

 © 2020 Syahana Nur’Ain Saharudin, Koh Tieng Wei and Kew Si Na. This open access article is distributed under a Creative

Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Review

Machine Learning Techniques for Software Bug Prediction: A

Systematic Review

1Syahana Nur’Ain Saharudin, 1Koh Tieng Wei and 2Kew Si Na

1Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM), 43400 Serdang, Malaysia
2Faculty of Social Sciences and Humanities, Universiti Teknologi Malaysia (UTM), 81310 Skudai, Malaysia

Article history
Received: 29-09-2020
Revised: 12-11-2020
Accepted: 14-11-2020

Corresponding Author:

Koh Tieng Wei
Faculty of Computer Science
and Information Technology,
Universiti Putra Malaysia
(UPM), 43400 Serdang,
Malaysia

Email: twkoh@upm.edu.my

Abstract: The goal of software bug prediction is to identify the software

modules that will have the likelihood to get bugs by using some

fundamental project resources before the real testing starts. Due to high cost
in correcting the detected bugs, it is advisable to start predicting bugs at the

early stage of development instead of at the testing phase. There are many

techniques and approaches that can be used to build the prediction models,

such as machine learning. This technique is widely used nowadays

because it can give accurate results and analysis. Therefore, we decided

to perform a review of past literature on software bug prediction and

machine learning so that we can understand better about the process of

constructing the prediction model. Not only we want to see the machine

learning techniques that past researchers used, we also assess the

datasets, metrics and performance measures that are used during the

development of the models. In this study, we have narrowed down to 31
main studies and six types of machine learning techniques have been

identified. Two public datasets are found to be frequently used and

object-oriented metrics are the highly chosen metrics for the prediction

model. As for the performance measure, both graphical and numerical

measures are often used to evaluate the performance of the models.

From the results, we conclude that the machine learning technique can

predict the bug, but there are not many applications in this area that

exist nowadays. There are a few challenges in constructing the

prediction model. Thus, more studies need to be carried out so that a

well-formed result is obtained. We also provide a recommendation for

future research based on the results we got from this study.

Keywords: Software Bug Prediction, Machine Learning Techniques,

Literature Review

Introduction

Software quality modelling is an important part in the
software development process and this concept is well-

known in the software engineering field (Al-Jamimi,

2016). Also, testing is considered as the most essential

stage in the development process because this stage is

strongly linked to the software quality. If the bugs are

detected earlier through prediction, then the quality of

software can be improved. With the earlier detection of

bug, testers can be assisted in defining the delivery of

resources wisely so that the bug can be successfully

detected (Xia et al., 2014). When bugs are found before

the release of the software, they can be removed before

the deployment of the software. The goals of software

bug prediction, especially when being applied to the
early stage (Hassan et al., 2018), are to increase the

value of the software and lessen the cost, which

eventually offer a well-panned software management.

Currently, it is a new era of technology and because

of this the complexity and magnitude of a software has

grown rapidly. Therefore, testing plays an important part

during the development process. Menzies et al. (2010;

Wahono, 2015) stated that the chance of detection

using this approach might be higher than the chance

of current reviews that is used in the industry. Due to

this, software bug prediction is a popular research

area in the field of software engineering today. This
research has attracted many researchers from different

domains, making them propose a variety of

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1559

frameworks, models and techniques for bug

prediction. There are also researchers that focused on

improving the existing techniques and models.

Despite many efforts have been performed, the

research area of software bug prediction still has many

ambiguities. Even though there are many models and

frameworks have been proposed, not a single technique

has its own limitations. Among all the domains, the

widely used approach is machine learning. Different

machine learning algorithms are used to detect bugs,

such as neural network, support vector machine and

bayesian network. There are also different datasets that

are available publicly so that the practitioners can

easily conduct their experiment without having any

worry on data, such as PROMISE and NASA MDP

repositories. These datasets have various metrics,

which said to be related to defective or non-defective

modules, such as Halstead metrics and McCabe

metrics. In order to check the performance of the

proposed model, different type of performance

measures are used for evaluation such as Area Under

Curve (AUC) or F-Measure.

To enable the practice of machine leaning techniques
in the context of bug prediction, it is required to review

the experimental evidence gained on these techniques

through the existing studies. Kamei and Shihab (2016)

discussed on software bug prediction in their recent

work. However, this study only give a summary on

bug prediction, its component and laid down some

achievements that have been made in the area.

Wahono (2015) also conducted a review on software

bug prediction, but the study focused on the datasets

used for the prediction model, its methods and

frameworks that have been proposed by past studies.

Also, the study included the past literature from 2000
to 2013. Jayanthi and Florence (2017) presented a

review on defect prediction techniques using product

metrics. The study analyzed various software metrics

and summarized the techniques used for defect

prediction. Not only that, the study also discussed on

the constraints and limitation of building software

defect prediction model. However, the study did not

include the datasets used for the model and the

performance measures to evaluate the models. Prasad and

Sasikala (2019) also presented a review on software

defect prediction techniques, but did not mentioned
the software metrics used, the datasets and the

performance measures.

Our study will be focusing on several scopes of

software bug prediction. The objective of this study is to

summarize, analyze and evaluate the experimental

evidence on the machine learning techniques that have

been used in software bug prediction. We will also be

evaluating the datasets used for the model, frequently

used software metrics and the performance measures for

model’s assessment. Therefore, we can obtained the

desirable techniques and methods that can be used in the

future experiment.
The rest of the paper is structured as follows: Section

2 discussed the method in discovering the related studies

and presented how research questions are defined.

Section 3 discussed the results to the research questions.

Section 4 described an overview of the bug prediction

models, along with some challenges based on the past

studies. Section 5 presented the limitation of this study.

Finally, in section 6, we concluded the paper and provide

recommendations for future work.

Methodology

The methodology for this study is Systematic

Literature Review (SLR). This approach has been

chosen to review the studies on software bug

prediction and SLR is a well-known review method,

which consist of identifying, evaluating and

understanding the available research evidence with the

goal of answering the defined research questions

(Kitchenham and Charters, 2007).

Research Question

In order to guide us for the reviewing and assessment

of the past studies, research questions are defined. These

questions were designed according to Population,

Intervention, Comparison, Outcomes and Context

(PICOC) criteria (Kitchenham and Charters, 2007).

Table 1 describes the criteria of PICOC.

The purpose of this review is to provide and evaluate

the experimental evidence gained from the past studies
regarding the usage of machine learning techniques for

bug prediction model. The research questions that will

be answered in this SLR are listed down as below:

 RQ1 - Which datasets are frequently used for

software bug prediction?

 RQ2 - What kind of machine learning techniques

that have been selected for prediction model?

 RQ3 - Which metrics are frequently used for

software bug prediction?

 RQ4 - Which performance measures are used for

software bug prediction?

Table 1: PICOC criteria

Population Software, system, application,
 information system
Intervention Software bug prediction, software defect
 prediction, software fault prediction,
 error-prone, bug-prone, techniques, methods
Comparison Not available

Outcomes Positive bug prediction techniques
Context Small and large datasets, studies in
 academy and industry

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1560

Review Protocol

The process of searching the studies include choosing

digital repositories, constructing the search string,

performing an initial search and getting the first list of

main studies from the digital repositories that matched

the search string. Appropriate digital repositories were

selected and the digital databases that are used to do the

searching are listed as follow:

 ScienceDirect

 Google Scholar

 SpringerLink

 IEEE Xplore

After choosing the repositories, we need search string to
perform an exhaustive search in order to select the main
studies. We chose exhaustive search because the number of
main studies is not very large, along with a smaller number
of studies that focused on empirical research. The
combination of words and characters that have been entered
by the user are known as a search string and this is used to
find the desired results. The results given by the digital
databases can be affected by the information provided to the
search engine. If we want to guarantee that all the main
studies have been covered, we need to be wary when
selecting the keywords and in placing the keywords into the
search string. Therefore, we defined a few steps to construct
the search string and the steps are listed as below:

 Identify the search terms by analyzing the research

questions using PICOC

 Identify the search terms in significant titles,

abstracts and keywords

 Identify the alternative words of search terms

 Use Boolean and/or when defining search string

Using the steps that have been defined above, we

eventually used the following search string:

Software and (Bug or Fault or Defect) and

(Proneness or Prediction) and (Machine Learning

or Neural Network or Bayesian Network or

Decision Tree or Support Vector Machine or

Random Forest)

The four digital databases that were listed above have

been used as the platform for the defined search string.

We restricted the search from 2014 to 2020 in order to

identify the machine learning techniques that are used in

the current research. In order to select the main studies

from the initial list, the inclusion and exclusion criteria

were designed. These criteria are listed below:

a. Inclusion criteria

 Studies that discuss software bug prediction

model using machine learning

 Studies that discuss and compare the

performance of bug prediction models

 Studies that are empirical in nature

 Studies that have been presented at Q1 and

Q2 journal

 Studies that are written in English

b. Exclusion criteria

 Studies that do not discuss about software bug

prediction model using machine learning

 Studies that do not discuss on the performance
of bug prediction models

 Studies that are not empirical

 Studies that do not presented at Q1 and Q2 journal

 Studies that do not written in English

Based on the search string that had been designed, we

managed to collect a total of 1452 initial list of studies

from four digital repositories. Then, we excluded the

main studies based on the title and abstract, which lead

us to 213 main studies. We continued to examine these

main studies thoroughly and applied the inclusion and

exclusion criteria and finally narrowed down to 31

studies. Table 2 presents the number of studies from

their respective digital repositories.

Data Extraction

The main studies are taken from the repositories so

that the gathered data can contribute to the research

questions concerned in this SLR. The form of data

extraction was designed to gather data from the main

studies that are necessary to answer the research

questions. The characteristics that are used to answer the

research questions are shown in Table 3, whereas

Table 4 shows the relationship between the main

studies and research questions, whether the studies

answered the questions or not.

Table 2: Summary of search results

Repository Initial list Second list Final list

ScienceDirect 226 82 16
Google Scholar 143 22 4
SpringerLink 319 51 8
IEEE Xplore 764 58 3
Total 1452 213 31

Table 3: Data extraction characteristics linked to research

questions

Characteristic Research question

Researchers, publications, titles General
Software bug datasets RQ1
Software bug prediction machine RQ2

Learning techniques
Software metrics RQ3
Performance measures for software RQ4
bug prediction model

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1561

Table 4: Result of data extraction

Study ID Reference RQ1 RQ2 RQ3 RQ4

S1 Erturk and Sezer (2015) √ √ √ √

S2 Kumar (2018) √ √ √ √

S3 Pan et al. (2019) √ √ √ √
S4 Zhou et al. (2019) √ √ √

S5 Jin and Jin (2015) √ √ √ √

S6 Abaei and Selamat (2014) √ √ √

S7 Okutan and Yildiz (2014) √ √ √ √

S8 Arar and Ayan (2015) √ √ √ √

S9 Laradji et al. (2015) √ √ √ √

S10 Rhmann et al. (2020) √ √ √ √
S11 Majd et al. (2020) √ √ √ √

S12 Boucher and Badri (2018) √ √ √ √

S13 Park and Hong (2014) √ √ √ √

S14 Jakhar and Rajnish (2018) √ √ √ √

S15 Ma et al. (2014) √ √ √ √
S16 Ni et al. (2017) √ √ √ √
S17 Kalsoom et al. (2018) √ √ √ √
S18 Miholca et al. (2018) √ √ √ √
S19 Wu et al. (2018) √ √ √ √

S20 Mori and Uchihira (2019) √ √ √ √

S21 Geng (2018) √ √ √ √
S22 Dong et al. (2018) √ √ √
S23 Abaei et al. (2015) √ √ √ √
S24 Ryu et al. (2015) √ √ √ √

S25 Rathore and Kumar (2017) √ √ √ √

S26 Rana et al. (2015) √ √ √ √

S27 Ji et al. (2019) √ √ √ √
S28 Hua et al. (2019) √ √ √ √
S29 Zhao et al. (2018) √ √ √ √
S30 Wei et al. (2018) √ √ √ √
S31 Yang et al. (2014) √ √ √ √

Result

Datasets

Dataset is known as a collection of information that is

used in the specific domain in order to solve the problem

under consideration. There are various datasets that are

available publicly for the researchers to use in order to

construct the bug prediction model. It is not easy to find

a standard dataset, especially from organization, because

organization mostly reluctant to display their datasets to

the public (Kamei and Shihab, 2016). However, public

datasets have issue with the quality. Pan et al. (2019)

simplified the existing dataset, such as PROMISE dataset,

to solve this issue and constructed Simplified PROMISE

Source Code (SPSC) dataset. The authors simplified the

dataset by enlarging the original datasets for their research.

Many researchers came out with different frameworks

using different datasets and it is not easy to assess the

proposed frameworks because of their different nature in

datasets. Figure 1 shows the percentage of datasets that are

frequently used in the main studies.
Based from the gathered results, we can conclude that

both PROMISE repository (Sayyad, 2005) and NASA

Metrics Data Program (MDP) (Jacob and Raju, 2017)

repository are mostly used by past researchers as datasets

for software bug prediction. Both repositories were used

in 13 studies respectively. PROMISE repository is a

library for software engineering research and offers free

and long-term storage for research datasets. This

repository consist dataset such as SOFTLAB and NASA

datasets, which mostly about the industrial software

projects and can help researchers in the development of
predictive models. NASA MDP datasets is a library that

stores problem, product and metrics data. The datasets

consist of 13 original NASA datasets and metrics were

generated from these datasets and then reports were

generated and made available to the public freely.

AEEM datasets, which had been used in three

studies, were collected by (D’Ambros et al., 2010) and

the datasets include Eclipse and Apache. The purpose of

this dataset is to compare the performance of different

feature space. Relink datasets was collected by (Wu et al.,

2011) and it has been used in two studies. Other datasets

that are used in the remaining studies are open source

Java projects, Git repository, Code4Bench and Android

projects. All of the datasets that are used in the main

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1562

studies are public datasets and because of this, the datasets

have attracted many researchers to perform their studies.

Machine Learning Techniques

Many techniques for software bug prediction are

presented in the literature and based from the 31 studies,

we classified the six most used techniques in software

bug prediction. The methods and distribution of the

studies are shown in Fig. 2. Despite many studies

reported on the comparison regarding the techniques’

performance in modelling the bug prediction, there is no
solid agreement on the best technique when we looked at

the studies individually. The six techniques that have been

identified are Bayesian Network (BN), Neural Network

(NN), Support Vector Machine (SVM), Clustering, Feature

Selection (FS) and Ensemble Learning (EL).

Among these techniques, the most widely used is

NN, such as Artificial Neural Network (ANN), Deep

Neural Network (DNN) and Convolutional Neural

Network (CNN). Arar and Ayan (2015) pointed out

that the feasibility of NN is restricted because of the

trouble in choosing the right parameters for network

architecture even though NN has a good accurateness

as a classifier when it comes to predicting bugs.

Therefore, the authors proposed to combine ANN with

novel Artificial Bee Colony (ABC) algorithm in order

to find the optimal weights of the bugs as the

parameter. Miholca et al. (2018) also proposed a new

framework, where they combined ANN with gradual

relational association rule to separate between

defective and non-defective software entities.

Fig. 1: Distribution on Software Bug Datasets

Fig. 2: Distribution on machine learning techniques

Bayesian networks

Clustering

Neural networks

Feature selection

Support vector machine

Ensemble learning

20

53.3

26.7

13.3

12
30

Technique

NASA MDP PROMISE AEEEM Relink Others

43.3

43.3

10

6.7

13.3

Dataset

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1563

There is also a Study on combining ANN with Self-

Organizing Map (SOM) (Abaei et al., 2015), where the

goal is to predict the label of the modules. SOM is one of
NN based algorithm that creates a similarity map of

input data and the concept is it compresses information

while preserving the most important relationships of

main data (Li et al., 2010). The combination of ANN

and SOM proposed by (Abaei et al., 2015) found that the

hybrid model can be used as an automated tool to assist

the testing effort by prioritizing the module’s defects,

leading to increasing quality of development.

Bayesian algorithms, specifically Naïve Bayes (NB),

are second widely used in modelling the bug prediction.

NB has better performance because of its easiness for the
certain dataset. Despite its simplicity, there is still room

for improvement. Wu et al. (2018) proposed a novel

classifier called diffused Bayes to increase the

performance of traditional NB classifier. The new

classifier obtained better result compared to the

traditional classifier through a diffusion function that is

built on the vibration of string. The new classifier is

proposed as a solution to the short supply of cross-

project training data and non-normal distributed

attributes (Mori and Uchihira, 2019).

Clustering techniques is known as unsupervised

learning methods and it is more suitable to use in the
case where the label of the bugs is not presented.

Ryu et al. (2015) used K-nearest neighbor, which is

one of the clustering algorithms, to predict bug. They

implemented the algorithm with NB to solve the class

imbalance problem, where the ratio of bug class to

clean class is far low. Therefore, the authors proposed

a hybrid framework using K-nearest neighbor and NB,

where the K-nearest neighbor is used to select the

learning local knowledge and NB is used to select

global knowledge. Their experimental results display

high performance of bug prediction.

SVM is quite a popular algorithm to be used as

classifier of machine learning. However, in recent

studies, the algorithm is not widely used because it is

said to perform less well in software bug prediction.

SVM might perform below expectation since they

required parameter optimization to get great

performance. Because of this problem, (Wei et al., 2018)

integrated traditional SVM with NPE algorithm to

improve SVM performance. NPE algorithm can holds

the vital problems of bug measurement in high-

dimensional and small case.

EL techniques, which possess the same percentage as

SVM, have a positive impact in handling small-sized and

imbalanced datasets. EL models have been shown to

provide better performance compared to single weak

learners, especially when it comes to dealing with high

dimensional, classification problems and complex

regression (Kazienko et al., 2013). The most popular EL

algorithm is Random Forest, where it consists of

several regression trees. The concept of Random

Forest is they built trees that make random choices on
which variables to exclude at each node, but this kind

of concept can lead to high-dimensional spaces

problem. Therefore, (Zhou et al., 2019) used cascade

strategy on traditional Random Forest to help choose

suitable bug features and representation learning

based on the layer-by-layer structure.

FS is the study of algorithms to reduce data’s

dimension so that the performance of the technique

can be improved. However, most of the studies used

FS as a method to select the best metrics and

classifiers to be used for software bug prediction

(Kumar, 2018; Laradji et al., 2015; Jakhar and

Rajnish, 2018; Ni et al., 2017).

Software Metrics

Software metrics are used as independent variables

when predicting bug proneness in most of the studies. In

the domain of software engineering, there exist several

metrics to measure the value of the software. We

describe the type of metrics used in the main studies as

independent variable in Fig. 4 and 3 shows the

percentage of metrics used in the main studies.

The frequently used software metric in the main

studies is McCabe metrics, such as Cyclomatic

Complexity, Essential Complexity and Design

Complexity, which was introduced by Thomas McCabe

in 1976. Line Of Code (LOC) metrics have been used in

half of the main studies related to software bug

prediction, by measuring the number of lines in a

code, number of comment, number of code and

comment and so forth. LOC is the most useful in bug

prediction if we integrated it with other software

metrics. Halstead metrics, which was introduced by

(Halstead, 1977), also widely used in the main studies.

The goal of the metrics is to identify the measurable

attributes of software and the relations between them.

CK Metrics Suite was proposed by (Chidamber and

Kemerer, 1994) and it is widely used to measure the

characteristics of object-oriented systems such as

inheritance, classes and encapsulation (Michura et al.,

2013). QMOOD metrics, which stands for Quality

Model for Object-Oriented Design metrics, was

proposed by (Bansiya and Davis, 2002) and it

measures the relationship between quality attributes

and design property that have been defined (Couto et al.,

2014). The widely used Martin’s metrics was

presented by (Andresen et al., 1994) and the purpose

is to measure the quality of object-oriented design by

looking at the interdependence between the classes

(Kaur and Sharma, 2015).

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1564

Miscellaneous referred to other metrics that have

been used in the main studies besides the one mentioned

above. Other metrics that are used are branch count,

requirements metrics, decision count, edge count, code

churn, metric and Henderson-Sellers metric. The metric

proposed by (Tang et al. 1999) is a quality-oriented

metrics that extended the original CK Metrics Suite.

Henderson-Sellers metric, which was proposed in 1996,

is also an extension of CK Metrics Suite. The extension

was done based on the Lack of Cohesion in Methods

(LCOM). Code Churn metrics measure the amount of

changes in code that take place within a software unit over

time. There are two types of churn metrics (Yang et al.,

2014) which are LOC-ADDED and LOC-DELETED.

Certain studies reported that the object-oriented

metrics, such as CK Metrics Suite and QMOOD metrics

are strongly connected to bug proneness. Coupling
Between Objects (CBO) and Response For a Class

(RFC), which are CK Metrics and LOC are the best

metrics for software bug prediction based on feature

selection methods (Okutan and Yildiz, 2014; Boucher and

Badri, 2018). Kumar. (2018) added that Measure Of

Aggregation (MOA), Cohesion Among Methods of class

(CAM), Coupling between Methods (CBM) and

Average Method Complexity (AMC) as the best metrics.

CBM and AMC are metrics proposed by the authors had

used two types of feature selection methods, such as

feature ranking method and feature subset selection, to
determine which metrics are useful for software bug

prediction. On the other hand, the results obtained

from the main studies specified that Number Of

Children (NOC) and Depth of Inheritance Tree (DIT)

as not the best metrics for software bug prediction

(Okutan and Yildiz, 2014). However, none of the

main studies give any result for procedural metrics,

such as Halstead and McCabe metrics, that are not

useful for software bug prediction.

Performance Evaluation

It is essential to evaluate the proposed approach because

it is to check its efficiency and effectiveness. Different

evaluation strategies are used by different researchers to

evaluate the performance of their proposed approach.

Figure 5 shows the percentage of performance measures for

evaluation. There are two types of measurement, such as

graphical measure and numerical measure. Graphical

measure consists of precision-recall curve, cost curve and

ROC curve, whereas numerical measure consist of
accuracy, F-Measure, precision and others more.

Based on the results that we have obtained, Area

Under Curve (AUC) has been frequently used in the

studies. The success of the prediction model is depended

on the calculation of area under the ROC curve and this

measurement are used to test the usefulness of the

models. Recall is the second most widely used

performance measure for bug prediction model. This

measurement is regarding the quantity of bug-prone

classes that have been predicted correctly among the

actual bug-prone classes. F-Measure is the next
performance measure that the researchers used and this

measure provides the trade-off between the classifier’s

performance. Precision is where we measure the

correctness of the model, whereas accuracy can be

defined as the amount of correctly identified bugs

divided by the total number of bugs.

Other metrics that are not frequently used in the main

studies are MCC (6.7%), TER (13.3%), Specificity (6.7%),

Probability of false alarm (10.0%), False positive rate

(16.7%), False negative (13.3%), G-Mean (0.3%), Balance

(0.3%) and normalized expected cost (0.3%).

Fig. 3: Distribution of software metrics

Metric

50

QMOOD metrics

Halstead

Martin's metrics

Ok metrics suite Line Of Code

(LOC)
Miscellaneous

23.3

43.3

6.7

6.7

56.7
53.3

McCabe

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1565

Fig. 4: Type of metrics

Fig. 5: Distribution of performance measures

Discussion

In this study, we have reviewed 31 journal papers on

software bug prediction that were published from 2014

to 2020. The goal of this study is to provide a summary

of software bug prediction model and find the scopes on

developing the model. We have conducting a search in

various digital repositories so that we can extract the studies

that have been published between our desired time-range.

Based on our observation, the prediction of bug can

be measured in several ways despite its complexity and

ambiguity. A bug can be discovered in any stage of the

development process and some bugs can remain hidden

during the testing and making their appearance during

the deployment to the real-world. Binary class

classification is widely used in the early prediction and it

has been chosen as the basis for prediction model. There

is a downside to this method because classifying the bug

into defective and non-defective does not give a clear

picture of the prediction. There might be some modules

that are sensitive to bugs that we had missed. Instead of

doing classification, it is better to focus on the bug’s level of

seriousness and predicting the number of bugs existed. This
kind of practice can help us focus more on the severe

Area under curve Precision Accuracy F-measure Recall Others

36.7

46.7 26.7

30

76.7

56.7

Performance measures

Software metrics

CK metrics

suite

Halstead

metrics

QMOOD

metrics
McCabe

Martin

metrics
LOC Misc.

WMC NPM Ca
Branch

count

Ce DAM DIT
Req.

metrics

Tang et al.

metrics
MOA NOC

CBO MFA
Henderson-

sellers

Decision

count
RFC CAM

LCOM
Edge

count

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1566

modules, prioritizing them for correction and eventually it

will lead to the development of robust system.

If we followed the research questions that we have
defined previously, the first question is regarding the

type of datasets that are frequently used by the

researchers for constructing the prediction model. It has

been found that NASA MDP and PROMISE repositories

are the popular datasets among the researchers because

of their availability. But, as mentioned before, public

datasets can have inheriting issues, especially when it

comes to quality, which can lead to poor prediction

results. To solve this problem, we can consider applying

some proper data cleaning and data pre-processing

techniques (Pan et al., 2019).
The second question is regarding the machine

learning techniques that are mostly used for building the

model and NN has been chosen as the frequently used

technique. Traditional SVM has been chosen as the least

technique to be used for bug prediction model, unless we

did some integrations with other algorithms (Wei et al.,

2018). FS and EL has been chosen as the best methods

for choosing the appropriate classifiers or metrics

because of their tree-like structure (Kumar, 2018;

Laradji et al., 2015; Jakhar and Rajnish, 2018; Ni et al.,

2017; Kalsoom et al., 2018). In the future, we can

improve the selection of bug prediction techniques using
machine learning because merely using better technique

than before does not guarantee the improvement of

performance. Still, there are some researchers focused on

proposing hybrid frameworks (Erturk and Sezer, 2015;

Arar and Ayan, 2015; Rhmann et al., 2020; Miholca et al.,

2018; Abaei et al., 2015; Ryu et al., 2015), or improving the

existing techniques (Pan et al., 2019; Zhou et al., 2019;

Rathore and Kumar, 2017; Wei et al., 2018).

The third research question is about the software

metrics that are used as independent variables in

software bug prediction. It is found that object-oriented

metrics, such as CK Metrics Suite and QMOOD metrics,

have the likelihood to be chosen in the prediction

model. There is also research by (Okutan and Yildiz,

2014) where they proposed a new metric to measure

the quality of the code, LOCQ. This metric can be

used to predict faultiness and it is as effective as the

famous object-oriented metrics.

The last question is about the performance measures,

where AUC is the most widely used in the main studies.

AUC is popular because the ranking of this approach is

they place positive prediction higher than the negative

prediction. AUC depends on the area of ROC curve and

ROC is independent of the change in proportion of

responders. That is why AUC is the most preferable

performance measure to evaluate the prediction model.
In this study, we also present some challenges when

it comes to bug prediction and provide some description

on the works that had been done to solve these

challenges. The first challenge that we had discovered is

about the implementation of bug prediction on agile

development. Nowadays, agile approaches have been
widely used for software development because of their

iteratively manner and less documentation. When

developing a prediction model, we need to depend on

the past data that has been gathered from previous

software project. This is quite difficult for agile

development because their release cycle is very fast

and sometimes there is insufficient amount of data for

early releases of software project. Erturk and Sezer

(2015) presented a new framework for agile

development, where they combined fuzzy interference

systems and expert knowledge to predict the bugs in
the early releases of software development. When the

sufficient past data is presented, then they used the

conventional bug prediction process.

Another challenge is regarding the approach to build

bug prediction model. Based on the review of past

studies, we can used various machine learning

techniques to perform prediction. However, we can

consider to try other approach, such as using ensemble

learning algorithms and other classifiers to predict the

bugs (Rathore and Kumar, 2017). It is found that this

kind of approach has better performance compared to

individual approach.

It is also a challenge when we want to make the

prediction models more informative. Most of the

researchers construct the models by classifying them,
for example, whether they are defective or non-

defective. There are not many researchers focused on

the seriousness of bugs and their numbers. It is better

to have the information on the modules that have a

large number of bugs instead of having defective or

non-defective information. Yang et al. (2014) reported

their study on this approach, where they focused on

predicting the rank of software modules and number

of bug prediction.

Threat to Validity

The purpose of this study is to analyze the past

studies on software bug prediction using the machine

learning techniques. Most of the studies have a huge

range of datasets, but we cannot be sure whether these

datasets represent the bug prediction scenarios or not.

For this study, we did not resort to manual reading of

titles of all published papers in journal during the

searching stage. In fact, we used the search string that we

had constructed earlier to find the relevant studies on bug

prediction. We have search as many studies as we can in
accordance to inclusion and exclusion criteria.

However, there is a likelihood that we had overlooked

other proper studies. Also, this review did not include

the studies from conference proceedings since we

only focused on papers from the primary journals.

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1567

Therefore, it had limited other machine learning

techniques for our review. The final concern is about

the researcher bias, where they have the tendency to
confirm that the written information was true.

Conclusion

In this study, we conducted a review so that we can

analyze and evaluate the performance of software bug

prediction model using machine learning techniques.

After a detailed investigation followed by an orderly

step, we identified 31 main studies within the period

of 2014 to 2020. We summarized the studies based on

the datasets, machine learning techniques, software

metrics and performance evaluation measurements.
The main findings that we have gotten from the main

studies are summarized as below:

 NASA MDP and PROMISE repositories were the

most frequently used dataset in the past literature

 BN, EL, FS, NN, Clustering and SVM were the

machine learning techniques that we have identified
and the most widely used technique for bug

prediction model were NN and BN
 CK Metrics Suite was found to be the most widely

chosen as independent variables in the past
literature. CBO, RFC and LOC were found to be the
most useful metrics in bug prediction domain

 AUC, precision, recall, F-Measure and accuracy are
the most frequently used performance measures in

the main studies

The following are the recommendations for future

research on software bug prediction using machine

learning techniques:

 There are a few studies that adopt the software bug

prediction for agile development

 There are a few studies that improve the

performance of bug prediction models through

integration with other algorithms

 There are few studies that proposed an approach to

make the models more informative

Acknowledgement

This study has been funded by the Ministry Of

Education (MOE) Malaysia under Fundamental

Research Grant (FRGS) project no. 05-01-19-2199FR

(5540324). Authors would like to thank editor and all

anonymous reviewers for valuable comments.

Author’s Contributions

Syahana Nur’Ain Saharudin: Collecting,

reviewing, synthesizing relevant literature and drafting

manuscript contents.

Koh Tieng Wei: Supervising, revising manuscript

contents and editing manuscript.

Kew Si Na: Reviewing and editing manuscript.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Andresen, B. H., Casasanta, J. A., Keeney, S. C., Martin,

R. C., & Satoh, Y. (1994). U.S. Patent No.

5,355,037. Washington, DC: U.S. Patent and

Trademark Office.

Abaei, G., & Selamat, A. (2014). Increasing the accuracy

of software fault prediction using majority ranking

fuzzy clustering. International Journal of Software

Innovation (IJSI), 2(4), 60-71.

Abaei, G., Selamat, A., & Fujita, H. (2015). An

empirical study based on semi-supervised hybrid

self-organizing map for software fault prediction.
Knowledge-Based Systems, 74, 28-39.

Al-Jamimi, H. A. (2016, August). Toward

comprehensible software defect prediction models

using fuzzy logic. In 2016 7th IEEE International

Conference on Software Engineering and Service

Science (ICSESS) (pp. 127-130). IEEE.

Arar, Ö. F., & Ayan, K. (2015). Software defect

prediction using cost-sensitive neural network.

Applied Soft Computing, 33, 263-277.

Bansiya, J. & Davis, C. (2002). A hierarchical model for

object-oriented design quality assessment. IEEE

Transactions on Software Engineering, 28(1), 4-17.

Boucher, A., & Badri, M. (2018). Software metrics

thresholds calculation techniques to predict fault-

proneness: An empirical comparison. Information

and Software Technology, 96, 38-67.

Chidamber, S. & Kemerer, C. (1994). A metrics suite for

object-oriented design. IEEE Transactions of Software

Engineering, 20(6), 476-493.

Couto, C., Pires, P., Valente, M. T., Bigonha, R. S. &

Anquetil, N. (2014). Predicting software defects

with causality tests. Journal of Systems and

Software, 93, 24-41.

D'Ambros, M., Lanza, M., & Robbes, R. (2010, May). An

extensive comparison of bug prediction approaches. In

2010 7th IEEE Working Conference on Mining

Software Repositories (MSR 2010) (pp. 31-41). IEEE.

Dong, F., Wang, J., Li, Q., Xu, G., & Zhang, S. (2018).

Defect prediction in android binary executables

using deep neural network. Wireless Personal

Communications, 102(3), 2261-2285.

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1568

Erturk, E., & Sezer, E. A. (2015). A comparison of some

soft computing methods for software fault prediction.

Expert systems with applications, 42(4), 1872-1879.
Geng, W. (2018). Cognitive Deep Neural Networks

prediction method for software fault tendency module

based on Bound Particle Swarm Optimization.

Cognitive Systems Research, 52, 12-20.

Halstead, M. H. (1977). Elements of software science (Vol.

7, p. 127). New York: Elsevier.

Hassan, F., Farhan, S., Fahiem, M. A., & Tauseef, H.

(2018). A Review on Machine Learning Techniques

for Software Defect Prediction. Technical Journal,

23(02), 63-71.

Hua, W. E. I., Chun, S. H. A. N., Changzhen, H. U.,
ZHANG, Y., & Xiao, Y. U. (2019). Software Defect

Prediction via Deep Belief Network. Chinese

Journal of Electronics, 28(5), 925-932.

Jacob, S. G., & Raju, G. (2017). Software defect

prediction in large space systems through hybrid

feature selection and classification. Int. Arab J. Inf.

Technol., 14(2), 208-214.

Jakhar, A. K., & Rajnish, K. (2018). Software fault

prediction with data mining techniques by using

feature selection based models. International

Journal on Electrical Engineering and

Informatics, 10(3), 447-465.
Jayanthi, R. F., & Florence, L. (2017). A review on

software defect prediction techniques using product

metrics. International Journal of Database Theory

and Application, 10(1), 163-174.

Ji, H., Huang, S., Wu, Y., Hui, Z., & Zheng, C. (2019).

A new weighted naive Bayes method based on

information diffusion for software defect prediction.

Software Quality Journal, 27(3), 923-968.

Jin, C., & Jin, S. W. (2015). Prediction approach of

software fault-proneness based on hybrid artificial

neural network and quantum particle swarm
optimization. Applied Soft Computing, 35, 717-725.

Kalsoom, A., Maqsood, M., Ghazanfar, M. A., Aadil, F.,

& Rho, S. (2018). A dimensionality reduction-based

efficient software fault prediction using Fisher linear

discriminant analysis (FLDA). The Journal of

Supercomputing, 74(9), 4568-4602.

Kamei, Y., & Shihab, E. (2016, March). Defect

prediction: Accomplishments and future challenges.

In 2016 IEEE 23rd international conference on

software analysis, evolution and reengineering

(SANER) (Vol. 5, pp. 33-45). IEEE.
Kaur, G. & Sharma, D. (2015). A study on Robert C.

Martin’s metrics for packet categorization using
fuzzy logic. International Journal of Hybrid
Information Technology, 8(12), 215-224.

Kazienko, P., Lughofer, E., & Trawiński, B. (2013).
Hybrid and ensemble methods in machine
learning J. UCS special issue. J Univers Comput
Sci, 19(4), 457-461.

Kitchenham, B., & Charters, S. (2007). Guidelines for

performing systematic literature reviews in

software engineering.
Kumar, L. S. (2018). Effective fault prediction model

developed using least square support vector

machine (LSSVM). Journal of Systems and

Software, 137, 686-712.

Laradji, I. H., Alshayeb, M., & Ghouti, L. (2015).

Software defect prediction using ensemble learning

on selected features. Information and Software

Technology, 58, 388-402.

Li, L., Vaishnavi, V. K., & Vandenberg, A. (2010).

SOM Clustering to Promote Interoperability of

Directory Metadata: A Grid-Enabled Genetic
Algorithm Approach. J. UCS, 16(5), 800-820.

Ma, Y., Zhu, S., Qin, K., & Luo, G. (2014). Combining

the requirement information for software defect

estimation in design time. Information Processing

Letters, 114(9), 469-474.

Majd, A., Vahidi-Asl, M., Khalilian, A., Poorsarvi-

Tehrani, P., & Haghighi, H. (2020). SLDeep:

Statement-level software defect prediction using

deep-learning model on static code features. Expert

Systems with Applications, 147, 113156.

Menzies, T., Milton, Z., Turhan, B., Cukic, B., Jiang, Y., &

Bener, A. (2010). Defect prediction from static code
features: Current results, limitations, new approaches.

Automated Software Engineering, 17(4), 375-407.

Michura, J., Capretz, M. A., & Wang, S. (2013). Extension

of Object-Oriented Metrics Suite for Software

Maintenance. ISRN Software Engineering, 2013.

Miholca, D. L., Czibula, G., & Czibula, I. G. (2018). A

novel approach for software defect prediction

through hybridizing gradual relational association

rules with artificial neural networks. Information

Sciences, 441, 152-170.

Mori, T., & Uchihira, N. (2019). Balancing the trade-off
between accuracy and interpretability in software

defect prediction. Empirical Software Engineering,

24(2), 779-825.

Ni, C., Liu, W. S., Chen, X., Gu, Q., Chen, D. X., &

Huang, Q. G. (2017). A cluster based feature

selection method for cross-project software defect

prediction. Journal of Computer Science and

Technology, 32(6), 1090-1107.

Okutan, A., & Yıldız, O. T. (2014). Software defect

prediction using Bayesian networks. Empirical

Software Engineering, 19(1), 154-181.
Pan, C., Lu, M., Xu, B., & Gao, H. (2019). An Improved

CNN Model for Within-Project Software Defect
Prediction. Applied Sciences, 9(10), 2138.

Park, M., & Hong, E. (2014). Software fault prediction
model using clustering algorithms determining the
number of clusters automatically. International
Journal of Software Engineering and Its
Applications, 8(7), 199-204.

Syahana Nur’Ain Saharudin et al. / Journal of Computer Science 2020, 16 (11): 1558.1569

DOI: 10.3844/jcssp.2020.1558.1569

1569

Prasad, V. S. & Sasikala, K. (2019). Software defect

prediction techniques - A review. Journal of

Information and Computational Science, 9(9),
619-638.

Rana, Z. A., Mian, M. A., & Shamail, S. (2015).

Improving Recall of software defect prediction

models using association mining. Knowledge-Based

Systems, 90, 1-13.

Rathore, S. S., & Kumar, S. (2017). Linear and non-

linear heterogeneous ensemble methods to predict

the number of faults in software systems.

Knowledge-Based Systems, 119, 232-256.

Rhmann, W., Pandey, B., Ansari, G., & Pandey, D. K.

(2020). Software fault prediction based on change
metrics using hybrid algorithms: An empirical

study. Journal of King Saud University-Computer

and Information Sciences, 32(4), 419-424.

Ryu, D., Jang, J. I., & Baik, J. (2015). A hybrid instance

selection using nearest-neighbor for cross-project

defect prediction. Journal of Computer Science and

Technology, 30(5), 969-980.

Sayyad, S. J., & Menzies, T. J. (2005). PROMISE

Software Engineering Repository. Univeristy of

Ottawa. School of Information Technology and

Engineering.

http://promise.site.uottawa.ca/SERepository
Tang, M., Kao, M. H., & Chen, M. H. (1999). An empirical

study on object oriented Metrics. In Proceedings of the

International Symposium on Software Metrics (Cat.

No. PR00403) (pp. 242-249). IEEE.

Wahono, R. S. (2015). A systematic literature review of

software defect prediction. Journal of Software

Engineering, 1(1), 1-16.

Wei, H., Shan, C., Hu, C., Sun, H., & Lei, M. (2018).

Software defect distribution prediction model based on

NPE-SVM. China Communications, 15(5), 173-182.

Wu, R., Zhang, H., Kim, S., & Cheung, S. C. (2011,

September). Relink: Recovering links between bugs

and changes. In Proceedings of the 19th ACM

SIGSOFT symposium and the 13th European

conference on Foundations of software engineering

(pp. 15-25).

Wu, Y., Huang, S., Ji, H., Zheng, C., & Bai, C. (2018).

A novel Bayes defect predictor based on

information diffusion function. Knowledge-Based

Systems, 144, 1-8.

Xia, Y., Yan, G., Jiang, X., & Yang, Y. (2014, May).

A new metrics selection method for software

defect prediction. In 2014 IEEE International

Conference on Progress in Informatics and

Computing (pp. 433-436). IEEE.

Yang, X., Tang, K., & Yao, X. (2014). A learning-to-

rank approach to software defect prediction. IEEE

Transactions on Reliability, 64(1), 234-246.

Zhao, L., Shang, Z., Zhao, L., Qin, A., & Tang, Y. Y.

(2018). Siamese dense neural network for software

defect prediction with small data. IEEE Access, 7,

7663-7677.

Zhou, T., Sun, X., Xia, X., Li, B., & Chen, X. (2019).

Improving defect prediction with deep forest.

Information and Software Technology, 114, 204-216.

http://promise.site.uottawa.ca/SERepository

