

 © 2020 Sunny Bodiwala and Nirali Nanavati. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Efficient Implementation of Stochastic Computing Based

Deep Neural Network on Low Cost Hardware with Saturation

Arithmetic

1Sunny Bodiwala and 2Nirali Nanavati

1Department of Computer Engineering, Gujarat Technological University, Ahmedabad, India
2Department of Computer Engineering, Sarvajanik College of Engineering and Technology, Surat, India

Article history

Received: 27-08-2020

Revised: 21-09-2020

Accepted: 17-11-2020

Corresponding Author:

Sunny Bodiwala

Department of Computer

Engineering, Gujarat

Technological University,

Ahmedabad, India
Email: sunny.bodiwala@gmail.com

Abstract: This study presents an efficient and rapid implementation of

Stochastic Computing (SC) based Deep Neural Network (DNN) on a low-

cost hardware platform. The proposed technique uses bipolar signal encoding

in stochastic computing which relatively gives low hardware footprint

compared to binary computing. Thereinafter, stochastic max function is

presented and subsequently used to approximate the hyperbolic tangent

activation function in SC. In addition, saturation arithmetic is proposed to

reduce down scaling parameters that can further affect precision in

computation. In this study, we demonstrate our SC-based DNN feasibility

through a hardware accelerator prototype with the AXI Stream interface on a

PYNQ Z2 board which is equipped with a XILINX ZYNQ XC7Z020-

1CLG400C. The validity of this study is demonstrated through a MNIST

handwritten digit recognition task. The experimental result shows our SC-

based DNN model can be easily deployed on the embedded devices. The

SC-based accelerator with AXI Stream interface performs at 1.877 GOP/s

processing throughput, achieves higher accuracy with minimum area and

energy consumption, consuming only 0.61 mm2 area and 1.89W power.

Keywords: Deep Neural Network, FPGA, Accelerator, Optimization,

Stochastic Computing, Custom Computing

Introduction

Humans have always dreamt of creating intelligent

machines that can think. Today, Artificial Intelligence

(AI) is a thriving field with many active research topics

and practical applications. Humans seek to automate

tasks by developing intelligent software to do daily labor

work, recognize image and speech, medical diagnoses,

develop virtual assistant and many more. AI systems

have the capability to acquire knowledge by extracting

meaningful information from raw data which is also

known as machine learning (Goodfellow et al., 2016).

Deep learning has emerged as a new area of machine

learning research that allows a computer to automatically

learn complex functions directly from the data by

extracting representations at multiple levels of abstraction

(Deng and Yu, 2014; LeCun et al., 2015). Deep Neural

Networks (DNNs) have achieved unprecedented

success in many machine learning applications such as

speech recognition (Abdel-Hamid et al., 2014) and visual

object recognition (Simonyan and Zisserman, 2014).

Although such tasks are intuitively solved by humans,

they originally proved to be the true challenge to

artificial intelligence.

Despite their success, when compared with other
machine learning techniques, DNNs require more
computations due to the deep architecture of the model.
Furthermore, developer’s ambition for better performance
tends to increase the size of the network, leading to longer
training times as well as a larger number of computational
resources needed for implementation. Currently,
researches and practitioners rely on the use of high
performance servers to practically implement large scale
DNNs. However, such high performance computing
clusters incur high power consumption and a large
hardware cost, thereby limiting their suitability for low-
cost applications such as embedded and wearable IoT
devices that require low power consumption and small
hardware footprint (Ren et al., 2017). These
applications increasingly utilise machine learning
algorithms to perform fundamental tasks such as natural
language processing, speech to text transcription as well
as image and video recognition (LeCun et al., 2015).
Hence, to implement such compute-intensive models in

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1571

resource constraint systems an alternative implementation
needs to be found. In some cases, specialised hardware
has been designed using Field Programmable Gate Arrays
(FPGAs) and Application Specific Integraded Circuits
(ASICs). Nevertheless, there still exists a margin of
improvement if the inherent properties and structure of
DNNs are further exploited.

This study considers Stochastic Computing (SC) as a
low-cost alternative to conventional binary computing.
This computing paradigm operates on random bit-
streams, where the signal value is encoded by the
probability of an arbitrary bit in the sequence being one.
Such a representation is particularly attractive as it
enables very low-cost implementations of arithmetic
operations using simple logic circuits (Alaghi and Hayes,
2013). For example, multiplication and addition can be
performed using an AND gate and a Multiplexer (MUX)
respectively. Stochastic computing offers very low
computation hardware area, high degree of error
tolerance and the capability to trade-off computation
time and accuracy without any hardware changes
(Brown and Card, 2001). It therefore has the potential to
implement DNNs with significantly reduced hardware
footprint and low power consumption. On the other
hand, SC has several disadvantages including accuracy
issues due to the inherent variance in estimating the
probability represented by the stochastic sequence.
Furthermore, an increase in the precision of a stochastic
computation requires an exponential increase in the
length of the bit-stream (Alaghi and Hayes, 2013),
thereby increasing the overall computation time. In
general, stochastic arithmetic will be more suitable for an
application where the accuracy requirements in the
individual computations are relatively low.

FPGAs are a very good accelerator of DNNs. It

comprises of integrated chip that allows gate-level

reconfiguration of hardware on field. It contains a huge

number of logic elements also known as Look Up Tables

(LUTs) which can be reconfigured or programmed

according to the custom application requirements. Some

of the advantages of implementing DNNs on FPGAs are

highlighted below:

 FPGA’s have parallel-processing capability that can be

used to exploit DNN architecture to inert parallelism,

accelerating the DNN inference on embedded devices

 Reconfigurability is the major feature of FPGA that

allows specially designed hardware accelerator

synthesis for each model, allowing higher

optimisation in terms of resource usage and good

flexibility for custom user applications

 FPGAs are capable of providing high throughput

with low power consumption than existing hardware

platforms (Ma et al., 2019). Power consumption is

very important for embedded systems that have

limited area and power supply (such as mobile

phones and automotive applications)

The main contributions of our proposed work are:

 A Novel implementation of SC-based DNN on

PYNQ Z2 FPGA

 The formulation and implementation of saturation

arithmetic in SC

 DNN training using stochastic arithmetic and

modified neuron architecture is used

 A scaling scheme is used for DNN inference in SC

and an optimization-based scaling scheme is used to

learn optimal saturation levels during training

The remainder of this study is structured as follows.

Section 1 presents the related work. Section 2 gives

fundamental principles of stochastic computing. The

number of proposed stochastic processing elements

employed in DNNs are presented in section 3. Further,

section 4 proposes design and implementation of neural

network inference in stochastic computing. Section 5 gives

the implementation details and the experimental results.

Finally, conclusion and future work are given in section 6.

Related Work

Deep learning principles have been known for many

years. However, it wasn’t until the start of the 21st

century were advances in hardware technology enabled

the development of capable deep learning models. Even

today, the training of large scale DNNs is often

constraint by the available computational resources.

CPU platforms are in general unable to provide
enough computation capacity for training large scale
neural networks. Nowadays, GPU platforms are the
default choice for neural network training due to the
high computation capacity and easy to use development
frameworks (Guo et al., 2017; Jia et al., 2014).
Krizhevsky et al. (2012) and Facebook AI Group
(Yadan et al., 2013) train AlexNet, a Convolutional
Neural Network (CNN), on multiple GPUs. Li et al.
(2016) study the memory efficiency of various CNN
layers and reveal the performance implication from both
data layouts and memory access patterns. Finally,
(László et al., 2012; Potluri et al., 2012) present a GPU
based implementation of a cellular neural network, a
locally connected recurrent neural network which is
widely used in image processing applications.

FPGA based neural network acceleration is an

emerging research topic as well. FPGAs can implement

high parallelism and potentially surpass GPU in speed

and energy efficiency (Guo et al., 2017). A main

challenge in FPGA based acceleration design is the lack

of development frameworks such as TensorFlow and

Caffe. To aid the development of deep learning models

on FPGAs, (Venieris and Bouganis, 2016) propose a

framework for mapping CNNs on FPGAs. Furthermore,

the authors (Ma et al., 2019; Nakahara et al., 2019) propose

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1572

an FPGA base accelerator to leverage the sources of

parallelism in order to achieve an efficient implementation

of a deep convolutional neural network. Finally, (Zhu et al.,

2020) presents a reconfigurable framework for training

CNNs. While viable, the FPGA and GPU based

implementations still exhibit a large margin of

improvement, mainly because these are general purpose

computing devices not specifically optimized for executing

DNNs. In addition to such acceleration techniques,

DNNs can significantly benefit from the SC technology

which allows implementation of complex functions with

very simple logic. Stochastic computing has the potential

to implement DNNs with significantly reduced hardware

footprint when compared to a fixed or floating-point

implementation. There have been prior attempts to

implement ANNs using stochastic computing.

Qiu et al. (2016) proposed a pre-trained deep neural

networks implementation on FPGA from VGG

(Simonyan and Zisserman, 2014). The 48-bit data

representation with dynamic quantization and vector

decomposition is used to reduce the size of network,

which gave smaller coefficients values that had to be fed

to external memory. Zhang et al. (2015) used

optimization techniques such as transformation and loop

tiling to quantitatively analyze computing memory

bandwidth and throughput for various DNNs. This

representation allowed DNN implementation to achieve

high performance of 61.61 GFLOPS. Related work is

shown by (Han et al., 2016), which results into reduced

power consumption by reducing number of weights. More

higher level of optimization is proposed by (Dua et al.,

2020), which uses the OpenGL compiler for DNNs, such

as VGG and AlexNet. Hah et al. (2019) suggested

framework for automatic conversion of deep neural

network models into intermediate format (HLS) and then

subsequent FPGA implementation.

Qiu et al. (2016) utilise SC to implement a Radial

Basis Function (RBF) neural network significantly

reducing the required hardware. However, RBF neural

networks are no longer widely used in deep learning

applications as the RBF unit saturates to zero for most of

its inputs, making gradient-based optimization

challenging. Yu et al. (2020) presents a neuron design in

SC for DNNs and exploits the energy-accuracy trade-off.

Reconfigurable large scale deep learning systems based

on SC were designed by (Ren et al., 2017). Furthermore,

(Li et al., 2017; Ren et al., 2016) present stochastic

computing hardware designs for the implementation of

CNNs. In (Ren et al., 2016) work, focus is given on

weight storage schemes and optimization techniques to

reduce area and power consumption of weight storage in

hardware. On the other hand, (Li et al., 2017) proposes a

structure optimization method for a general CNN

architecture aiming to minimize area and power

consumption while maintaining adequate network accuracy.

In summary, the aforementioned works have

proposed certain neuron designs using SC in order to

satisfy the computing limitations in resource-constraint

applications such as embedded systems. However, they

only consider the implementation of neural network

inference using SC hardware. Moreover, only a certain

activation, namely the hyperbolic function is considered

whose usage has reduced significantly since the

introduction of the rectified linear unit. Despite previous

work, there still lacks a detailed investigation regarding

the scaling scheme used to implement a neural network

using SC hardware. Finally, there is no existing work

that investigates comprehensively how stochastic

computing can be incorporated during the training stage

of a DNN and how this can affect the performance of the

neural network on the recognition task.

First, a detailed investigation of the stochastic

processing elements employed in DNNs is conducted.

Amongst them, a stochastic approximation of the max

function is presented and subsequently used to

approximate the rectified linear unit in SC. As addition in

SC is performed in a scaled manner, saturation arithmetic

architectures are proposed to alleviate large down-scaling

parameters that undermine precision in the computations.

Combining several building blocks, a scheme is proposed

for the implementation of neural network inference in SC.

Finally, a modified neuron architecture is used for training

DNNs which are SC compatible and can be implemented

efficiently using SC hardware. Experimental results using

the MNIST dataset demonstrate that the proposed

inference scheme can implement a neural network in SC

without increasing the error by more than 2.34%.

Stochastic Computing

Stochastic computing relies on probability theory,

where a probability number is represented by a bit-

stream of chosen length and its value is determined by

the probability of an arbitrary bit in the bit-stream being

one (Gaines, 1969). For example, a stochastic bit-stream

containing 75% of ones and 25% of zeros represents the

number p = 0.75, reflecting the fact that the probability

of observing a one in an arbitrary bit position is 0.75.

Clearly, when compared to a binary radix representation,

the stochastic representation is not very compact.

However, it leads to very low-complexity arithmetic

units which was a primary concern in the past. For

example, multiplication in stochastic arithmetic can be

performed by a single AND gate. Consider two input

stochastic streams that are logically ANDed and assume

that the probability of observing a one in each stream is

p1 and p2 respectively. Then, assuming that the inputs

are suitably uncorrelated or independent, the probability

of any bit in the output of the AND gate being a one is

p1  p2. Figure 1a shows this operation.

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1573

Fig. 1: Stochastic Multiplication using (a) AND gate in unipolar format and (b) XNOR gate in bipolar format

The multiplication operation is a closed operation on the

interval [0, 1] or [-1, 1] for unipolar and bipolar signals

respectively. In the bipolar representation an XNOR gate

performs multiplication between two Bernoulli sequences

Fig. 1b and 2a. The XNOR output is logic 1 whenever the

two inputs are either both logic 0 or logic 1. Denoting by S1

and S2 the inputs to the XNOR gate and S3 the output, then

for the bipolar representation one has:

   

 

3 1 2 1 2

1 2 1 2

1 2 1 2

 (1) (1)

 2 1

S S S S S

S S S S

S S S S

P P P P P

P P P P

P P P P

   

     

    

Using the fact that 1

1 1

2
S

s
P


 and 2

2 1

2
S

s
P


 , then:

3

1 2 1

2
S

s s
P




For bipolar signals, s3 = 2PS3-1 therefore:

1 2 1
3 2 1 1 3

2

s s
s s s

 
    

 
 (1)

The stochastic multiplier gives an estimate of the result

and if S1 and S2 are independent Bernoulli bits then output

S3 is also a Bernoulli sequence. If there is no error in the

approximation, the final value of s3 might not be equal to

the product s1  s2. Factors such as fluctuation in bit stream

and quantisation error could be the reason behind SC based

representation error. In this study, we have implemented

stochastic multiplier in target programming language.

Proposed Stochastic Processing Elements

This section analyses a number of stochastic

processing units employed in deep neural networks. This

study considers both combinational logic and sequential

circuit for processing stochastic bit-streams. Without

loss of generality, the bipolar format of the stochastic

processing units is mainly considered.

Addition

Addition and subtraction in stochastic arithmetic are

slightly more complex operations than multiplication.

This is due to the fact that addition and subtraction are

not closed operations on the interval [0, 1] or [-1, 1]. The

result of adding two numbers that lie within [-1, 1] does

not necessarily lie within [-1, 1]. For this reason, a scaled

add operation is used in SC in order to map the output of

the adder from [-2, 2] to [-1, 1]. The weighted sum of

two probabilities, p1+(1-)p2; where 0    1, lies

within [-1, 1] and is representable in the stochastic

computing domain. Such a computation can be realised

using a two-input multiplexer where the select line is

driven by the selecting probability  (Gaines, 1969).

Consider the MUX in Fig. 2b. The probability of a logic

one appearing at the output is equal to:

y A S B SP P P P P    (2)

By choosing PS = 0.5, for bipolar signals one has:

2 1
2

Y

a b
y P


   (3)

In other words, the MUX generates an output with a

generating probability that is the weighted sum of the

input probabilities.
 

2

a b
y a b


   will be used to

denote the scaled addition operation in stochastic

computing. Note that for bipolar signals PS = 0.5

corresponds to a stochastic bit-stream having 50% zeros

and 50% ones. Scaled subtraction can be implemented

using the same MUX unit simply by inverting the input to

be subtracted. The scaled adder is implemented in the target

environment and its operation is verified empirically.

S1 = 0,1,1,0,1,0,1,0 (4/8)

S2 = 1,0,1,1,1,0,1,1 (6/8)

S1 = 1,1,0,1,0,0,1,0 (0/8)

S2 = 1,0,1,1,1,1,1,0 (4/8)

S3 = 0,0,1,0,1,0,1,0 (3/8)

S3 = 1,0,0,1,0,0,1,1 (0/8)

AND

XNOR

(a)

(b)

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1574

Squaring

The squaring operation is very similar to that of

multiplication. However, attempting to square a stochastic

signal by connecting it to both inputs of a XNOR gate

results in a sequence that is always logic 1. This is because

the two input signals are correlated with each other. This

effect can be avoided by multiplying a stochastic sequence

with its delayed, by one clock cycle, copy sequence. In that

case, the two inputs are uncorrelated and the output

sequence will approximate the square value of the input.

The delay can be realised in hardware by placing a D-type

flip-flop in one of the inputs of the XNOR gate as illustrated

in Fig. 2c. Flip-flops used in this context perform no

computation. Instead, they are used to statistically isolate

two cross-correlated sequences (Gaines, 1969).

Inner Product

The inner product is the core operation of artificial

neurons both for feedforward networks but also for

convolutional networks. Hence, to effectively implement

neural networks using stochastic computing an efficient

stochastic inner product unit is required. Similar to addition

and subtraction, the inner product is not a closed operation

on the interval [-1, 1], hence a scaled inner product is

utilised in the context of SC. As proposed by (Gaines,

1969), the two-input scaled adder can be extended to the

weighted sum of an arbitrary number of input signals using

the same MUX architecture. For a MUX unit with N inputs,

this is done by selecting one of the input lines at random,

with a certain probability of selecting each one and

connecting the selected input line to the output line for a

single clock cycle, i.e., for a single bit.

One way to implement the inner product would be to

use XNOR multiply units to compute the products wixi for

all i followed by an equally weighted N-input MUX unit to

accumulate the results. In contrast to the implementation

above, this approach requires to convert weight values into

stochastic bit-streams. As the implementation given by

Algorithm 1 provides greater flexibility in software, it is

preferred in the context of this study.

Algorithm 1 Stochastic Inner Product

Input: Number of inputs N

Floating point weight coefficient wi  R

Stochastic bit-stream Xi  RL representing xi  [-1, 1]

Output: Bit-stream Y  RL

Integer sout  R

for i = 0 to N-1 do

 Invert inputs if wi < 0 then

 Zi = Xi

 else

 Zi = Xi

 end

 Define probability distribution;

 i

i

jj

w

w
 



end

Generate Output bit-stream;

 for j = 0 to L-1 do

 i = Draw a sample according to i Y[j] = Zi[j] Sout =
1

0

N

i

i

w






end

 (a) (b) (c)

Fig. 2: Stochastic Units; (a) Bipolar Multiplier; (b) Scaled Adder; (c) Squaring Circuit

Fig. 3: Linear finite state machine

A

B

A

B

Y

Y

A

S

Y

clk

D Q

Q

X 

X X X X X X

X

X  X  X  X  X  X 

S0 S1 S2 SN-3 SN-2 SN-1

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1575

Proposed FSM Based Elements in SC

Deep neural networks employ highly non-linear
activation and output units such as the hyperbolic
tangent function or the rectified linear unit. The
implementation of such non-linear functions with
combinational logic is sometimes impossible and is in
general not straightforward so we have used FSM based
elements for SC based DNN.

The basic form of the proposed FSM is illustrated in
Fig. 3. It consists of a set of N states arranged in a linear
form (i.e., a saturating counter). Usually, N = 2K is chosen
where K is a positive integer. This is a no skips model. That
is transitioning from the first to the last state must occur
through a set of transitions through all of the intermediate
states (Gaines, 1969). Additionally, the state transitions are
controlled by the input stochastic sequence X which is
assumed to be a Bernoulli sequence and the output Y at each
clock cycle is determined entirely by the current state. Note
that the states S0 and SN-1 have saturating effects.

Stochastic Maximum Function

Undoubtedly, a stochastic implementation of a max
function is of particular importance for the purpose of
implementing modern deep neural networks in stochastic
computing. However, in contrast to a conventional radix-2
representation, where individual bits are weighted by their
position in the digit-vector, in stochastic arithmetic all the
bits in the stochastic sequence are equally weighted. Thus,
neither the value nor the sign of the stochastic signal is
related to the exact position of the ones and zeros in the
bit-stream. Instead, the ratio of ones to the length of the
bit-stream determines both the sign and value of the
signal. Thereby, a processing element that computes the
maximum (or minimum) between two stochastic signals
cannot rely on the position of the individual bits in the
input bit-streams, as a binary equivalent could do.

An approximation of the max function in stochastic

arithmetic, namely Smax, with both input and output

signals encoded as bipolar stochastic bit-streams may be

implemented using the configuration shown in Fig. 4.

The basic idea of the stochastic max unit is to compute

the difference between the inputs A and B, i.e., A-B and

based on that to generate a select line signal that will

choose the maximum between the two inputs. Based on

the architecture in Fig. 4, the difference is computed

using the leftmost MUX unit (in combination with the

NOT gate). The resulting bit-stream is fed into the Stanh

unit which is implemented using the FSM. Thus, if PA is

larger than PB, then Stanh tends to stay on the high state

side, whereas if PB is larger than PA, then Stanh tends to

stay on the low state side. Finally, the rightmost MUX

unit in Fig. 4 selects A if the Stanh output is at the high

state and B if the Stanh output is at the low state. Thus,

the output of the circuit shown in Fig. 4 is equal to

max(A,B). A stochastic minimum function can be

achieved by simply permuting the inputs of the output

(i.e., rightmost) MUX unit in Fig. 4. The stochastic max

unit is implemented in the target language.

Proposed Saturation Arithmetic in Stochastic

Computing

Accumulation in stochastic arithmetic needs to be

performed in a scaled manner as addition and subtraction

are not closed operations on the interval [-1, 1]. The

output of a two-input stochastic adder is therefore scaled

by 1/2. Cascading N such scaled adders, results in an

output that is down-scaled by 2N. Such a down-scaling

phenomenon can cause severe accuracy loss in the

overall computation especially when N is large, as a

stochastic computing system using word lengths of size

2L can only represent values as low as 1 = 2L, which may

be insufficient to represent the down-scaled output when

N is large. This becomes even worst if the values

involved in the computation are themselves small. Note

that such imprecision cannot be compensated by post-

processing (i.e., up-scaling) the output of the overall

system as the information is already lost during the

down-scaling procedure in the stochastic domain.

Similarly, the corresponding output of the stochastic

inner product is down-scaled by
1

N

ii
w

 , which can be

significantly large when either N or |wi| are large.

Fig. 4: Stochastic max unit

A

B

X

1

0

Y 1 0

N max(A,B)

PX = 0.5

tanh(N/2)x)

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1576

The objective while designing saturation arithmetic

units in the stochastic domain is to mitigate the down-

scaling effect by worst-case scalings at the output of a

stochastic accumulator, thus increase precision while

minimizing possible representation errors in the

stochastic encoding of the result. Note that in contrast to

the fixed-point realization of a saturation system in

conventional binary computing, in stochastic computing

truncation of low order bits is not possible as all bits in a

stochastic sequence are equally weighted. Hence, only

saturations can be considered as a possible way of

realizing saturation arithmetic in SC.

Stochastic Computing Based Neural Network

This section addresses the design and

implementation of neural network inference in

stochastic computing. Without loss of generality,

emphasis is given on feed forward neural networks,

i.e., multi-layer perceptrons.

Similar to input data values, encoding the model’s

parameters by means of stochastic bit-streams without

any saturation error requires that the trained

coefficients lie inside the range [-1, 1], either inherently

or after appropriate processing. In contrast however to

the primary input values, weights and biases can be

scaled individually so that each coefficient can be

represented without compression error in stochastic

computing. This is because these are trained

coefficients and are fixed during inference. Hence,

once the scaling of each coefficient is determined it

will not change for any input data point.

Following the design and analysis of stochastic

processing elements in section 3, the implementation of

an inner product in stochastic computing according to

algorithm 2 does not require to convert the weight values

into stochastic bit-streams. Instead, their absolute values

are used to define a selecting probability distribution

over the inputs of the MUX unit. On the other hand, the

stochastic adder requires that both inputs are encoded as

stochastic bit-streams. Therefore, in terms of simulating

the neural network inference within a software

environment, only the trained biases need to be

converted into stochastic bit-streams, whereas the

learned weights can be kept in their floating-point

representation. To convert bias coefficients to stochastic

bit-streams, each bias term b can be down-scaled by:

2log
2

b

biass  (4)

Then the down-scaled coefficient,
bias

b
b

s
  , can be

represented without any compression error in stochastic

computing.

Network Scaling

In the context of inference, once the scaling factor at

the input is fixed, the scaling coefficient of every node in

the SC equivalent graph can be determined. This is

exactly due to the fact that during inference the model’s

parameters are fixed and known. The process of

specifying the scaling of every node in the network is

termed scaling scheme and is based on the scaling

parameter at the output of every individual processing

element that is employed in the SC network graph. The

scheme proposed in this study is based on forward

propagation of known information on data ranges

through the network data flow graph. The process is

described in the remaining of this section considering

feedforward network data flow graphs.

Algorithm 2 Input Product Scaling Scheme

Input: Number of inputs m  R

Weight coefficient w  Rm

Input Scaling Factor s  Rm

Output: Input re-scaling coefficients rin  Rm

Output re-scaling coefficient rout  R

Output scaling factor sdot  R

smax = max{s0, s1,…, sm-1}

 for i = 0 to m-1 do

 rini =
max

is

s

 wsum =
1

0

m

ii
w





 sdot =
 2log

2
in sums w   

 rout = max sum

dot

s w

s



end

Fig. 5: Deep neural data flow graph

Input layer Hidden layer Output layer

x1

x2

x3

x4

sbias

sin

sin

sin

sin

sbias

s1

s2

sout
Y

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1577

As an illustrative example, consider the network

graph shown in Fig. 5. The network has four inputs,

x1,…,x4, a single hidden layer with two units and a single

output y. Next, consider a single data point x  R4 and

assume the weight matrices in the hidden and output

layer are given by W(1)  R42 and W(2)  R21

respectively. Furthermore, the biases are given by b(1) 

R2 and b(2)  R for the hidden and output layers

respectively. The activations in the hidden layer are

therefore calculated as:

      1 1 1

T

h W x b  (5)

and the output of the network is given by:

      

1
2 2Th

y W b  (6)

where,  is the activation function. To start with,

assuming that the input data values xi lie in some interval

[-l, u], the input scaling factor sin is selected. Thus, every

input xi is scaled by sin and the down-scaled inputs xi =

xi/sin are converted into stochastic bit-streams. Next,

consider the first activation  1

1h in the hidden layer. This

is computed as follows:

   
3

1 1

1 ,1 1

0

i i

i

h w x b


 
   

 
 (7)

Algorithm 3 Bias addition scaling scheme

Input: Bias Scaling Factor sbias  R

Input scaling factor sdot  R

Output: Input re-scaling coefficients rbias, rdot  Rm

Output scaling factor sout  R

smax = max{sbias, sdot}

max

dot
out

s
r

s


max

bias
bias

s
r

s


 sout = 2 smax

The inner product between the weights and the down-

scaled input values can be calculated in stochastic

computing using the implementation given in algorithm

2. The output will be a stochastic bit-stream representing

the down-scaled weighted sum. Recall that the output of

algorithm 2 is associated to a scaling coefficient
 3 1

,10sum ii
w w


 . Hence, the inner product between  1

,1iw

and {xi} in 7, when computed in stochastic computing

will be down-scaled by a factor of sin  wsum. Note that sin

 wsum is fixed for all data points and can be computed in

advance as the matrix W(1) is known. Finally, to maintain

consistency throughout the network structure, the output

of the stochastic inner product is re-scaled accordingly

so that the scaling factor associated with it is given by:

 2log

2
in sums w

dots
    (8)

that is, the next integer power of 2 of sin  wsum. Since sdot

 sin  wsum, the aforementioned re-scaling of the inner

product output can be realised by means of a XNOR

multiplier with inputs the inner product output and a bit-

stream representing

in sums w

sdot


  1. This is easy to

implement in hardware and does not incur significant

hardware or delay overheads.

The proposed scaling scheme easily extended to

feedforward networks of arbitrary depth and width. In

summary, the proposed scheme consists of two main

procedures. The one associated with the MUX-based

inner product between weights and features and the one

associated with the addition of the bias term. These are

summarised, in their most general form, in algorithms 2

and 3. The re-scaling coefficients are used at the input

and output of stochastic accumulators to appropriately

re-scale the corresponding bit-streams using XNOR

multipliers. Algorithm 4 illustrates a possible

implementation of the Stanh FSM architecture.

Effectively, the scaling coefficients at every node

of the network specify the range of values that the

corresponding signal can take and are the same for all

data points. This is because both the input scaling

parameter selected but also the scaling at the output of

each individual processing unit is worst-case scalings.

Hence, the procedures given in algorithms 2 and 3

need to be executed only during the construction of

the SC network graph and the re-scaling multipliers

need to be inserted wherever is needed. Once these

actions are done, the SC based neural network graph

is completed and remains fixed during inference run

time. As briefly discussed this is a desired

consequence as it allows the hardware infrastructure

to remain fixed during run time.

Finally, in the event where saturation arithmetic is

employed, appropriate saturation levels need to be

determined. A standard approach when creating a

saturation arithmetic implementation, is to determine

saturation levels through simulation. For the purpose of

neural network inference, this is described as follows.

Test data are applied to the network and the peak value

reached by each signal is recorded. Internal scalings and

thereby saturation levels, are then selected to ensure that

the full dynamic range afforded by the signal

representation would be used under excitation with the

given input vectors (Constantinides et al., 2003).

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1578

Algorithm 4 Stochastic approximation of the hyperbolic

tangent function

Input: Bit-stream X

Number of states N

Number of stochastic samples L

Output: Number of stochastic samples L

Initialize FSM Parameters

 Smin = 0

 Smax = N-1

 Sbound =
2

N

 Initialize state sequence

 S = sbound

 for i = 0 to L-1 do

 S

end

tate transition

 if X[i] == 0 then

 S = S-1

else

 S = S +1

end

Saturate the counter

 if S < Smin then

 S = Smin

else

 S = Smax

end

Output logic

 if S  Sbound then

 Y[i] = 1

else

 Y[i] = 0

end

Once the output signals are computed, conversion

from stochastic arithmetic to floating-point arithmetic

can be done effectively. Each conversion outcome will

be intrinsically down-scaled by the scaling associated to

the corresponding bit-stream. Thus, the outcome of the

conversion must be up-scaled, in floating-point, by an

amount equal to the scaling coefficient of the signal.

Experimental Results

We have prototyped a DNN accelerator on an FPGA

board. The main goal of this is to validate our SC-based

DNN accelerator as well as to assess our SC

algorithm’s suitability for FPGA implementations. We

have used a XILINX ZYNQ XC7Z020 board, which

includes PYNQ Z2 FPGA and a DDR3 memory. Figure

6 illustrates the system architecture, where the Jupyter

Notebook is used to run the software part and an AXI

bus and an AXI memory controller are used to connect

hardware modules to the DDR3 memory. The main

module is designed in Verilog HDL, for the

conventional binary representation as well as proposed

SC. For the prototyping we have used DNN, with

network size given in Table 1. All the layers are

implemented in software on the Python as discussed

above. We have verified the correct operation,

matching with the software simulation results produced

by Tensorflow on Google colab GPU. The used

development board (PYNQ Z2 board) prototype

incorporates a low-cost FPGA (ZYNQ XC7Z020-

1CLG400C) where the DNN circuit is configured.

However, we also incorporate an UART and a state’s

machine in the FPGA to allow writing the DNN inputs

and reading the DNN outputs from the PC.

Table 1 shows our FPGA synthesis result, after

respective mappings. LUT-based MACs are used for the

binary case as DSP blocks are generally not used in SC-

based designs. Xilinx RTL synthesis tool based

optimization is considered for design. From the Table 1

it is very clear that SC-based DNN use much less

resources compared with the conventional binary design.

Thus SC-based DNN can be useful in low cost

applications. Our proposed SC based DNN attains near 1

cycle latency for MNIST, thus successfully achieve the

higher efficiency in terms of area and power.

Table 1: Comparison of floating point DNN and SC based DNN implementations on FPGA @ 100 MHz Frequency with 728-128-

10 network size

Dataset Models LUT FF DSP Freq.

MNIST Binary radix 46172 45931 NA 100 (MHz)

 Proposed 40917 46612

Table 2: Hardware complexity of the proposed FSM based processing element @ 100 MHz in FPGA Prototype

 1024 512 256 128

Activation ------------------------------------ -------------------------------- -------------------------------- -------------------------------

Function Area (mm2) Power (W) Area (mm2) Power (W) Area (mm2) Power (W) Area (mm2) Power (W)

tanh(s) 0.029 3.9e-6 0.069 9.6e-6 0.119 1.93e-6 0.17 2.6e-6

ReLU(2s) 0.034 4.1e-6 0.086 1.1e-5 0.150 2.1e-6 0.21 2.94e-6

exp(-s) NA NA 0.453 6.81e-5 0.481 7.89e-5 0.51 9e-5

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1579

Fig. 6: Block diagram of SC-based DNN accelerator implementation on ZYNQ XC7Z020

(a)

(b)

Jupyter notebook UART PC

AXI

Data

transfer
Data

transfer

Controller

Data buffer

DNN accelerator

ZYNQ SoC

300

250

200

150

100

50

0

C
ro

ss
 e

n
tr

o
p
y

 e
rr

o
r

0 1000 2000 3000 4000 5000

Training epochs

1.0

0.8

0.6

0.4

0.2

0.0

0 1000 2000 3000 4000 5000

Training epochs

C
la

ss
if

ic
at

io
n
 a

cc
u

ra
cy

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1580

(c)

(d)

Fig. 7: Results from the training process of SC based DNN; (a) Training loss versus epochs; (b) Training accuracy versus epochs; (c)

Gain parameters in the hidden layer; (d) Gain parameters in the output layer

The hardware complexity of the proposed FSM-based

processing elements @ 100 MHz in FPGA is also

summarized in Table 2. The implementation results show

that the proposed processing elements consumes

approximately 6 more power at most while having 7

times less latency, which gives us lower power

consumption, compared to the conventional elements (i.e.,

FSM-based elements with 1024 bit). Which denotes the

latency. The trained network with SC achieves a

classification accuracy of 98.17% on the training set and

97.76% on the test set as compared to the trained model

using conventional floating point, achieving classification

accuracy of 87.05% on the training set and 87.03% on the

testing set. Results for this network are collectively

shown in Fig. 7. The maximum throughput that can be

achieved by SC based accelerator design is 1.877 GOP/s.

As per experiment, it was observed that more

training epochs is required for the DNN architecture to

achieve an acceptable accuracy on the training and

testing sets. Thus, the number of epochs is increased to

5000 and a batch size of 500 is used in each epoch to

compute the gradients and update the model

parameters. Furthermore, long stochastic bit-stream

length have been used in implementation so that the

additive Gaussian noise becomes zero. Perhaps

unsurprisingly, the behaviour observed in the preceded

experiment is noticed in this one as well. That is,

sudden increments in the gain coefficients, which

control the saturation levels of the SC neuron, cause a

sharp increase in the loss function during training.

Once again, the network seems to appropriately adapt

the remaining trainable parameters to the updated gain

coefficients in order to ensure that the loss is

minimized. As Fig. 8 suggests, there exist some data

that will cause a large saturation error once signal

values are clipped to 1. Nonetheless, as previously

60

50

40

30

20

10

0 1000 2000 3000 4000 5000

Training epochs

G
ai

n

14

12

10

8

6

4

2

G
ai

n

0 1000 2000 3000 4000 5000

Training epochs

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1581

argued, it seems that the network consciously takes the

decision to increase the gain coefficients (and thereby

decrease the scaling factors), to avoid loss of precision

due to large down-scale parameters in the network

graph. During the training, weights and biases are

continuously updated by the learning algorithm thus the

scaling coefficients of the computational graph will, in

general, vary during run-time and compared to

accuracy it is shown in Fig. 9. In a sense, the network

prefers to increase precision in the computations at the

cost of a non-zero saturation error for some data points.

A reasonable interpretation is that such data points occur

rarely, thus it is preferable not to precisely accommodate

computations related to those points and instead reduce

the scaling coefficients to facilitate computations for the

remaining data points with higher precision.

Comparison with Existing SC-DNNs

In this section we do a quantitative comparison with
existing SC based DNNs operating on unipolar and
bipolar representations, which is employed by many
existing DNNs.

Fig. 8: Max signal value from each saturated operation prior clipping to 1

Fig. 9: Training time versus classification accuracy

5000

4000

3000

2000

1000

0

M
ax

im
u

m
 s

ig
n
al

 v
al

u
e

Training epochs

0 1000 2000 3000 4000 5000

L1 matmul

L1 matadd

Lo matmul

Lo matadd

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

C
la

ss
if

ic
at

io
n
 a

cc
u

ra
cy

20 40 60 80 100 120

Training time(s)

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1582

Table 3: Existing hardware platforms Vs proposed approach

 Network Platform Throughput Area Power Accuracy

 Dataset type Year type (Images/sec) (mm2) (W) (%)

EIE-64PE

Han et al. (2016) ImageNet CNN 2016 ASIC 81967 40.8 0.59 NA

ArXiv’17

Ren et al. (2017) MNIST CNN 2017 ASIC 781250 36.4 3.53 98.26

DAC’17

Sim and Lee (2017) MNIST DNN 2017 FPGA NA 0.06 0.025 98.00

SIGPLAN’18

Cai et al. (2018) MNIST BNN 2018 FPGA 321543.4 NA 0.560 97.81

IEEE Trans.’18

Alawad (2018) ImageNet CNN 2018 FPGA NA NA 3.61 86.77

IEEE ISCAS’19

Lammie and Azghadi (2019) MNIST DNN 2019 FPGA NA NA 6.80 98.13

Proposed Model MNIST DNN 2020 FPGA NA 0.61 1.89 98.17

Table 3 shows the results of our proposed SC based

DNNs together with other implementations. It includes
several software and hardware implementations using
FPGAs and ASICs. Hardware neural networks such as
Spiking Neural Network (SNN) or Bayesian Neural
Network (BNN) have been implemented on various
platforms. According to Table 3, the proposed SC
based DNN is more area efficient: The area of
ArXiv’17 (Ren et al., 2017) is much more then the area
of our proposed SC based DNN. Moreover, our proposed
SC based DNN also have outstanding performance in
terms of area, power and accuracy.

Conclusion

This study considers stochastic computing, a low-cost
alternative to conventional binary computing to

implement modern deep neural networks. It was found

that the worst case scaling parameters that are inherently
introduced by stochastic arithmetic tend to be overly

pessimistic, undermining the implementation of neural
network inference in SC. It was shown that by

appropriately applying saturation arithmetic, the SC
network can achieve the higher level of accuracy then

the conventional floating-point network. Extending the

implementation of neural network inference in
stochastic computing, a modified training procedure

was proposed aiming to capture the limitations of the
stochastic representation within the training phase of

the model. Interestingly, it was found that this allows

the network to develop its own knowledge regarding
both the recognition task as well as the alternative

representation that we are trying to impose. The
network seems to identify the limitations of stochastic

computing and appropriately modifies its parameters to
address them. As a consequence, a subsequent

implementation of the inference algorithm using SC

hardware could benefit significantly by this training
procedure. Finally, it was found that the proposed training

approach can even improve the network’s predictions,
both in and out of sample.

Further research can be conducted on several other

hardware platforms. It will allow to quantitatively access

the overheads introduced by saturation arithmetic in SC

as well as to identify if there exists a break-even point.

Additional experiments need to be conducted with

deeper network architectures as well as testing with

alternative datasets can be done.

Funding Information

No Funding has been received for this work.

Author’s Contributions

All authors have equally contributed to this work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved.

References

Abdel-Hamid, O., Mohamed, A. R., Jiang, H., Deng, L.,

Penn, G., & Yu, D. (2014). Convolutional neural

networks for speech recognition. IEEE/ACM

Transactions on audio, speech and language

processing, 22(10), 1533-1545.

Alaghi, A., & Hayes, J. P. (2013). Survey of stochastic

computing. ACM Transactions on Embedded

computing systems (TECS), 12(2s), 1-19.

Alawad, M. (2018). Scalable fpga accelerator for deep

convolutional neural networks with stochastic

streaming. IEEE Transactions on Multi-Scale

Computing Systems, 4(4), 888-899.

Brown, B. D., & Card, H. C. (2001). Stochastic neural

computation. I. Computational elements. IEEE

Transactions on computers, 50(9), 891-905.

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1583

Cai, R., Ren, A., Liu, N., Ding, C., Wang, L., Qian, X.,

... & Wang, Y. (2018). VIBNN: Hardware

acceleration of Bayesian neural networks. ACM

SIGPLAN Notices, 53(2), 476-488.

Constantinides, G. A., Cheung, P. Y., & Luk, W. (2003).

Synthesis of saturation arithmetic architectures.

ACM Transactions on Design Automation of

Electronic Systems (TODAES), 8(3), 334-354.

Deng, L., & Yu, D. (2014). Deep learning: methods and

applications. Foundations and trends in signal

processing, 7(3–4), 197-387.

Dua, A., Li, Y., & Ren, F. (2020, May). Systolic-CNN:

An OpenCL-defined Scalable Run-time-flexible

FPGA Accelerator Architecture for Accelerating

Convolutional Neural Network Inference in

Cloud/Edge Computing. In 2020 IEEE 28th

Annual International Symposium on Field-

Programmable Custom Computing Machines

(FCCM) (pp. 231-231). IEEE.

Gaines, B. R. (1969). Stochastic computing systems. In

Advances in information systems science (pp. 37-172).

Springer, Boston, MA.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y.

(2016). Deep learning (Vol. 1, No. 2). Cambridge:

MIT press.

Guo, K., Zeng, S., Yu, J., Wang, Y., & Yang, H. (2017).

A survey of FPGA-based neural network

accelerator. arXiv preprint arXiv:1712.08934.

Hah, T. K., Liew, Y. T., & Ong, J. (2019). Low

Precision Constant Parameter CNN on FPGA. arXiv

preprint arXiv:1901.04969.

Han, S., Liu, X., Mao, H., Pu, J., Pedram, A., Horowitz,

M. A., & Dally, W. J. (2016). EIE: efficient

inference engine on compressed deep neural

network. ACM SIGARCH Computer Architecture

News, 44(3), 243-254.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S.,

Long, J., Girshick, R., ... & Darrell, T. (2014,

November). Caffe: Convolutional architecture for

fast feature embedding. In Proceedings of the

22nd ACM international conference on

Multimedia (pp. 675-678).

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).

Imagenet classification with deep convolutional

neural networks. In Proceedings of the 25th

International Conference on Neural Information

Processing Systems - Volume 1, (pp. 1097-1105).

Red Hook, NY, USA. Curran Associates Inc.

Lammie, C., & Azghadi, M. R. (2019, May). Stochastic

computing for low-power and high-speed deep

learning on FPGA. In 2019 IEEE International

Symposium on Circuits and Systems (ISCAS) (pp.

1-5). IEEE.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep

learning. nature, 521(7553), 436-444.

Li, C., Yang, Y., Feng, M., Chakradhar, S., & Zhou, H.

(2016, November). Optimizing memory efficiency

for deep convolutional neural networks on GPUs. In

SC'16: Proceedings of the International Conference

for High Performance Computing, Networking,

Storage and Analysis (pp. 633-644). IEEE.

Li, J., Ren, A., Li, Z., Ding, C., Yuan, B., Qiu, Q., &

Wang, Y. (2017, January). Towards acceleration of

deep convolutional neural networks using stochastic

computing. In 2017 22nd Asia and South Pacific

Design Automation Conference (ASP-DAC) (pp.

115-120). IEEE.

László, E., Szolgay, P., & Nagy, Z. (2012, August).

Analysis of a gpu based cnn implementation. In 2012

13th International Workshop on Cellular Nanoscale

Networks and their Applications (pp. 1-5). IEEE.

Ma, Y., Cao, Y., Vrudhula, S., & Seo, J. S. (2019).

Performance modeling for CNN inference

accelerators on FPGA. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and

Systems, 39(4), 843-856.

Nakahara, H., Sada, Y., Shimoda, M., Sayama, K.,

Jinguji, A., & Sato, S. (2019, September). FPGA-

based training accelerator utilizing sparseness of

convolutional neural network. In 2019 29th

International Conference on Field Programmable

Logic and Applications (FPL) (pp. 180-186). IEEE.

Potluri, S., Fasih, A., Vutukuru, L. K., Machot, F. A., &

Kyamakya, K. (2012). CNN Based High

Performance Computing for Real Time Image

Processing on GPU. In: Unger H., Kyamaky K.,

Kacprzyk J. (eds). Autonomous Systems:

Developments and Trends, (pp. 255-266). Springer

Berlin Heidelberg, Berlin, Heidelberg.

Qiu, J., Wang, J., Yao, S., Guo, K., Li, B., Zhou, E., ... &

Wang, Y. (2016, February). Going deeper with

embedded fpga platform for convolutional neural

network. In Proceedings of the 2016 ACM/SIGDA

International Symposium on Field-Programmable

Gate Arrays (pp. 26-35).

Ren, A., Li, Z., Ding, C., Qiu, Q., Wang, Y., Li, J., ... &

Yuan, B. (2017). Sc-dcnn: Highly-scalable deep

convolutional neural network using stochastic

computing. ACM SIGPLAN Notices, 52(4), 405-418.

Ren, A., Li, Z., Wang, Y., Qiu, Q., & Yuan, B. (2016,

October). Designing reconfigurable large-scale deep

learning systems using stochastic computing. In

2016 IEEE International Conference on Rebooting

Computing (ICRC) (pp. 1-7). IEEE.

Sim, H., & Lee, J. (2017, June). A new stochastic

computing multiplier with application to deep

convolutional neural networks. In Proceedings of

the 54th Annual Design Automation Conference

2017 (pp. 1-6).

Sunny Bodiwala and Nirali Nanavati / Journal of Computer Science 2020, 16 (11): 1570.1584

DOI: 10.3844/jcssp.2020.1570.1584

1584

Simonyan, K., & Zisserman, A. (2014). Very deep

convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556.

Venieris, S. I., & Bouganis, C. S. (2016, May).

fpgaConvNet: A framework for mapping

convolutional neural networks on FPGAs. In 2016

IEEE 24th Annual International Symposium on

Field-Programmable Custom Computing Machines

(FCCM) (pp. 40-47). IEEE.

Yadan, O., Adams, K., Taigman, Y., & Ranzato, M. A.

(2013). Multi-gpu training of convnets. arXiv

preprint arXiv:1312.5853.

Yu, S., Zhou, H., Peng, S., Amrouch, H., Henkel, J., &

Tan, S. X. D. (2020). Run-Time Accuracy

Reconfigurable Stochastic Computing for Dynamic

Reliability and Power Management. arXiv preprint

arXiv:2004.13320.

Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., & Cong,

J. (2015, February). Optimizing fpga-based

accelerator design for deep convolutional neural

networks. In Proceedings of the 2015 ACM/SIGDA

international symposium on field-programmable

gate arrays (pp. 161-170).

Zhu, J., Wang, L., Liu, H., Tian, S., Deng, Q., & Li, J.

(2020). An Efficient Task Assignment Framework

to Accelerate DPU-Based Convolutional Neural

Network Inference on FPGAs. IEEE Access, 8,

83224-83237.

