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Abstract: Transfer knowledge is a human characteristic that has been 

replicated in machine learning algorithms to improve learning performance 

measures. However, little success has been accomplished in reinforcement 

learning tasks when a function approximation is needed to estimate the 

value functions. In this study, we present a new strategy to facilitate 

knowledge transfer when an agent is learning to solve a sequence of 

increasing difficulty tasks. We show that the tasks sequence is an effective 

scenario to segment the function approximation hypothesis space allowing 

a faster learning especially in the last task of the sequence. Moreover, the 

sequence allows the design of a similarity function that helps the agent to 
determine in which moment is more appropriated to use the transfer 

autonomously. We empirically show the importance of the presence of all 

the tasks in the established ordering to accomplish the best improvement in 

the learning time for the last task. 
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Introduction 

Reinforcement learning algorithms require a large 

amount of data collected through the agent-environment 
interaction. This need in the volume of exploration to 

find adequate solutions restricts the applicability of the 

methods, a situation that becomes more critical when a 

function approximator is required to estimate the value 

functions. In this context, knowledge transfer is used to 

facilitate learning in new tasks based on previously 

acquired knowledge. In this way, it is possible to guide 

the exploration through mechanisms that make it 

possible to relate past experiences with those found in 

new tasks and provide advice to the agent when selecting 

actions in specific states. In this study, we propose a 

strategy for the task sequence construction that facilitates 
the function approximation and the use of transfer 

learning. This strategy produces a better learning rate for 

the agent in the final task of the sequence. We start from 

a fact that is generally found in human learning 

processes (Piaget, 1963; Vygotsky and Kozulin, 1962), 

in which tasks must be organized according to their level 

of difficulty and each new task must expand the 

knowledge of the previous task. Under this scheme, it is 

necessary to consider the capacity of representation of 

the function approximators used. Since, depending on its 

structure, the amount of exploration required to converge 
to an acceptable solution will also depend. In our 

method, we propose the use of structures whose 

complexity increases depending on the difficulty of the 

task to be solved. Thus, easy tasks use simple structures 

and difficult tasks use more complex structures. For 

example, in the use of neural networks, the increase in 

complexity is done by adding more neurons to the 
structure of the network. We build an experimental 

framework to let an agent learn in a sequence of related 

tasks ordered by its increasing difficult (Madden and 

Howley, 2004; Taylor et al., 2007a) and with the help of 

a similarity measure ensure when is most beneficial for 

the agent use transfer in an autonomous way. The rest of 

this document is organized as follows: Section 2 

(Background) briefly presents the reinforcement learning 

framework, section 3 (Related work) we give a brief 

summary of the previous work in transfer learning 

applied to reinforcement learning, section 4 (proposed 

method) we give a detailed description of the proposed 
transfer strategy, in section 5 (Experimental results) we 

present the results of the experiments on attack 

avoidance tasks. Finally, section 6 (Conclusion) we 

resume the principal findings of this work. 

Background 

The tasks studied in this study can be formally 

described as a series of sequential decision problems. 
Each problem consists of a series of decisions that will 

lead to a final state in which the agent will evaluate if the 

decisions taken were appropriate: Whether some goal 

was achieved or not. Mathematically this process can be 

modeled as a Markov Decision Process (MDP), 
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(Puterman, 1994). An MDP is specified by the 5-tuple 

S, A, P, R, γ. S is the set of possible states. A is the set 

of actions. P is a (possibly stochastic) transition function 

P: SASℝ, which indicates the probability that taking 

action a in state s will lead to state s'. R is the reward 

function P: SASℝ, which maps each state-action 

pair and the resulting state s' to a real number, the 

instantaneous reward. γ[0, 1) is the discount factor for 

future rewards. At each time step, an action an is taken 

according to the current policy π: SA which maps 
states to actions. If the MDP is episodic (as will be the 

assumption considered in this study), it will begin in a 

start state, then a series of actions will be taken until it 

reaches a terminal state, referred to as a goal state. 

Given the MDP specification, the problem is to 

maximize the expected sum of discounted rewards. 

The reward Rt represents a one-step measure of 

performance, that is, how good it was to take action at 

when the agent was in state st. The return Gt is the 

sum of discounted rewards and it is defined as: 
 

2

1 2 3 1

0

k

t t t t t k

k

G R R R R  


    



         (1) 

 
Maximizing the expected value of Gt (long-term 

measure of performance) implies finding an optimal 

policy π∗. This policy allows the agent to select the best 

possible action for each state according to the 

maximization. Given the stochastic nature of the MDP, 

we are interested in the expected value of Gt, which can 

be characterized in two ways: 
 
 The state value function: Expected sum of 

discounted rewards given the initial state s following 

the policy π: 
 

      |t tV s E G s s    (2) 

 
 The state-action value function: Expected sum of 

discounted rewards given the initial state s and 

action a and following the policy π thereafter: 
 

      , | ,t t tQ s a E G s s a a     (3) 

 
The problem of finding an optimal policy π∗ is solved 

through the maximization of one of these functions. 

An MPD can be solved through Dynamic 

Programming (DP) (Bellman, 1957), but a complete and 

correct knowledge of the transitions and rewards is 

required. DP iteratively computes approximations for the 

true value function, improving them over time. However, 

the full knowledge requirement is not always possible; 

especially in MDPs with large high-dimensional state and 
action spaces where it is unfeasible to determine the 

dynamics P. Additionally, as the number of states increases, 

the computational requirements make DP untractable. 

Reinforcement Learning-RL (Sutton and Barto, 1998) 

(Also known as Approximate Dynamic Programming- 

ADP) offers a powerful set of tools for sequential decision 
tasks with large state-action spaces. Most of them are based 

on Temporal Difference (TD) methods, such as Q-learning 

(Watkins, 1989) and SARSA (Rummery and Niranjan, 

1994), in which the solution is learned by backing up 

experienced rewards through time, resulting in an estimated 

state-action value function. Updating of the current best 

policy is generated from Q by selecting the action that 

maximizes value for the current state: 
 

    ,
a A

s argmaxQ s a


   (4) 

 
The agent taking the sequential decisions (actions) must 

balance between exploration, where the agent chooses a 

random action to observe different states and learn more 

about the environment and exploitation, where the agent 

selects actions according to the current policy (the current 

best action). A basic strategy that balances these two 

options is ε-greedy action selection: The agent selects a 

random action with probability ε and the current best action 

is selected with probability 1-ε (where ε is in [0, 1]). 

The agent interacts with the environment and a value 

function actualization is carried out for each new sample 

(a sample: st, at, rt, st+1) one at a time. For this reason, a 
large amount of experience is needed to obtain a near-

optimal value function, to solve the task and produce 

an optimal policy. 

Function Approximation in Reinforcement 

Learning 

In problems where the number of states and available 
actions is large there is an exponential growth on the 

computational requirements needed to solve an RL 

problem (computation time and storage). In these cases, 

it is necessary to make use of approximation techniques 

to construct a compact representation of the value 

functions, which could be parametric or nonparametric. 

A parametric approximator for Q could be: 
 

   , ,T

t t t tQ s a s a w   (5) 

 

where, the Q function approximator is parameterized by 

a n-dimensional vector w and a set of n basis functions 

Φ(st, at) that are used to extract pre-defined 

characteristics from the state-action pair. The 

approximation is built using samples collected from the 

interaction between the agent and the MDP 

(environment). With these samples, a regression is 

carried out to optimize the function approximator over 

the state-action space using an error measure over the 

value differences of the value function in each iteration. 

In RL algorithms a common error measure used is the 
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Least Mean Square error -LMS- and the optimization is 

usually done through a gradient descent method. 

The function approximator can be linear or nonlinear in 

the parameters. Typically, neural networks (nonlinear) and 

radial basis (linear) functions are used to implement 

approximators. The selection of a specific method depends 

on the problem and the generalization capabilities of the 

function approximator. Algorithms for problems with 

continuous RL problem include: TD Learning with 

Function Approximation, Policy Gradient (Sutton et al., 

2000), LSTD (Boyan, 1999), LSPI (Lagoudakis and Parr, 

2003), Batch methods FQI (Ernst et al., 2005) and Deep Q-
learning (Mnih et al., 2013). 

Transfer Difficulties in RL 

As mentioned before, to solve tasks with large state 

or action spaces it is needed the use of function 

approximation techniques. In each MDP, the state-

action value function is unknown and it has to be 

estimated and incrementally build from rewards 

samples and previous estimations of the same function. 

This situation becomes more critical in harder tasks but 

can be easily managed in easier tasks as we will show 

later. Additionally, this estimation procedure has an 

important influence on the stability of the function 

approximation process and for the final performance of 

the learning, especially when a nonlinear function 

approximator is used. Some works (Boyan and Moore, 

1995; Baird, 1995; Tsitsiklis and Van Roy, 1997) have 

reported low performance and divergence when 

function approximation is used. The exploration 

strategy (e.g., ε-greedy) also has an impact on the 

function approximation stability. The value function 

estimation used to derive the sampling policy affects 

the way the task samples are taken and these samples 

will affect the next value function estimation. This 

alternation between sample and learning can result in 

larger learning times and in the worst case to a 

divergence on the function approximation. 

Related Work 

The lifelong learning framework proposed by (Thrun, 

1996) describes a scenario in which an agent interacts 

with a sequence of tasks. This scenario includes all 

possible future tasks that an agent may encounter over its 

lifetime. In RL, the lifelong learning setting focuses on 

problems in which an agent moves from one 

environment to another, or when the agent is in a 

changing environment. Additionally, it is assumed that 

exists some relation between the tasks MDPs. In our 

case, we need this relationship to construct an 

arrangement of the tasks. Tanaka and Yamamura (1997) 

proposed a method to pre-train a neural network using 

the knowledge from the previous task, using it to bias the 

weights of the neural network that is used in subsequent 

tasks. Their experiments show the importance of the 

relation between the tasks and how this impacts the 

agent’s learning in future tasks. White et al. (2012) 

investigated the use of policies from past tasks to 

construct general value functions that are used in an off-

policy setting to improve the agent’s performance in a 

new task. The general value functions can capture a wide 

variety of characteristics from the environment 

dynamics, which allows the agent to develop and 

preserve multiple capabilities. Another learning strategy 

concerned with the use of previous knowledge is 

Transfer Learning (TL), which is primarily focused on 

the task to task transfer of knowledge. TL has been 

successfully applied to several problems in machine 

learning (Pan and Yang, 2009). TL assumes that there 

exists a clear identification of the boundary where a task 

ends and a new one begins. Taylor and Stone (2009) 

presented a survey of research done in transfer learning 

related to RL and introduced the most used metrics to 

measure the efficiency of the transfer. These works 

describe methods like calculating prior probabilities, 

transfer of samples, value function and policy transfer 

and value function structure. Konidaris et al. (2012) 

defined a new value function, which considers only the 

common characteristics across all the tasks and computes 

an approximation of the Q values. In this way the 

transfer process can be done with this function, using it 

to determine a value that has relevance for the action 

selection in every task. For this reason, additional 

training is necessary to approximate this function to the 

Q values. This work shows an alternative source of 

knowledge and validates the idea of searching for other 

knowledge sources. Taylor et al. (2007b) proposed 

Intertask mappings to allow previous Q values to be used 

in new tasks. The intertask mapping does a 

transformation of the state an action spaces from the 

target task to the source task, then a Q value is computed 

and used the determine which action to take in the target 

task. However, the authors do not mention which is the 

process to design or select the intertask mappings. A 

completely different approach is proposed by (Lazaric, 

2008), the authors determined the sample relevance from 

the source tasks to determine which ones to use in the 

agent’s training when learning in the target task. This 

framework allows a different transition model or a 

different reward function from the source tasks and the 

target task, but the state-action spaces must be the same. 

The objective of the sample relevance analysis is to 

avoid negative transfer, which worsens the agent’s 

performance. A related approach called Multitask 

learning (Caruana, 1997) has proved to be effective 

when transferring from multiple source tasks 

simultaneously. Other relevant works (Drummond, 
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2002; Torrey et al., 2005; Liu and Stone, 2006; 

Wilson et al., 2012; Fernández and Veloso, 2006) have 

applied transfer learning strategies to RL, using different 

strategies: Policy advice, value function transfer, model 

estimation. Each one of these strategies finds knowledge in 

a different location and based on that implements a method 

to transfer it. A method related to the learning in a task 

sequence in the context of supervised learning, curriculum 

learning, is presented in (Bengio et al., 2009) and 

(Kumar et al., 2010). These works show experimentally 

the effect in the learning rate produced by the task ordering 

inside the sequence. Weinshall et al. (2018) presents an 

empirical evaluation of a curriculum in where the tasks are 

ordered by difficulty, itis experimentally shown that the 

convergence rate of a deep neural network improves as a 

result of transfer using the proposed curriculum. An 

extensive survey in curriculum learning applied to RL is 

found in (Narvekar et al., 2020). This work summarizes a 

series of approaches that focus on the transfer of knowledge 

when an agent is given a series of tasks to solve. The work 

analysis is carried out based on task generation, sequencing 

and transfer learning. 
 

Materials and Proposed Method 

Based on the following characteristics of the human 

learning processes we proposed a technique to overcome 

some of the problems mentioned before: 
 

 The tasks faced by humans appears in a 

sequentially increasing difficulty order 
(Scaffolding (Vygotsky and Kozulin, 1962) 

 In the learning of new tasks humans make use of 

previously acquired knowledge finding similarities 

with the old tasks (Zone of Proximal Development 
(Vygotsky and Kozulin, 1962) 

 Each new task expands the previous task state and 

knowledge representation 

 

Our method is related to the curriculum learning 

framework from a RL perspective that replicates 

characteristics of the human learning process: An agent 

is learning to solve a sequence of tasks, the curriculum, 

that are related and ordered by increasing difficulty. 

Each task constitutes an episodic MDP with a large state 

space. The agent must learn to solve each MDP starting 

with the easiest one, the first task in the sequence. At the 

end of the first task, the agent will have knowledge that 

can be used (transferred) to solve the next task, which we 

assume to be related to the previous task, as shown in 

Fig. 1. The task decomposition into a sequence of 

ordered tasks can help to a function approximation 

hypothesis space segmentation as shown in Fig. 2. 

Easier tasks can use a small function approximator 

and thus have a smaller hypothesis space in where the 

value function optimization and the reinforcement 

learning problem can benefit from: (1) Less prone to 

function approximation divergence, (2) Better task 

exploration (sampling policy), need to explore only in the 

new part of the space (i.e., state space). There is already a 

knowledge of some part of the space. (3) Less time and 

samples needed to find a near optimal policy. 

 

 
 

Fig. 1: Sequence of N MDPs 
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Fig. 2: Function approximation hypothesis space. In this case, 

the hypothesis space segmentation improves the 
function approximation estimation process for the target 
task T3. The learning of less complex tasks results in a 
better initial point for the learning of the target task 

 

Task Sequence Generation: The Curriculum 

The objective of learning in a sequence of RL tasks is 
to improve some performance measures in the learning 

of the last task TK. For this reason, we adopt a top-down 

strategy. This means starting from the last one which is 

the most difficult or complex to solve. Then, a 

decomposition step must be applied to TK in order to 

obtain an easier Tk-1 and continue until some desired 

initial task. The decomposition step consists in the 

application of a rule f to a given task T: f × Tk → Tk−1 

There are a variety of rules f and each one can 

generate a different sequence 𝕋. Even more, a different 

rule can be applied in each decomposition step. We call 

𝔽 the set of all possible rules applicable to TK. 

From the application 𝔽 to TK we can generate the 

sequences set T, which is the set of all possible 

sequences 𝕋 whose final task is TK. 

Definition 1. Task sequence 𝕋. Given a target task TK 

and rule f. We can obtain easier related tasks TK−n, with n 

< K, by applying f repeatedly to every task. With these 

tasks, we can construct the sequence of tasks 𝕋 ordered 
by increasing difficulty. 

This ruled top-down strategy guaranties a relation 

between the tasks in 𝕋 and knowledge preservation since 

every task in 𝕋 contains all the information from the 

previous easier tasks in 𝕋. In this context easier means 

that an agent can learn a policy that solves Tk−1 in a 

shorter time (less experience needed) than the time 

needed to solve Tk. Using this time measure we can say 

that a task is easier or harder than another task. 
Is this context easier means that an agent can learn a 

policy that solves Tk−1 in a shorter time (less experience 

needed) than the time needed to solve Tk and the 

opposite applies to harder. Using this time measure we 

can say that a task is easier or harder than another task. 

Task Similarity 

In contrast to previous works (Carroll and Seppi, 

2005; Ferns et al., 2012; Bou Ammar et al., 2014) where 

it is necessary to determine which tasks are relevant to 

transfer from, in our approach the task similarity 

measure is used to decide when is the best moment to 

transfer knowledge from the previous task. The agent 

will calculate this measure through a similarity 

function which evaluates the relatedness of the present 
states from TK with the previous task available 

information (e.g., Q-value function, policy, state 

space information). The idea behind the similarity 

function is intuitive from the human learning 

perspective, when the agent is learning a new task Tk 

and face a new situation the obvious first reaction is 

to relate the actual state to previous experience from 

Tk−1 to decide which could be the best action to take. 

In the same way, we used a rule set 𝔽 to generate the 

sequence tasks, it is necessary a similarity function for 
knowledge transfer from Tk−1 to Tk. 

Definition 2. Given a state s from Tk and the state 

representation I(Sk−1) used in Tk−1, the sample similarity 

of s is defined as: 

 

  
  

1

1

1
,

1 exp
k

k

s S
s I S

 




  

 (6) 

 

where, I is a function that extract quantitative 

characteristics that represent a given space (action or 
state space). 

Algorithm 

The RL agent’s learning algorithm for the learning in 

each task is shown in Algorithm 1, it is based on 

(Riedmiller, 2005). A Q value Function Approximator (FA) 

is initialized and an actualization of this function is 

done in batch after N interactions between the agent 

and the environment. The samples are collected using 

SARSA method (Rummery and Niranjan, 1994). This 

process is repeated M times (batches) to guarantee and 

appropriate learning of the task. This approach is 

called Batch algorithm (Lagoudakis and Parr, 2003; 

Bradtke and Barto, 1996; Ernst et al., 2005). 

The function simulate (line 5) is used to observe the 

environment evolution to next state s' when an action a 

is performed by the agent when it is in state s. The 

actionSelection function (line 6) is used by the agent to 

select the next action a' when it is in state s' and this 

function is where the transfer takes place. 

H0 

T1 
1T

H 
 

2T
H 

 

T2 

T3 

3T
H 

 


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Algorithm 1: RL agent learning Tk 

Require: N: num samples, M: num batches, 1
ˆ

kQ  : state- 

action value function from Tk−1 

1:  
kQ  initialize FA() 

2: repeat 

3: s, a, q initial Sate() 

4: while i < N do 

5: s', r  simulate(s, a) 

6: a', q' actionSelection  1, ,s 'kkQ Q 
 

7: X [i]  s, a, r, q, q' 

8: a, s, q  s', a', q' 

9: end while 

10: 
kQ  train FA(X ) 

11: until M 

 

Algorithm 2 shows the pseudocode that implements 

the action selection through a transfer strategy from Tk-1 

or using and ε-greedy strategy. The transfer strategy 

depends on the similarity measure ρ and the transfer rate 

parameter  which is used to control the amount of 

transfer. The parameter ρ0 is used as a threshold to 

determine when a state s is similar enough to the previous 

experience. The transfer uses a policy advice method to 

select the action a through the function approximator 1
ˆ

kQ  

estimated from the task Tk−1. The function filter (line 3) 

adapts the actual state s, since it comes from Sk, to be a state 

in the form required by 
1kQ 
. 

 

Algorithm 2: Action selection with similarity function 

Require: kQ , 1
ˆ

kQ , ρ0, s: state 

1: random uniform variables β 

2: if ρ(s, I(Sk−1)) > ρ0 and β >  then 

3: ŝfilter(s) 

4: Choose a from sˆ using policy derived from 1
ˆ

kQ  

5: else 

6: Choose a from s using ε-greedy policy derived 

from kQ  

7: end if 

8: return a, q 

 

Experimental Results and Discussion 

In this section, we describe the set of experiments 

conducted to test our proposed strategy. We introduce 

the attack avoidance task on which the task sequence and 

the similarity function were generated. 

Attack Avoidance 

The attack avoidance game is a discrete version of 

the pursuit-evasion (Ho et al., 1965; Parsons, 1978) and 

differential games (Isaacs, 1999). These games classes 

are related to the analysis and modeling of dynamical 

systems in which a set of variables evolve following a 
differential equation system. 

Our attack avoidance game consists of an agent who 

must reach a goal zone and an attacker(s) who is(are) 

pursuing the agent. If the attacker touches the agent 

before it reaches the goal zone, the agent loses the 

game, the agent wins otherwise. Additionally, the 

agent is not allowed to stay in the forbidden zone, 

which corresponds to zones to both sides of the goal 

zone. The game board and the actions for the agent 

and the attacker are shown in Fig. 3. 

Using the attack-avoidance game, we designed a set 
of four tasks shown in Fig. 4. In task T0 the agent has the 

same dynamics but there is no attacker. In this case, the 

agent’s objective is to find the path to the goal zone. The 

rewards are defined as: 100 for reaching the goal zone, 

−100 for reaching the forbidden zone and 0 otherwise. 

In the second task T1 there is one attacker. In the third 

task T2 there are two attackers and in the third one T3 

there are three attackers. This increase in the number 

of attackers makes each game more difficult than the 

previous one. In these last three tasks, the rewards 

changed: 1 for reaching the goal zone, −1 for reaching 

the forbidden zone, or when the attacker touches the 
agent and 0 otherwise. 

 

 

 

Fig. 3: Attack-avoidance board for task T1. The agent (gold 
square) actions: Stay in the same position, move up, 
left, right or down. Each agent action moves it a 
distance 1/12 of the board size. Attacker actions: King’s 
moves. The attacker action probabilities are: 0.1 For a 
random action and 0.9 for an action that minimize the 
distance to the agent. Each attacker action moves it a 
distance 1/36 of the board size 
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Fig. 4: Task sequence 

 

The sequence containing the four tasks was generated 

by applying a simplification rule that consisted in 

eliminating one attacker from every task starting with T3. 

In this case, it ended when there were no more attackers 

on the board. 

The state variables are the agent position (x, y), the 

inverse distance from the agent to the attacker and the 

inverse distance from the attacker to a fixed point in the 

goal zone. This state representation is increased in the 

tasks where there is a new attacker. 

To solve each task we took N samples from the 

environment before making a value function update, 

as shown in Algorithm 1. In this sampling phase, a ε-

greedy strategy collects samples from the interaction 

with the environment (game simulation), ε was set to 

0.1. Next, in the learning phase, an approximation of 

the value function is calculated using the samples on 

the SARSA algorithm with γ set to 1.0. 

At the beginning of each episode, the agent and the 

attackers are initialized at random positions. 300 batches 

of 600 samples were performed to train the agent in T0 

and 6000 batches of 600 samples were performed to train 

the agent in tasks T1, T2 and T3. 

We designed 15 experiments to tests different 

sequence configurations using the four tasks from the 

complete attack avoidance sequence. Table 1 shows the 

tasks included in each curriculum experiment. 

Function Approximation 

A neural network was used to approximate the Q-

value function. We started with a simple model for T0 an 

let the model grew as needed along the sequence. A 

representation of this process is shown in Fig. 5 and the 

structure of each network is shown in Table 2. The 

increase process is described as follows: After the 

training in Tk−1, a new neural network is created for Tk 

using the neural network structure of Tk−1 and adding 

nodes in the input layer to be able to receive the state 

variables for Tk. Additionally, we added more neurons to 

the hidden layer in order to increase the network 

approximation space for the more complex Tk. The weights 

of the new neural network were initialized randomly. 

Similarity and Policy Advice 

Transfer was done using a policy advice strategy inside 

the action Selection function, Algorithm 1 line 6. For this 

knowledge source, we used thee Q-value approximator 

obtained in Tk−1 to derive the policy πk−1. This policy was 

used to advise the agent in the Tk training using a ε-

greedy ρ-advice strategy. Algorithm 2 shows the 

action selection function where the agent used a 

similarity function ρ to determine in which states the 

agent could use the previous policy. For the attack 

avoidance game, a similarity function for each Tk−1 to 

Tk transfer was designed. In Fig. 6 are shown the 

similarity functions used in the transfer to T3. To be 

able to measure the influence of the amount of 

transfer used we added a transfer control rate variable 

. This variable was set to ten different values  = 

[0.0,0.1,0.2, ...,0.9] and for each value it was fixed 

during the training. 

 
Table 1: Experiment sequences 

     Target 

Experiment T0 T1 T2 T3 task 

E1 X    T0 

E2  X   T1 

E3 X X   T1 
E4   X  T2 
E5 X  X  T2 
E6  X X  T2 

E7 X X X  T2 
E8    X T3 
E9 X   X T3 
E10  X  X T3 
E11 X X  X T3 

E12   X X T3 
E13 X  X X T3 
E14  X X X T3 

E15 X X X X T3 

T0 T1 T2 T3 
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Table 2: Neural net structure 

Task Attackers NN structure NN parameters State space size 

T0 0 7-7-1 64 144 

T1 1 9-10-1 111 171072 

T2 2 11-14-1 183 203233536 

T3 3 13-19-1 286 2,41441E11 

 

 
 

Fig. 5: FA structure evolution 

 

 
 
Fig. 6: Task similarity functions used in the transfer to T3. Depending on the source tasks, the similarity function measures how 

similar two tasks are. In the case where T0 is the source task the similarity is evaluated through the distance from the agent to 
the closer attacker in T3 called dist (A, Bmin). In the case where T1 is the source task the similarity is evaluated through the 
distance from the agent to the second closer attacker in T3 called dist (A, Bmax2). For each case, if this distance is larger the 
two tasks are similar and the similarity value r is closer to one 
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Analysis 

We focus our analysis in the experiments where T3 

is the target tasks. Each transfer experiment Tk−1 to Tk 

was run 15 times. The Q value function transferred 

corresponds to an agent whose performance was the 

average of the 15 runs. From this agent, we obtain 

also the transfer rate . Table 3 shows the detailed 

performance for the transfer in the curriculums. 

Figure 7 shows the agent winning probability at 

the end of the training for the experiments in which T3 

was the target task. All the experiments show an 

increase in their performance for the transfer rate  = 

0.1. Particularly important at lower transfer rates is 

the performance for experiment E9 which contains T0 

and T3, which reveals that a single task can improve 

the performance considerable if this task contains 

relevant knowledge that can be shared across all the 

curriculum. In this case, T0 is the source for the 

knowledge related to the goal location. This is more 

evident in Table 3, where can be seen that the best 

performances for T3 are for the experiments that 

included T0 in the curriculum. Although E10 and E12 

also contain only two tasks, the performance in these 

experiments is not as good as the E9. The knowledge 

in E10 and E12 is more complex due to the presence of 

the attackers and is not shared over all the tasks. 

The agent with the best performance corresponds to 

the E15 whose curriculum contains all the tasks. 

Figure 8 shows the mean reinforcement in the final 

part of the curriculum for the experiments in which T3 

was the target task. As expected, these results show a 

similar behavior to the winning probabilities. 

However, for the transfer rate  = 0.9 the agent is not 

learning, since 90% of the time is using the previous 

policy and is exploring in the other 10%. In this case, 

the performance is highly dependent in the previous 

knowledge transferred to the agent and the experiment 

performances are perfectly ordered according to Table 

1, which indicates that as more complete is the 

curriculum the better the performance will be. 

In Fig. 7 and 8 we see a decrease in the agent 

performance as the transfer rate increase. This decrease 

is a signal that negative transfer is occurring and that the 

selection of transfer must be done carefully to avoid it. 

Also, in these figures the agent performance in E8 was 

plotted to visually compare the effectiveness of our 

strategy in an equal time setting. E15 takes 300 batches 

from T0 and 6000 batches for T1, T2 and T3 for a total of 

18300 batches. The curriculum in E15 was able to 

accomplish a better final performance than the one 

obtained when learning T3 from scratch even for the 

transfer rate  = 0.9 and for a similar number of batches. 

 

 
 

Fig. 7: T3 agent’s winning probability. The horizontal axis corresponds to the transfer rate used in the last part of the curriculum, the 

one used in the transfer between the last two tasks. The lines are used to highlight the trend with respect to  since it only 
took discrete values [0: 0,0:1,0:2,…, 0: 9]. Each point was averaged over 15 runs. The black dashed lines correspond to the 
agent performance after training in experiment E8 which contains only one task T3, learning from scratch. The dot dashed line 

corresponds to the agent performance after a 6000 batches training and the dashed line after 18000 batches 
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Fig. 8: T3 agent’s mean reinforcement. The horizontal axis corresponds to the transfer rate used in the last part of the curriculum, the 

one used in the transfer between the last two tasks. The lines are used to highlight the trend with respect to  since it only 
took discrete values [0.0, 0.1, 0.2,…, 0.9]. Each point was averaged over 15 runs. The black dashed lines correspond to the 
agent mean reinforcement after training in experiment E8 which contains only one task T3, learning from scratch. The dot 
dashed line corresponds to the agent mean reinforcement after a 6000 batches training and the dashed line after 18000 batches 

 
Table 3: Experiments results - Target task T3 

    Winning probability 
 Transfer rate  ---------------------------------------------------------------------------------------- 
 --------------------------------- T0 T1 T2 T3 
Experiment 0-1 1-2 2-3 ε = 0.1 ε = 0.1 ε = 0.1 ε = 0.1 

E8 - - - - - - 0.4008 
       0.5336 
E9 - - 0.2 0.9996 - - 0.6130 
E10 - - 0.2 - 0.4671 - 0.5246 
E11 0.4 - 0.5 0.9996 0.6574 - 0.5322 

E12 - - 0.3 - - 0.4593 0.5025 
E13 - 0.2 0.1 0.9996 - 0.5095 0.4931 

E14 - 0.1 0.9 - 0.4671 0.4542 0.4817 

E15 0.4 0.4 0.5 0.9996 0.6574 0.6002 0.6400 

 

Conclusion 

In this study, a new framework for transfer learning 

was presented. First, we show the importance of using a 

similarity function when learning in a sequence of tasks. 

The similarity function act as a memory unit that allows 

the agent to compare old experiences with new ones and 

exploit the acquired knowledge in similar states. Our 

evaluations confirmed that the use of the similarity 

function improves the agent’s learning rate in new tasks 

compare to learning from scratch. 

Moreover, we also show the importance of the 
presence of all the tasks into the sequence. Our 

experiments using different sequences, called 

curriculums, show that important knowledge is 

contained in every task. For this reason, an adequate 

construction of the sequence must be done to guarantee 

an effective transfer of the knowledge that will result in a 

better performance in the target task. 

Additionally, by the experiments modifying the FA 

size for each task we observed that it is possible to 

devise a strategy to find an optimal FA structure for the 

target task (the complex or harder one) and a proper way 

to training it to obtain a more optimal one in less time 

than training it from scratch. 

Finally, by using the proposed transfer strategy, 
which includes the sequence design and the similarity 

function, the performance of the agent was increased in 

terms of time and samples needed in the target task, 

hence, confirming the importance of using the similarity 

function to determine which a where to apply transfer 

during the learning. 
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