAs can implement 

high parallelism and potentially surpass GPU in speed 

and energy efficiency (Guo et al., 2017). A main 

challenge in FPGA based acceleration design is the lack 

of development frameworks such as TensorFlow and 

Caffe. To aid the development of deep learning models 

on FPGAs, (Venieris and Bouganis, 2016) propose a 

framework for mapping CNNs on FPGAs. Furthermore, 

the authors (Ma et al., 2019; Nakahara et al., 2019) propose 
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an FPGA base accelerator to leverage the sources of 

parallelism in order to achieve an efficient implementation 

of a deep convolutional neural network. Finally, (Zhu et al., 

2020) presents a reconfigurable framework for training 

CNNs. While viable, the FPGA and GPU based 

implementations still exhibit a large margin of 

improvement, mainly because these are general purpose 

computing devices not specifically optimized for executing 

DNNs. In addition to such acceleration techniques, 

DNNs can significantly benefit from the SC technology 

which allows implementation of complex functions with 

very simple logic. Stochastic computing has the potential 

to implement DNNs with significantly reduced hardware 

footprint when compared to a fixed or floating-point 

implementation. There have been prior attempts to 

implement ANNs using stochastic computing. 

Qiu et al. (2016) proposed a pre-trained deep neural 

networks implementation on FPGA from VGG 

(Simonyan and Zisserman, 2014). The 48-bit data 

representation with dynamic quantization and vector 

decomposition is used to reduce the size of network, 

which gave smaller coefficients values that had to be fed 

to external memory. Zhang et al. (2015) used 

optimization techniques such as transformation and loop 

tiling to quantitatively analyze computing memory 

bandwidth and throughput for various DNNs. This 

representation allowed DNN implementation to achieve 

high performance of 61.61 GFLOPS. Related work is 

shown by (Han et al., 2016), which results into reduced 

power consumption by reducing number of weights. More 

higher level of optimization is proposed by (Dua et al., 

2020), which uses the OpenGL compiler for DNNs, such 

as VGG and AlexNet. Hah et al. (2019) suggested 

framework for automatic conversion of deep neural 

network models into intermediate format (HLS) and then 

subsequent FPGA implementation. 

Qiu et al. (2016) utilise SC to implement a Radial 

Basis Function (RBF) neural network significantly 

reducing the required hardware. However, RBF neural 

networks are no longer widely used in deep learning 

applications as the RBF unit saturates to zero for most of 

its inputs, making gradient-based optimization 

challenging. Yu et al. (2020) presents a neuron design in 

SC for DNNs and exploits the energy-accuracy trade-off. 

Reconfigurable large scale deep learning systems based 

on SC were designed by (Ren et al., 2017). Furthermore, 

(Li et al., 2017; Ren et al., 2016) present stochastic 

computing hardware designs for the implementation of 

CNNs. In (Ren et al., 2016) work, focus is given on 

weight storage schemes and optimization techniques to 

reduce area and power consumption of weight storage in 

hardware. On the other hand, (Li et al., 2017) proposes a 

structure optimization method for a general CNN 

architecture aiming to minimize area and power 

consumption while maintaining adequate network accuracy. 

In summary, the aforementioned works have 

proposed certain neuron designs using SC in order to 

satisfy the computing limitations in resource-constraint 

applications such as embedded systems. However, they 

only consider the implementation of neural network 

inference using SC hardware. Moreover, only a certain 

activation, namely the hyperbolic function is considered 

whose usage has reduced significantly since the 

introduction of the rectified linear unit. Despite previous 

work, there still lacks a detailed investigation regarding 

the scaling scheme used to implement a neural network 

using SC hardware. Finally, there is no existing work 

that investigates comprehensively how stochastic 

computing can be incorporated during the training stage 

of a DNN and how this can affect the performance of the 

neural network on the recognition task. 

First, a detailed investigation of the stochastic 

processing elements employed in DNNs is conducted. 

Amongst them, a stochastic approximation of the max 

function is presented and subsequently used to 

approximate the rectified linear unit in SC. As addition in 

SC is performed in a scaled manner, saturation arithmetic 

architectures are proposed to alleviate large down-scaling 

parameters that undermine precision in the computations. 

Combining several building blocks, a scheme is proposed 

for the implementation of neural network inference in SC. 

Finally, a modified neuron architecture is used for training 

DNNs which are SC compatible and can be implemented 

efficiently using SC hardware. Experimental results using 

the MNIST dataset demonstrate that the proposed 

inference scheme can implement a neural network in SC 

without increasing the error by more than 2.34%. 

Stochastic Computing 

Stochastic computing relies on probability theory, 

where a probability number is represented by a bit-

stream of chosen length and its value is determined by 

the probability of an arbitrary bit in the bit-stream being 

one (Gaines, 1969). For example, a stochastic bit-stream 

containing 75% of ones and 25% of zeros represents the 

number p = 0.75, reflecting the fact that the probability 

of observing a one in an arbitrary bit position is 0.75. 

Clearly, when compared to a binary radix representation, 

the stochastic representation is not very compact. 

However, it leads to very low-complexity arithmetic 

units which was a primary concern in the past. For 

example, multiplication in stochastic arithmetic can be 

performed by a single AND gate. Consider two input 

stochastic streams that are logically ANDed and assume 

that the probability of observing a one in each stream is 

p1 and p2 respectively. Then, assuming that the inputs 

are suitably uncorrelated or independent, the probability 

of any bit in the output of the AND gate being a one is 

p1  p2. Figure 1a shows this operation. 
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Fig. 1: Stochastic Multiplication using (a) AND gate in unipolar format and (b) XNOR gate in bipolar format 

 
The multiplication operation is a closed operation on the 

interval [0, 1] or [-1, 1] for unipolar and bipolar signals 

respectively. In the bipolar representation an XNOR gate 

performs multiplication between two Bernoulli sequences 

Fig. 1b and 2a. The XNOR output is logic 1 whenever the 

two inputs are either both logic 0 or logic 1. Denoting by S1 

and S2 the inputs to the XNOR gate and S3 the output, then 

for the bipolar representation one has: 
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For bipolar signals, s3 = 2PS3-1 therefore: 
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The stochastic multiplier gives an estimate of the result 

and if S1 and S2 are independent Bernoulli bits then output 

S3 is also a Bernoulli sequence. If there is no error in the 

approximation, the final value of s3 might not be equal to 

the product s1  s2. Factors such as fluctuation in bit stream 

and quantisation error could be the reason behind SC based 

representation error. In this study, we have implemented 

stochastic multiplier in target programming language. 

Proposed Stochastic Processing Elements 

This section analyses a number of stochastic 

processing units employed in deep neural networks. This 

study considers both combinational logic and sequential 

circuit for processing stochastic bit-streams. Without 

loss of generality, the bipolar format of the stochastic 

processing units is mainly considered. 

Addition 

Addition and subtraction in stochastic arithmetic are 

slightly more complex operations than multiplication. 

This is due to the fact that addition and subtraction are 

not closed operations on the interval [0, 1] or [-1, 1]. The 

result of adding two numbers that lie within [-1, 1] does 

not necessarily lie within [-1, 1]. For this reason, a scaled 

add operation is used in SC in order to map the output of 

the adder from [-2, 2] to [-1, 1]. The weighted sum of 

two probabilities, p1+(1-)p2; where 0    1, lies 

within [-1, 1] and is representable in the stochastic 

computing domain. Such a computation can be realised 

using a two-input multiplexer where the select line is 

driven by the selecting probability  (Gaines, 1969). 

Consider the MUX in Fig. 2b. The probability of a logic 

one appearing at the output is equal to: 
 

y A S B SP P P P P      (2) 

 

By choosing PS = 0.5, for bipolar signals one has: 
 

2 1
2

Y

a b
y P


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In other words, the MUX generates an output with a 

generating probability that is the weighted sum of the 

input probabilities. 
 

2

a b
y a b


    will be used to 

denote the scaled addition operation in stochastic 

computing. Note that for bipolar signals PS = 0.5 

corresponds to a stochastic bit-stream having 50% zeros 

and 50% ones. Scaled subtraction can be implemented 

using the same MUX unit simply by inverting the input to 

be subtracted. The scaled adder is implemented in the target 

environment and its operation is verified empirically. 

S1 = 0,1,1,0,1,0,1,0 (4/8) 

 
S2 = 1,0,1,1,1,0,1,1 (6/8) 

 
S1 = 1,1,0,1,0,0,1,0 (0/8) 

 
S2 = 1,0,1,1,1,1,1,0 (4/8) 

S3 = 0,0,1,0,1,0,1,0 (3/8) 

 
S3 = 1,0,0,1,0,0,1,1 (0/8) 
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XNOR 
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Squaring 

The squaring operation is very similar to that of 

multiplication. However, attempting to square a stochastic 

signal by connecting it to both inputs of a XNOR gate 

results in a sequence that is always logic 1. This is because 

the two input signals are correlated with each other. This 

effect can be avoided by multiplying a stochastic sequence 

with its delayed, by one clock cycle, copy sequence. In that 

case, the two inputs are uncorrelated and the output 

sequence will approximate the square value of the input. 

The delay can be realised in hardware by placing a D-type 

flip-flop in one of the inputs of the XNOR gate as illustrated 

in Fig. 2c. Flip-flops used in this context perform no 

computation. Instead, they are used to statistically isolate 

two cross-correlated sequences (Gaines, 1969). 

Inner Product 

The inner product is the core operation of artificial 

neurons both for feedforward networks but also for 

convolutional networks. Hence, to effectively implement 

neural networks using stochastic computing an efficient 

stochastic inner product unit is required. Similar to addition 

and subtraction, the inner product is not a closed operation 

on the interval [-1, 1], hence a scaled inner product is 

utilised in the context of SC. As proposed by (Gaines, 

1969), the two-input scaled adder can be extended to the 

weighted sum of an arbitrary number of input signals using 

the same MUX architecture. For a MUX unit with N inputs, 

this is done by selecting one of the input lines at random, 

with a certain probability of selecting each one and 

connecting the selected input line to the output line for a 

single clock cycle, i.e., for a single bit. 

One way to implement the inner product would be to 

use XNOR multiply units to compute the products wixi for 

all i followed by an equally weighted N-input MUX unit to 

accumulate the results. In contrast to the implementation 

above, this approach requires to convert weight values into 

stochastic bit-streams. As the implementation given by 

Algorithm 1 provides greater flexibility in software, it is 

preferred in the context of this study. 

 

Algorithm 1 Stochastic Inner Product 

Input: Number of inputs N 

Floating point weight coefficient wi  R 

Stochastic bit-stream Xi  RL representing xi  [-1, 1] 

Output: Bit-stream Y  RL 

Integer sout  R 

for i = 0 to N-1 do 

 Invert inputs if wi < 0 then 

 Zi = Xi 

 else 

 Zi = Xi 

 end 

 Define probability distribution; 

 i

i

jj

w

w
 


 

end 

Generate Output bit-stream; 

 for j = 0 to L-1 do 

 i = Draw a sample according to i Y[j] = Zi[j] Sout = 
1

0

N

i

i

w




  

end 

 

 
 (a) (b) (c) 
 

Fig. 2: Stochastic Units; (a) Bipolar Multiplier; (b) Scaled Adder; (c) Squaring Circuit 
 

 
 

Fig. 3: Linear finite state machine 
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Proposed FSM Based Elements in SC 

Deep neural networks employ highly non-linear 
activation and output units such as the hyperbolic 
tangent function or the rectified linear unit. The 
implementation of such non-linear functions with 
combinational logic is sometimes impossible and is in 
general not straightforward so we have used FSM based 
elements for SC based DNN. 

The basic form of the proposed FSM is illustrated in 
Fig. 3. It consists of a set of N states arranged in a linear 
form (i.e., a saturating counter). Usually, N = 2K is chosen 
where K is a positive integer. This is a no skips model. That 
is transitioning from the first to the last state must occur 
through a set of transitions through all of the intermediate 
states (Gaines, 1969). Additionally, the state transitions are 
controlled by the input stochastic sequence X which is 
assumed to be a Bernoulli sequence and the output Y at each 
clock cycle is determined entirely by the current state. Note 
that the states S0 and SN-1 have saturating effects. 

Stochastic Maximum Function 

Undoubtedly, a stochastic implementation of a max 
function is of particular importance for the purpose of 
implementing modern deep neural networks in stochastic 
computing. However, in contrast to a conventional radix-2 
representation, where individual bits are weighted by their 
position in the digit-vector, in stochastic arithmetic all the 
bits in the stochastic sequence are equally weighted. Thus, 
neither the value nor the sign of the stochastic signal is 
related to the exact position of the ones and zeros in the 
bit-stream. Instead, the ratio of ones to the length of the 
bit-stream determines both the sign and value of the 
signal. Thereby, a processing element that computes the 
maximum (or minimum) between two stochastic signals 
cannot rely on the position of the individual bits in the 
input bit-streams, as a binary equivalent could do. 

An approximation of the max function in stochastic 

arithmetic, namely Smax, with both input and output 

signals encoded as bipolar stochastic bit-streams may be 

implemented using the configuration shown in Fig. 4. 

The basic idea of the stochastic max unit is to compute 

the difference between the inputs A and B, i.e., A-B and 

based on that to generate a select line signal that will 

choose the maximum between the two inputs. Based on 

the architecture in Fig. 4, the difference is computed 

using the leftmost MUX unit (in combination with the 

NOT gate). The resulting bit-stream is fed into the Stanh 

unit which is implemented using the FSM. Thus, if PA is 

larger than PB, then Stanh tends to stay on the high state 

side, whereas if PB is larger than PA, then Stanh tends to 

stay on the low state side. Finally, the rightmost MUX 

unit in Fig. 4 selects A if the Stanh output is at the high 

state and B if the Stanh output is at the low state. Thus, 

the output of the circuit shown in Fig. 4 is equal to 

max(A,B). A stochastic minimum function can be 

achieved by simply permuting the inputs of the output 

(i.e., rightmost) MUX unit in Fig. 4. The stochastic max 

unit is implemented in the target language. 

Proposed Saturation Arithmetic in Stochastic 

Computing 

Accumulation in stochastic arithmetic needs to be 

performed in a scaled manner as addition and subtraction 

are not closed operations on the interval [-1, 1]. The 

output of a two-input stochastic adder is therefore scaled 

by 1/2. Cascading N such scaled adders, results in an 

output that is down-scaled by 2N. Such a down-scaling 

phenomenon can cause severe accuracy loss in the 

overall computation especially when N is large, as a 

stochastic computing system using word lengths of size 

2L can only represent values as low as 1 = 2L, which may 

be insufficient to represent the down-scaled output when 

N is large. This becomes even worst if the values 

involved in the computation are themselves small. Note 

that such imprecision cannot be compensated by post-

processing (i.e., up-scaling) the output of the overall 

system as the information is already lost during the 

down-scaling procedure in the stochastic domain. 

Similarly, the corresponding output of the stochastic 

inner product is down-scaled by 
1

N

ii
w

 , which can be 

significantly large when either N or |wi| are large. 

 

 
 

Fig. 4: Stochastic max unit 
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The objective while designing saturation arithmetic 

units in the stochastic domain is to mitigate the down-

scaling effect by worst-case scalings at the output of a 

stochastic accumulator, thus increase precision while 

minimizing possible representation errors in the 

stochastic encoding of the result. Note that in contrast to 

the fixed-point realization of a saturation system in 

conventional binary computing, in stochastic computing 

truncation of low order bits is not possible as all bits in a 

stochastic sequence are equally weighted. Hence, only 

saturations can be considered as a possible way of 

realizing saturation arithmetic in SC. 

Stochastic Computing Based Neural Network 

This section addresses the design and 

implementation of neural network inference in 

stochastic computing. Without loss of generality, 

emphasis is given on feed forward neural networks, 

i.e., multi-layer perceptrons. 

Similar to input data values, encoding the model’s 

parameters by means of stochastic bit-streams without 

any saturation error requires that the trained 

coefficients lie inside the range [-1, 1], either inherently 

or after appropriate processing. In contrast however to 

the primary input values, weights and biases can be 

scaled individually so that each coefficient can be 

represented without compression error in stochastic 

computing. This is because these are trained 

coefficients and are fixed during inference. Hence, 

once the scaling of each coefficient is determined it 

will not change for any input data point. 

Following the design and analysis of stochastic 

processing elements in section 3, the implementation of 

an inner product in stochastic computing according to 

algorithm 2 does not require to convert the weight values 

into stochastic bit-streams. Instead, their absolute values 

are used to define a selecting probability distribution 

over the inputs of the MUX unit. On the other hand, the 

stochastic adder requires that both inputs are encoded as 

stochastic bit-streams. Therefore, in terms of simulating 

the neural network inference within a software 

environment, only the trained biases need to be 

converted into stochastic bit-streams, whereas the 

learned weights can be kept in their floating-point 

representation. To convert bias coefficients to stochastic 

bit-streams, each bias term b can be down-scaled by: 

 

2log
2

b

biass    (4) 

 

Then the down-scaled coefficient, 
bias

b
b

s
  , can be 

represented without any compression error in stochastic 

computing. 

Network Scaling 

In the context of inference, once the scaling factor at 

the input is fixed, the scaling coefficient of every node in 

the SC equivalent graph can be determined. This is 

exactly due to the fact that during inference the model’s 

parameters are fixed and known. The process of 

specifying the scaling of every node in the network is 

termed scaling scheme and is based on the scaling 

parameter at the output of every individual processing 

element that is employed in the SC network graph. The 

scheme proposed in this study is based on forward 

propagation of known information on data ranges 

through the network data flow graph. The process is 

described in the remaining of this section considering 

feedforward network data flow graphs. 
 

Algorithm 2 Input Product Scaling Scheme 

Input: Number of inputs m  R 

Weight coefficient w  Rm 

Input Scaling Factor s  Rm 

Output: Input re-scaling coefficients rin  Rm 

Output re-scaling coefficient rout  R 

Output scaling factor sdot  R 

smax = max{s0, s1,…, sm-1} 

 for i = 0 to m-1 do 

 rini = 
max

is

s
 

 wsum = 
1

0

m

ii
w



  

 sdot = 
 2log

2
in sums w     

 rout = max sum

dot

s w

s


 

end 
 

 
 
Fig. 5: Deep neural data flow graph 
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As an illustrative example, consider the network 

graph shown in Fig. 5. The network has four inputs, 

x1,…,x4, a single hidden layer with two units and a single 

output y. Next, consider a single data point x  R4 and 

assume the weight matrices in the hidden and output 

layer are given by W(1)  R42 and W(2)  R21 

respectively. Furthermore, the biases are given by b(1)  

R2 and b(2)  R for the hidden and output layers 

respectively. The activations in the hidden layer are 

therefore calculated as: 

 
      1 1 1

 
T

h W x b    (5) 

 

and the output of the network is given by: 

 
      

1
2 2Th

y W b    (6) 

 

where,  is the activation function. To start with, 

assuming that the input data values xi lie in some interval 

[-l, u], the input scaling factor sin is selected. Thus, every 

input xi is scaled by sin and the down-scaled inputs xi = 

xi/sin are converted into stochastic bit-streams. Next, 

consider the first activation  1

1h  in the hidden layer. This 

is computed as follows: 

 

   
3

1 1

1 ,1 1

0

i i

i

h w x b


 
   

 
  (7) 

 

Algorithm 3 Bias addition scaling scheme 

Input: Bias Scaling Factor sbias  R 

Input scaling factor sdot  R 

Output: Input re-scaling coefficients rbias, rdot  Rm 

Output scaling factor sout  R 

smax = max{sbias, sdot} 

 
max

dot
out

s
r

s
  

 
max

bias
bias

s
r

s
  

 sout = 2 smax 

 

The inner product between the weights and the down-

scaled input values can be calculated in stochastic 

computing using the implementation given in algorithm 

2. The output will be a stochastic bit-stream representing 

the down-scaled weighted sum. Recall that the output of 

algorithm 2 is associated to a scaling coefficient 
 3 1

,10sum ii
w w


 . Hence, the inner product between  1

,1iw  

and {xi} in 7, when computed in stochastic computing 

will be down-scaled by a factor of sin  wsum. Note that sin 

 wsum is fixed for all data points and can be computed in 

advance as the matrix W(1) is known. Finally, to maintain 

consistency throughout the network structure, the output 

of the stochastic inner product is re-scaled accordingly 

so that the scaling factor associated with it is given by: 

 

 2log

2
in sums w

dots
      (8) 

 

that is, the next integer power of 2 of sin  wsum. Since sdot 

 sin  wsum, the aforementioned re-scaling of the inner 

product output can be realised by means of a XNOR 

multiplier with inputs the inner product output and a bit-

stream representing 
 

in sums w

sdot


  1. This is easy to 

implement in hardware and does not incur significant 

hardware or delay overheads. 

The proposed scaling scheme easily extended to 

feedforward networks of arbitrary depth and width. In 

summary, the proposed scheme consists of two main 

procedures. The one associated with the MUX-based 

inner product between weights and features and the one 

associated with the addition of the bias term. These are 

summarised, in their most general form, in algorithms 2 

and 3. The re-scaling coefficients are used at the input 

and output of stochastic accumulators to appropriately 

re-scale the corresponding bit-streams using XNOR 

multipliers. Algorithm 4 illustrates a possible 

implementation of the Stanh FSM architecture. 

Effectively, the scaling coefficients at every node 

of the network specify the range of values that the 

corresponding signal can take and are the same for all 

data points. This is because both the input scaling 

parameter selected but also the scaling at the output of 

each individual processing unit is worst-case scalings. 

Hence, the procedures given in algorithms 2 and 3 

need to be executed only during the construction of 

the SC network graph and the re-scaling multipliers 

need to be inserted wherever is needed. Once these 

actions are done, the SC based neural network graph 

is completed and remains fixed during inference run 

time. As briefly discussed this is a desired 

consequence as it allows the hardware infrastructure 

to remain fixed during run time. 

Finally, in the event where saturation arithmetic is 

employed, appropriate saturation levels need to be 

determined. A standard approach when creating a 

saturation arithmetic implementation, is to determine 

saturation levels through simulation. For the purpose of 

neural network inference, this is described as follows. 

Test data are applied to the network and the peak value 

reached by each signal is recorded. Internal scalings and 

thereby saturation levels, are then selected to ensure that 

the full dynamic range afforded by the signal 

representation would be used under excitation with the 

given input vectors (Constantinides et al., 2003). 
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Algorithm 4 Stochastic approximation of the hyperbolic 

tangent function 

Input: Bit-stream X 

Number of states N 

Number of stochastic samples L 

Output: Number of stochastic samples L 

Initialize FSM Parameters 

 Smin = 0 

 Smax = N-1 

 Sbound = 
2

N
 

 Initialize state sequence 

 S = sbound 

 for i = 0 to L-1 do 

 S 

end 

tate transition 

 if X[i] == 0 then 

 S = S-1 

else 

 S = S +1 

end 

Saturate the counter 

 if S < Smin then 

 S = Smin 

else 

 S = Smax 

end 

Output logic 

 if S  Sbound then 

 Y[i] = 1 

else 

 Y[i] = 0 

end 

 

Once the output signals are computed, conversion 

from stochastic arithmetic to floating-point arithmetic 

can be done effectively. Each conversion outcome will 

be intrinsically down-scaled by the scaling associated to 

the corresponding bit-stream. Thus, the outcome of the 

conversion must be up-scaled, in floating-point, by an 

amount equal to the scaling coefficient of the signal. 

Experimental Results 

We have prototyped a DNN accelerator on an FPGA 

board. The main goal of this is to validate our SC-based 

DNN accelerator as well as to assess our SC 

algorithm’s suitability for FPGA implementations. We 

have used a XILINX ZYNQ XC7Z020 board, which 

includes PYNQ Z2 FPGA and a DDR3 memory. Figure 

6 illustrates the system architecture, where the Jupyter 

Notebook is used to run the software part and an AXI 

bus and an AXI memory controller are used to connect 

hardware modules to the DDR3 memory. The main 

module is designed in Verilog HDL, for the 

conventional binary representation as well as proposed 

SC. For the prototyping we have used DNN, with 

network size given in Table 1. All the layers are 

implemented in software on the Python as discussed 

above. We have verified the correct operation, 

matching with the software simulation results produced 

by Tensorflow on Google colab GPU. The used 

development board (PYNQ Z2 board) prototype 

incorporates a low-cost FPGA (ZYNQ XC7Z020-

1CLG400C) where the DNN circuit is configured. 

However, we also incorporate an UART and a state’s 

machine in the FPGA to allow writing the DNN inputs 

and reading the DNN outputs from the PC. 

Table 1 shows our FPGA synthesis result, after 

respective mappings. LUT-based MACs are used for the 

binary case as DSP blocks are generally not used in SC-

based designs. Xilinx RTL synthesis tool based 

optimization is considered for design. From the Table 1 

it is very clear that SC-based DNN use much less 

resources compared with the conventional binary design. 

Thus SC-based DNN can be useful in low cost 

applications. Our proposed SC based DNN attains near 1 

cycle latency for MNIST, thus successfully achieve the 

higher efficiency in terms of area and power. 

 
Table 1: Comparison of floating point DNN and SC based DNN implementations on FPGA @ 100 MHz Frequency with 728-128-

10 network size 

Dataset  Models  LUT  FF  DSP  Freq. 

MNIST Binary radix  46172  45931  NA  100 (MHz) 

 Proposed  40917  46612  

 
Table 2: Hardware complexity of the proposed FSM based processing element @ 100 MHz in FPGA Prototype 

 1024   512   256   128 

Activation ------------------------------------ -------------------------------- -------------------------------- ------------------------------- 

Function  Area (mm2) Power (W) Area (mm2) Power (W) Area (mm2) Power (W) Area (mm2) Power (W) 

tanh(s)  0.029  3.9e-6  0.069  9.6e-6  0.119  1.93e-6  0.17  2.6e-6 

ReLU(2s)  0.034  4.1e-6  0.086  1.1e-5  0.150  2.1e-6  0.21  2.94e-6 

exp(-s)  NA  NA  0.453  6.81e-5  0.481  7.89e-5  0.51  9e-5 
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Fig. 6: Block diagram of SC-based DNN accelerator implementation on ZYNQ XC7Z020 
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(c) 

 

 
(d) 

 
Fig. 7: Results from the training process of SC based DNN; (a) Training loss versus epochs; (b) Training accuracy versus epochs; (c) 

Gain parameters in the hidden layer; (d) Gain parameters in the output layer 

 

The hardware complexity of the proposed FSM-based 

processing elements @ 100 MHz in FPGA is also 

summarized in Table 2. The implementation results show 

that the proposed processing elements consumes 

approximately 6 more power at most while having 7 

times less latency, which gives us lower power 

consumption, compared to the conventional elements (i.e., 

FSM-based elements with 1024 bit). Which denotes the 

latency. The trained network with SC achieves a 

classification accuracy of 98.17% on the training set and 

97.76% on the test set as compared to the trained model 

using conventional floating point, achieving classification 

accuracy of 87.05% on the training set and 87.03% on the 

testing set. Results for this network are collectively 

shown in Fig. 7. The maximum throughput that can be 

achieved by SC based accelerator design is 1.877 GOP/s. 

As per experiment, it was observed that more 

training epochs is required for the DNN architecture to 

achieve an acceptable accuracy on the training and 

testing sets. Thus, the number of epochs is increased to 

5000 and a batch size of 500 is used in each epoch to 

compute the gradients and update the model 

parameters. Furthermore, long stochastic bit-stream 

length have been used in implementation so that the 

additive Gaussian noise becomes zero. Perhaps 

unsurprisingly, the behaviour observed in the preceded 

experiment is noticed in this one as well. That is, 

sudden increments in the gain coefficients, which 

control the saturation levels of the SC neuron, cause a 

sharp increase in the loss function during training. 

Once again, the network seems to appropriately adapt 

the remaining trainable parameters to the updated gain 

coefficients in order to ensure that the loss is 

minimized. As Fig. 8 suggests, there exist some data 

that will cause a large saturation error once signal 

values are clipped to 1. Nonetheless, as previously 
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argued, it seems that the network consciously takes the 

decision to increase the gain coefficients (and thereby 

decrease the scaling factors), to avoid loss of precision 

due to large down-scale parameters in the network 

graph. During the training, weights and biases are 

continuously updated by the learning algorithm thus the 

scaling coefficients of the computational graph will, in 

general, vary during run-time and compared to 

accuracy it is shown in Fig. 9. In a sense, the network 

prefers to increase precision in the computations at the 

cost of a non-zero saturation error for some data points. 

A reasonable interpretation is that such data points occur 

rarely, thus it is preferable not to precisely accommodate 

computations related to those points and instead reduce 

the scaling coefficients to facilitate computations for the 

remaining data points with higher precision. 

Comparison with Existing SC-DNNs 

In this section we do a quantitative comparison with 
existing SC based DNNs operating on unipolar and 
bipolar representations, which is employed by many 
existing DNNs. 

 

 
 

Fig. 8: Max signal value from each saturated operation prior clipping to 1 
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Table 3: Existing hardware platforms Vs proposed approach 

  Network  Platform Throughput Area Power Accuracy 

 Dataset type Year type (Images/sec) (mm2) (W) (%) 

EIE-64PE 

Han et al. (2016)  ImageNet  CNN  2016  ASIC  81967  40.8  0.59  NA 

ArXiv’17 

Ren et al. (2017)  MNIST  CNN  2017  ASIC  781250  36.4  3.53  98.26 

DAC’17 

Sim and Lee (2017)  MNIST  DNN  2017  FPGA  NA  0.06  0.025  98.00 

SIGPLAN’18 

Cai et al. (2018)  MNIST  BNN  2018  FPGA  321543.4  NA  0.560  97.81 

IEEE Trans.’18 

Alawad (2018)  ImageNet  CNN  2018  FPGA  NA  NA  3.61  86.77 

IEEE ISCAS’19 

Lammie and Azghadi (2019)  MNIST  DNN  2019  FPGA  NA  NA  6.80  98.13 

Proposed Model  MNIST  DNN  2020  FPGA  NA  0.61  1.89  98.17 

 
Table 3 shows the results of our proposed SC based 

DNNs together with other implementations. It includes 
several software and hardware implementations using 
FPGAs and ASICs. Hardware neural networks such as 
Spiking Neural Network (SNN) or Bayesian Neural 
Network (BNN) have been implemented on various 
platforms. According to Table 3, the proposed SC 
based DNN is more area efficient: The area of 
ArXiv’17 (Ren et al., 2017) is much more then the area 
of our proposed SC based DNN. Moreover, our proposed 
SC based DNN also have outstanding performance in 
terms of area, power and accuracy. 

Conclusion 

This study considers stochastic computing, a low-cost 
alternative to conventional binary computing to 

implement modern deep neural networks. It was found 

that the worst case scaling parameters that are inherently 
introduced by stochastic arithmetic tend to be overly 

pessimistic, undermining the implementation of neural 
network inference in SC. It was shown that by 

appropriately applying saturation arithmetic, the SC 
network can achieve the higher level of accuracy then 

the conventional floating-point network. Extending the 

implementation of neural network inference in 
stochastic computing, a modified training procedure 

was proposed aiming to capture the limitations of the 
stochastic representation within the training phase of 

the model. Interestingly, it was found that this allows 

the network to develop its own knowledge regarding 
both the recognition task as well as the alternative 

representation that we are trying to impose. The 
network seems to identify the limitations of stochastic 

computing and appropriately modifies its parameters to 
address them. As a consequence, a subsequent 

implementation of the inference algorithm using SC 

hardware could benefit significantly by this training 
procedure. Finally, it was found that the proposed training 

approach can even improve the network’s predictions, 
both in and out of sample. 

Further research can be conducted on several other 

hardware platforms. It will allow to quantitatively access 

the overheads introduced by saturation arithmetic in SC 

as well as to identify if there exists a break-even point. 

Additional experiments need to be conducted with 

deeper network architectures as well as testing with 

alternative datasets can be done. 
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