

 © 2020 Edwin Torres and Fernando Lozano. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Transfer Learning in Attack Avoidance Games

Edwin Torres and Fernando Lozano

Department of Electrical and Electronic Engineering, University of Los Andes, Bogota, Colombia

Article history

Received: 07-07-2019
Revised: 08-09-2020
Accepted: 29-10-2020

Corresponding Author:
Edwin Torres
Department of Electrical and
Electronic Engineering,

University of Los Andes,
Bogota, Colombia
Email: ed.torres20@uniandes.edu.co

Abstract: Transfer knowledge is a human characteristic that has been

replicated in machine learning algorithms to improve learning performance

measures. However, little success has been accomplished in reinforcement

learning tasks when a function approximation is needed to estimate the

value functions. In this study, we present a new strategy to facilitate

knowledge transfer when an agent is learning to solve a sequence of

increasing difficulty tasks. We show that the tasks sequence is an effective

scenario to segment the function approximation hypothesis space allowing

a faster learning especially in the last task of the sequence. Moreover, the

sequence allows the design of a similarity function that helps the agent to
determine in which moment is more appropriated to use the transfer

autonomously. We empirically show the importance of the presence of all

the tasks in the established ordering to accomplish the best improvement in

the learning time for the last task.

Keywords: Reinforcement Learning, Neural Networks, Transfer Learning

Introduction

Reinforcement learning algorithms require a large

amount of data collected through the agent-environment
interaction. This need in the volume of exploration to

find adequate solutions restricts the applicability of the

methods, a situation that becomes more critical when a

function approximator is required to estimate the value

functions. In this context, knowledge transfer is used to

facilitate learning in new tasks based on previously

acquired knowledge. In this way, it is possible to guide

the exploration through mechanisms that make it

possible to relate past experiences with those found in

new tasks and provide advice to the agent when selecting

actions in specific states. In this study, we propose a

strategy for the task sequence construction that facilitates
the function approximation and the use of transfer

learning. This strategy produces a better learning rate for

the agent in the final task of the sequence. We start from

a fact that is generally found in human learning

processes (Piaget, 1963; Vygotsky and Kozulin, 1962),

in which tasks must be organized according to their level

of difficulty and each new task must expand the

knowledge of the previous task. Under this scheme, it is

necessary to consider the capacity of representation of

the function approximators used. Since, depending on its

structure, the amount of exploration required to converge
to an acceptable solution will also depend. In our

method, we propose the use of structures whose

complexity increases depending on the difficulty of the

task to be solved. Thus, easy tasks use simple structures

and difficult tasks use more complex structures. For

example, in the use of neural networks, the increase in

complexity is done by adding more neurons to the
structure of the network. We build an experimental

framework to let an agent learn in a sequence of related

tasks ordered by its increasing difficult (Madden and

Howley, 2004; Taylor et al., 2007a) and with the help of

a similarity measure ensure when is most beneficial for

the agent use transfer in an autonomous way. The rest of

this document is organized as follows: Section 2

(Background) briefly presents the reinforcement learning

framework, section 3 (Related work) we give a brief

summary of the previous work in transfer learning

applied to reinforcement learning, section 4 (proposed

method) we give a detailed description of the proposed
transfer strategy, in section 5 (Experimental results) we

present the results of the experiments on attack

avoidance tasks. Finally, section 6 (Conclusion) we

resume the principal findings of this work.

Background

The tasks studied in this study can be formally

described as a series of sequential decision problems.
Each problem consists of a series of decisions that will

lead to a final state in which the agent will evaluate if the

decisions taken were appropriate: Whether some goal

was achieved or not. Mathematically this process can be

modeled as a Markov Decision Process (MDP),

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1466

(Puterman, 1994). An MDP is specified by the 5-tuple

S, A, P, R, γ. S is the set of possible states. A is the set

of actions. P is a (possibly stochastic) transition function

P: SASℝ, which indicates the probability that taking

action a in state s will lead to state s'. R is the reward

function P: SASℝ, which maps each state-action

pair and the resulting state s' to a real number, the

instantaneous reward. γ[0, 1) is the discount factor for

future rewards. At each time step, an action an is taken

according to the current policy π: SA which maps
states to actions. If the MDP is episodic (as will be the

assumption considered in this study), it will begin in a

start state, then a series of actions will be taken until it

reaches a terminal state, referred to as a goal state.

Given the MDP specification, the problem is to

maximize the expected sum of discounted rewards.

The reward Rt represents a one-step measure of

performance, that is, how good it was to take action at

when the agent was in state st. The return Gt is the

sum of discounted rewards and it is defined as:

2

1 2 3 1

0

k

t t t t t k

k

G R R R R  


    



        (1)

Maximizing the expected value of Gt (long-term

measure of performance) implies finding an optimal

policy π∗. This policy allows the agent to select the best

possible action for each state according to the

maximization. Given the stochastic nature of the MDP,

we are interested in the expected value of Gt, which can

be characterized in two ways:

 The state value function: Expected sum of

discounted rewards given the initial state s following

the policy π:

     |t tV s E G s s   (2)

 The state-action value function: Expected sum of

discounted rewards given the initial state s and

action a and following the policy π thereafter:

     , | ,t t tQ s a E G s s a a    (3)

The problem of finding an optimal policy π∗ is solved

through the maximization of one of these functions.

An MPD can be solved through Dynamic

Programming (DP) (Bellman, 1957), but a complete and

correct knowledge of the transitions and rewards is

required. DP iteratively computes approximations for the

true value function, improving them over time. However,

the full knowledge requirement is not always possible;

especially in MDPs with large high-dimensional state and
action spaces where it is unfeasible to determine the

dynamics P. Additionally, as the number of states increases,

the computational requirements make DP untractable.

Reinforcement Learning-RL (Sutton and Barto, 1998)

(Also known as Approximate Dynamic Programming-

ADP) offers a powerful set of tools for sequential decision
tasks with large state-action spaces. Most of them are based

on Temporal Difference (TD) methods, such as Q-learning

(Watkins, 1989) and SARSA (Rummery and Niranjan,

1994), in which the solution is learned by backing up

experienced rewards through time, resulting in an estimated

state-action value function. Updating of the current best

policy is generated from Q by selecting the action that

maximizes value for the current state:

    ,
a A

s argmaxQ s a


  (4)

The agent taking the sequential decisions (actions) must

balance between exploration, where the agent chooses a

random action to observe different states and learn more

about the environment and exploitation, where the agent

selects actions according to the current policy (the current

best action). A basic strategy that balances these two

options is ε-greedy action selection: The agent selects a

random action with probability ε and the current best action

is selected with probability 1-ε (where ε is in [0, 1]).

The agent interacts with the environment and a value

function actualization is carried out for each new sample

(a sample: st, at, rt, st+1) one at a time. For this reason, a
large amount of experience is needed to obtain a near-

optimal value function, to solve the task and produce

an optimal policy.

Function Approximation in Reinforcement

Learning

In problems where the number of states and available
actions is large there is an exponential growth on the

computational requirements needed to solve an RL

problem (computation time and storage). In these cases,

it is necessary to make use of approximation techniques

to construct a compact representation of the value

functions, which could be parametric or nonparametric.

A parametric approximator for Q could be:

   , ,T

t t t tQ s a s a w  (5)

where, the Q function approximator is parameterized by

a n-dimensional vector w and a set of n basis functions

Φ(st, at) that are used to extract pre-defined

characteristics from the state-action pair. The

approximation is built using samples collected from the

interaction between the agent and the MDP

(environment). With these samples, a regression is

carried out to optimize the function approximator over

the state-action space using an error measure over the

value differences of the value function in each iteration.

In RL algorithms a common error measure used is the

../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1467

Least Mean Square error -LMS- and the optimization is

usually done through a gradient descent method.

The function approximator can be linear or nonlinear in

the parameters. Typically, neural networks (nonlinear) and

radial basis (linear) functions are used to implement

approximators. The selection of a specific method depends

on the problem and the generalization capabilities of the

function approximator. Algorithms for problems with

continuous RL problem include: TD Learning with

Function Approximation, Policy Gradient (Sutton et al.,

2000), LSTD (Boyan, 1999), LSPI (Lagoudakis and Parr,

2003), Batch methods FQI (Ernst et al., 2005) and Deep Q-
learning (Mnih et al., 2013).

Transfer Difficulties in RL

As mentioned before, to solve tasks with large state

or action spaces it is needed the use of function

approximation techniques. In each MDP, the state-

action value function is unknown and it has to be

estimated and incrementally build from rewards

samples and previous estimations of the same function.

This situation becomes more critical in harder tasks but

can be easily managed in easier tasks as we will show

later. Additionally, this estimation procedure has an

important influence on the stability of the function

approximation process and for the final performance of

the learning, especially when a nonlinear function

approximator is used. Some works (Boyan and Moore,

1995; Baird, 1995; Tsitsiklis and Van Roy, 1997) have

reported low performance and divergence when

function approximation is used. The exploration

strategy (e.g., ε-greedy) also has an impact on the

function approximation stability. The value function

estimation used to derive the sampling policy affects

the way the task samples are taken and these samples

will affect the next value function estimation. This

alternation between sample and learning can result in

larger learning times and in the worst case to a

divergence on the function approximation.

Related Work

The lifelong learning framework proposed by (Thrun,

1996) describes a scenario in which an agent interacts

with a sequence of tasks. This scenario includes all

possible future tasks that an agent may encounter over its

lifetime. In RL, the lifelong learning setting focuses on

problems in which an agent moves from one

environment to another, or when the agent is in a

changing environment. Additionally, it is assumed that

exists some relation between the tasks MDPs. In our

case, we need this relationship to construct an

arrangement of the tasks. Tanaka and Yamamura (1997)

proposed a method to pre-train a neural network using

the knowledge from the previous task, using it to bias the

weights of the neural network that is used in subsequent

tasks. Their experiments show the importance of the

relation between the tasks and how this impacts the

agent’s learning in future tasks. White et al. (2012)

investigated the use of policies from past tasks to

construct general value functions that are used in an off-

policy setting to improve the agent’s performance in a

new task. The general value functions can capture a wide

variety of characteristics from the environment

dynamics, which allows the agent to develop and

preserve multiple capabilities. Another learning strategy

concerned with the use of previous knowledge is

Transfer Learning (TL), which is primarily focused on

the task to task transfer of knowledge. TL has been

successfully applied to several problems in machine

learning (Pan and Yang, 2009). TL assumes that there

exists a clear identification of the boundary where a task

ends and a new one begins. Taylor and Stone (2009)

presented a survey of research done in transfer learning

related to RL and introduced the most used metrics to

measure the efficiency of the transfer. These works

describe methods like calculating prior probabilities,

transfer of samples, value function and policy transfer

and value function structure. Konidaris et al. (2012)

defined a new value function, which considers only the

common characteristics across all the tasks and computes

an approximation of the Q values. In this way the

transfer process can be done with this function, using it

to determine a value that has relevance for the action

selection in every task. For this reason, additional

training is necessary to approximate this function to the

Q values. This work shows an alternative source of

knowledge and validates the idea of searching for other

knowledge sources. Taylor et al. (2007b) proposed

Intertask mappings to allow previous Q values to be used

in new tasks. The intertask mapping does a

transformation of the state an action spaces from the

target task to the source task, then a Q value is computed

and used the determine which action to take in the target

task. However, the authors do not mention which is the

process to design or select the intertask mappings. A

completely different approach is proposed by (Lazaric,

2008), the authors determined the sample relevance from

the source tasks to determine which ones to use in the

agent’s training when learning in the target task. This

framework allows a different transition model or a

different reward function from the source tasks and the

target task, but the state-action spaces must be the same.

The objective of the sample relevance analysis is to

avoid negative transfer, which worsens the agent’s

performance. A related approach called Multitask

learning (Caruana, 1997) has proved to be effective

when transferring from multiple source tasks

simultaneously. Other relevant works (Drummond,

../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1468

2002; Torrey et al., 2005; Liu and Stone, 2006;

Wilson et al., 2012; Fernández and Veloso, 2006) have

applied transfer learning strategies to RL, using different

strategies: Policy advice, value function transfer, model

estimation. Each one of these strategies finds knowledge in

a different location and based on that implements a method

to transfer it. A method related to the learning in a task

sequence in the context of supervised learning, curriculum

learning, is presented in (Bengio et al., 2009) and

(Kumar et al., 2010). These works show experimentally

the effect in the learning rate produced by the task ordering

inside the sequence. Weinshall et al. (2018) presents an

empirical evaluation of a curriculum in where the tasks are

ordered by difficulty, itis experimentally shown that the

convergence rate of a deep neural network improves as a

result of transfer using the proposed curriculum. An

extensive survey in curriculum learning applied to RL is

found in (Narvekar et al., 2020). This work summarizes a

series of approaches that focus on the transfer of knowledge

when an agent is given a series of tasks to solve. The work

analysis is carried out based on task generation, sequencing

and transfer learning.

Materials and Proposed Method

Based on the following characteristics of the human

learning processes we proposed a technique to overcome

some of the problems mentioned before:

 The tasks faced by humans appears in a

sequentially increasing difficulty order
(Scaffolding (Vygotsky and Kozulin, 1962)

 In the learning of new tasks humans make use of

previously acquired knowledge finding similarities

with the old tasks (Zone of Proximal Development
(Vygotsky and Kozulin, 1962)

 Each new task expands the previous task state and

knowledge representation

Our method is related to the curriculum learning

framework from a RL perspective that replicates

characteristics of the human learning process: An agent

is learning to solve a sequence of tasks, the curriculum,

that are related and ordered by increasing difficulty.

Each task constitutes an episodic MDP with a large state

space. The agent must learn to solve each MDP starting

with the easiest one, the first task in the sequence. At the

end of the first task, the agent will have knowledge that

can be used (transferred) to solve the next task, which we

assume to be related to the previous task, as shown in

Fig. 1. The task decomposition into a sequence of

ordered tasks can help to a function approximation

hypothesis space segmentation as shown in Fig. 2.

Easier tasks can use a small function approximator

and thus have a smaller hypothesis space in where the

value function optimization and the reinforcement

learning problem can benefit from: (1) Less prone to

function approximation divergence, (2) Better task

exploration (sampling policy), need to explore only in the

new part of the space (i.e., state space). There is already a

knowledge of some part of the space. (3) Less time and

samples needed to find a near optimal policy.

Fig. 1: Sequence of N MDPs

Knowledge
transfer

Learning

agent

Task

1
Task

2

Task

k

Task

K-1

Task

K

Initial task Current task Final task

Future learning tasks

Environment

Previously learned tasks

../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1469

Fig. 2: Function approximation hypothesis space. In this case,

the hypothesis space segmentation improves the
function approximation estimation process for the target
task T3. The learning of less complex tasks results in a
better initial point for the learning of the target task

Task Sequence Generation: The Curriculum

The objective of learning in a sequence of RL tasks is
to improve some performance measures in the learning

of the last task TK. For this reason, we adopt a top-down

strategy. This means starting from the last one which is

the most difficult or complex to solve. Then, a

decomposition step must be applied to TK in order to

obtain an easier Tk-1 and continue until some desired

initial task. The decomposition step consists in the

application of a rule f to a given task T: f × Tk → Tk−1

There are a variety of rules f and each one can

generate a different sequence 𝕋. Even more, a different

rule can be applied in each decomposition step. We call

𝔽 the set of all possible rules applicable to TK.

From the application 𝔽 to TK we can generate the

sequences set T, which is the set of all possible

sequences 𝕋 whose final task is TK.

Definition 1. Task sequence 𝕋. Given a target task TK

and rule f. We can obtain easier related tasks TK−n, with n

< K, by applying f repeatedly to every task. With these

tasks, we can construct the sequence of tasks 𝕋 ordered
by increasing difficulty.

This ruled top-down strategy guaranties a relation

between the tasks in 𝕋 and knowledge preservation since

every task in 𝕋 contains all the information from the

previous easier tasks in 𝕋. In this context easier means

that an agent can learn a policy that solves Tk−1 in a

shorter time (less experience needed) than the time

needed to solve Tk. Using this time measure we can say

that a task is easier or harder than another task.
Is this context easier means that an agent can learn a

policy that solves Tk−1 in a shorter time (less experience

needed) than the time needed to solve Tk and the

opposite applies to harder. Using this time measure we

can say that a task is easier or harder than another task.

Task Similarity

In contrast to previous works (Carroll and Seppi,

2005; Ferns et al., 2012; Bou Ammar et al., 2014) where

it is necessary to determine which tasks are relevant to

transfer from, in our approach the task similarity

measure is used to decide when is the best moment to

transfer knowledge from the previous task. The agent

will calculate this measure through a similarity

function which evaluates the relatedness of the present
states from TK with the previous task available

information (e.g., Q-value function, policy, state

space information). The idea behind the similarity

function is intuitive from the human learning

perspective, when the agent is learning a new task Tk

and face a new situation the obvious first reaction is

to relate the actual state to previous experience from

Tk−1 to decide which could be the best action to take.

In the same way, we used a rule set 𝔽 to generate the

sequence tasks, it is necessary a similarity function for
knowledge transfer from Tk−1 to Tk.

Definition 2. Given a state s from Tk and the state

representation I(Sk−1) used in Tk−1, the sample similarity

of s is defined as:

  
  

1

1

1
,

1 exp
k

k

s S
s I S

 




  

 (6)

where, I is a function that extract quantitative

characteristics that represent a given space (action or
state space).

Algorithm

The RL agent’s learning algorithm for the learning in

each task is shown in Algorithm 1, it is based on

(Riedmiller, 2005). A Q value Function Approximator (FA)

is initialized and an actualization of this function is

done in batch after N interactions between the agent

and the environment. The samples are collected using

SARSA method (Rummery and Niranjan, 1994). This

process is repeated M times (batches) to guarantee and

appropriate learning of the task. This approach is

called Batch algorithm (Lagoudakis and Parr, 2003;

Bradtke and Barto, 1996; Ernst et al., 2005).

The function simulate (line 5) is used to observe the

environment evolution to next state s' when an action a

is performed by the agent when it is in state s. The

actionSelection function (line 6) is used by the agent to

select the next action a' when it is in state s' and this

function is where the transfer takes place.

H0

T1
1T

H 

2T
H 

T2

T3

3T
H 



../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1470

Algorithm 1: RL agent learning Tk

Require: N: num samples, M: num batches, 1
ˆ

kQ : state-

action value function from Tk−1

1:
kQ  initialize FA()

2: repeat

3: s, a, q initial Sate()

4: while i < N do

5: s', r  simulate(s, a)

6: a', q' actionSelection  1, ,s 'kkQ Q 

7: X [i]  s, a, r, q, q'

8: a, s, q  s', a', q'

9: end while

10:
kQ train FA(X)

11: until M

Algorithm 2 shows the pseudocode that implements

the action selection through a transfer strategy from Tk-1

or using and ε-greedy strategy. The transfer strategy

depends on the similarity measure ρ and the transfer rate

parameter  which is used to control the amount of

transfer. The parameter ρ0 is used as a threshold to

determine when a state s is similar enough to the previous

experience. The transfer uses a policy advice method to

select the action a through the function approximator 1
ˆ

kQ

estimated from the task Tk−1. The function filter (line 3)

adapts the actual state s, since it comes from Sk, to be a state

in the form required by
1kQ 
.

Algorithm 2: Action selection with similarity function

Require: kQ , 1
ˆ

kQ , ρ0, s: state

1: random uniform variables β

2: if ρ(s, I(Sk−1)) > ρ0 and β >  then

3: ŝfilter(s)

4: Choose a from sˆ using policy derived from 1
ˆ

kQ

5: else

6: Choose a from s using ε-greedy policy derived

from kQ

7: end if

8: return a, q

Experimental Results and Discussion

In this section, we describe the set of experiments

conducted to test our proposed strategy. We introduce

the attack avoidance task on which the task sequence and

the similarity function were generated.

Attack Avoidance

The attack avoidance game is a discrete version of

the pursuit-evasion (Ho et al., 1965; Parsons, 1978) and

differential games (Isaacs, 1999). These games classes

are related to the analysis and modeling of dynamical

systems in which a set of variables evolve following a
differential equation system.

Our attack avoidance game consists of an agent who

must reach a goal zone and an attacker(s) who is(are)

pursuing the agent. If the attacker touches the agent

before it reaches the goal zone, the agent loses the

game, the agent wins otherwise. Additionally, the

agent is not allowed to stay in the forbidden zone,

which corresponds to zones to both sides of the goal

zone. The game board and the actions for the agent

and the attacker are shown in Fig. 3.

Using the attack-avoidance game, we designed a set
of four tasks shown in Fig. 4. In task T0 the agent has the

same dynamics but there is no attacker. In this case, the

agent’s objective is to find the path to the goal zone. The

rewards are defined as: 100 for reaching the goal zone,

−100 for reaching the forbidden zone and 0 otherwise.

In the second task T1 there is one attacker. In the third

task T2 there are two attackers and in the third one T3

there are three attackers. This increase in the number

of attackers makes each game more difficult than the

previous one. In these last three tasks, the rewards

changed: 1 for reaching the goal zone, −1 for reaching

the forbidden zone, or when the attacker touches the
agent and 0 otherwise.

Fig. 3: Attack-avoidance board for task T1. The agent (gold
square) actions: Stay in the same position, move up,
left, right or down. Each agent action moves it a
distance 1/12 of the board size. Attacker actions: King’s
moves. The attacker action probabilities are: 0.1 For a
random action and 0.9 for an action that minimize the
distance to the agent. Each attacker action moves it a
distance 1/36 of the board size

../../user/Downloads/l

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1471

Fig. 4: Task sequence

The sequence containing the four tasks was generated

by applying a simplification rule that consisted in

eliminating one attacker from every task starting with T3.

In this case, it ended when there were no more attackers

on the board.

The state variables are the agent position (x, y), the

inverse distance from the agent to the attacker and the

inverse distance from the attacker to a fixed point in the

goal zone. This state representation is increased in the

tasks where there is a new attacker.

To solve each task we took N samples from the

environment before making a value function update,

as shown in Algorithm 1. In this sampling phase, a ε-

greedy strategy collects samples from the interaction

with the environment (game simulation), ε was set to

0.1. Next, in the learning phase, an approximation of

the value function is calculated using the samples on

the SARSA algorithm with γ set to 1.0.

At the beginning of each episode, the agent and the

attackers are initialized at random positions. 300 batches

of 600 samples were performed to train the agent in T0

and 6000 batches of 600 samples were performed to train

the agent in tasks T1, T2 and T3.

We designed 15 experiments to tests different

sequence configurations using the four tasks from the

complete attack avoidance sequence. Table 1 shows the

tasks included in each curriculum experiment.

Function Approximation

A neural network was used to approximate the Q-

value function. We started with a simple model for T0 an

let the model grew as needed along the sequence. A

representation of this process is shown in Fig. 5 and the

structure of each network is shown in Table 2. The

increase process is described as follows: After the

training in Tk−1, a new neural network is created for Tk

using the neural network structure of Tk−1 and adding

nodes in the input layer to be able to receive the state

variables for Tk. Additionally, we added more neurons to

the hidden layer in order to increase the network

approximation space for the more complex Tk. The weights

of the new neural network were initialized randomly.

Similarity and Policy Advice

Transfer was done using a policy advice strategy inside

the action Selection function, Algorithm 1 line 6. For this

knowledge source, we used thee Q-value approximator

obtained in Tk−1 to derive the policy πk−1. This policy was

used to advise the agent in the Tk training using a ε-

greedy ρ-advice strategy. Algorithm 2 shows the

action selection function where the agent used a

similarity function ρ to determine in which states the

agent could use the previous policy. For the attack

avoidance game, a similarity function for each Tk−1 to

Tk transfer was designed. In Fig. 6 are shown the

similarity functions used in the transfer to T3. To be

able to measure the influence of the amount of

transfer used we added a transfer control rate variable

. This variable was set to ten different values  =

[0.0,0.1,0.2, ...,0.9] and for each value it was fixed

during the training.

Table 1: Experiment sequences

 Target

Experiment T0 T1 T2 T3 task

E1 X T0

E2 X T1

E3 X X T1
E4 X T2
E5 X X T2
E6 X X T2

E7 X X X T2
E8 X T3
E9 X X T3
E10 X X T3
E11 X X X T3

E12 X X T3
E13 X X X T3
E14 X X X T3

E15 X X X X T3

T0 T1 T2 T3

../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1472

Table 2: Neural net structure

Task Attackers NN structure NN parameters State space size

T0 0 7-7-1 64 144

T1 1 9-10-1 111 171072

T2 2 11-14-1 183 203233536

T3 3 13-19-1 286 2,41441E11

Fig. 5: FA structure evolution

Fig. 6: Task similarity functions used in the transfer to T3. Depending on the source tasks, the similarity function measures how

similar two tasks are. In the case where T0 is the source task the similarity is evaluated through the distance from the agent to
the closer attacker in T3 called dist (A, Bmin). In the case where T1 is the source task the similarity is evaluated through the
distance from the agent to the second closer attacker in T3 called dist (A, Bmax2). For each case, if this distance is larger the
two tasks are similar and the similarity value r is closer to one

T0 Tk TK

0
Q

ˆ
kQ

KQ

T0

T1

T2

T3







1

1

1

d0

d0

d0

dist (A,Bmin)

dist  
2max

,A B

dist (A,Bmax)

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1473

Analysis

We focus our analysis in the experiments where T3

is the target tasks. Each transfer experiment Tk−1 to Tk

was run 15 times. The Q value function transferred

corresponds to an agent whose performance was the

average of the 15 runs. From this agent, we obtain

also the transfer rate . Table 3 shows the detailed

performance for the transfer in the curriculums.

Figure 7 shows the agent winning probability at

the end of the training for the experiments in which T3

was the target task. All the experiments show an

increase in their performance for the transfer rate  =

0.1. Particularly important at lower transfer rates is

the performance for experiment E9 which contains T0

and T3, which reveals that a single task can improve

the performance considerable if this task contains

relevant knowledge that can be shared across all the

curriculum. In this case, T0 is the source for the

knowledge related to the goal location. This is more

evident in Table 3, where can be seen that the best

performances for T3 are for the experiments that

included T0 in the curriculum. Although E10 and E12

also contain only two tasks, the performance in these

experiments is not as good as the E9. The knowledge

in E10 and E12 is more complex due to the presence of

the attackers and is not shared over all the tasks.

The agent with the best performance corresponds to

the E15 whose curriculum contains all the tasks.

Figure 8 shows the mean reinforcement in the final

part of the curriculum for the experiments in which T3

was the target task. As expected, these results show a

similar behavior to the winning probabilities.

However, for the transfer rate  = 0.9 the agent is not

learning, since 90% of the time is using the previous

policy and is exploring in the other 10%. In this case,

the performance is highly dependent in the previous

knowledge transferred to the agent and the experiment

performances are perfectly ordered according to Table

1, which indicates that as more complete is the

curriculum the better the performance will be.

In Fig. 7 and 8 we see a decrease in the agent

performance as the transfer rate increase. This decrease

is a signal that negative transfer is occurring and that the

selection of transfer must be done carefully to avoid it.

Also, in these figures the agent performance in E8 was

plotted to visually compare the effectiveness of our

strategy in an equal time setting. E15 takes 300 batches

from T0 and 6000 batches for T1, T2 and T3 for a total of

18300 batches. The curriculum in E15 was able to

accomplish a better final performance than the one

obtained when learning T3 from scratch even for the

transfer rate  = 0.9 and for a similar number of batches.

Fig. 7: T3 agent’s winning probability. The horizontal axis corresponds to the transfer rate used in the last part of the curriculum, the

one used in the transfer between the last two tasks. The lines are used to highlight the trend with respect to  since it only
took discrete values [0: 0,0:1,0:2,…, 0: 9]. Each point was averaged over 15 runs. The black dashed lines correspond to the
agent performance after training in experiment E8 which contains only one task T3, learning from scratch. The dot dashed line

corresponds to the agent performance after a 6000 batches training and the dashed line after 18000 batches

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

W
in

n
in

g
 p

ro
b
a
b

il
it

y

E8 6K

E8 18K

E9

E10

E11

E12

E13

E14

E15

0.0 0.2 0.4 0.6 0.8 1.0

Transfer rate 

../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l
../../user/Downloads/l

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1474

Fig. 8: T3 agent’s mean reinforcement. The horizontal axis corresponds to the transfer rate used in the last part of the curriculum, the

one used in the transfer between the last two tasks. The lines are used to highlight the trend with respect to  since it only
took discrete values [0.0, 0.1, 0.2,…, 0.9]. Each point was averaged over 15 runs. The black dashed lines correspond to the
agent mean reinforcement after training in experiment E8 which contains only one task T3, learning from scratch. The dot
dashed line corresponds to the agent mean reinforcement after a 6000 batches training and the dashed line after 18000 batches

Table 3: Experiments results - Target task T3

 Winning probability
 Transfer rate --
 --------------------------------- T0 T1 T2 T3
Experiment 0-1 1-2 2-3 ε = 0.1 ε = 0.1 ε = 0.1 ε = 0.1

E8 - - - - - - 0.4008
 0.5336
E9 - - 0.2 0.9996 - - 0.6130
E10 - - 0.2 - 0.4671 - 0.5246
E11 0.4 - 0.5 0.9996 0.6574 - 0.5322

E12 - - 0.3 - - 0.4593 0.5025
E13 - 0.2 0.1 0.9996 - 0.5095 0.4931

E14 - 0.1 0.9 - 0.4671 0.4542 0.4817

E15 0.4 0.4 0.5 0.9996 0.6574 0.6002 0.6400

Conclusion

In this study, a new framework for transfer learning

was presented. First, we show the importance of using a

similarity function when learning in a sequence of tasks.

The similarity function act as a memory unit that allows

the agent to compare old experiences with new ones and

exploit the acquired knowledge in similar states. Our

evaluations confirmed that the use of the similarity

function improves the agent’s learning rate in new tasks

compare to learning from scratch.

Moreover, we also show the importance of the
presence of all the tasks into the sequence. Our

experiments using different sequences, called

curriculums, show that important knowledge is

contained in every task. For this reason, an adequate

construction of the sequence must be done to guarantee

an effective transfer of the knowledge that will result in a

better performance in the target task.

Additionally, by the experiments modifying the FA

size for each task we observed that it is possible to

devise a strategy to find an optimal FA structure for the

target task (the complex or harder one) and a proper way

to training it to obtain a more optimal one in less time

than training it from scratch.

Finally, by using the proposed transfer strategy,
which includes the sequence design and the similarity

function, the performance of the agent was increased in

terms of time and samples needed in the target task,

hence, confirming the importance of using the similarity

function to determine which a where to apply transfer

during the learning.

0.02

0.00

-0.02

-0.04

-0.06

-0.08

-0.10

M
e
a
n

 o
f

re
in

fo
rc

e
m

e
n
t

E8 6K

E8 18K

E9

E10

E11

E12

E13

E14

E15

0.0 0.2 0.4 0.6 0.8 1.0

Transfer rate 

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1475

Acknowledgement

Funding for this research was provided by the

Administrative Department of Science, Technology and

Innovation - Colciencias, Colombia.

Author’s Contributions

Edwin Torres: Development of the main idea,

experimental tests execution and text writing.

Fernando Lozano: Development of the main idea

and general supervision and guidance.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Bou Ammar, H., Driessens, K., Eaton, E., Taylor, M. E.,

Mocanu, D. C., Weiss, G., & Tuyls, K. (2014). An

automated measure of MDP similarity for transfer in
reinforcement learning.

Bellman, R. (1957). Dynamic Programming. (1st Edn.),

Princeton University Press, Princeton, NJ, USA.

Bengio, Y., Louradour, J., Collobert, R., & Weston, J.

(2009, June). Curriculum learning. In Proceedings

of the 26th annual international conference on

machine learning (pp. 41-48).

Boyan, J. A. (1999, June). Least-squares temporal

difference learning. In ICML (pp. 49-56).

Bradtke, S. J., & Barto, A. G. (1996). Linear least-

squares algorithms for temporal difference learning.
Machine learning, 22(1-3), 33-57.

Boyan, J. A., & Moore, A. W. (1995). Generalization in

reinforcement learning: Safely approximating the

value function. In Advances in neural information

processing systems (pp. 369-376).

Baird, L. (1995). Residual algorithms: Reinforcement

learning with function approximation. In Machine

Learning Proceedings 1995 (pp. 30-37). Morgan

Kaufmann.

Carroll, J. L., & Seppi, K. (2005, July). Task similarity

measures for transfer in reinforcement learning task

libraries. In Proceedings. 2005 IEEE International

Joint Conference on Neural Networks, 2005. (Vol.

2, pp. 803-808). IEEE.

Caruana, R. (1997). Multitask learning. Machine

learning, 28(1), 41-75.

Drummond, C. (2002). Accelerating reinforcement

learning by composing solutions of automatically

identified subtasks. Journal of Artificial Intelligence

Research, 16, 59-104.

Ernst, D., Geurts, P., & Wehenkel, L. (2005). Tree-based

batch mode reinforcement learning. Journal of

Machine Learning Research, 6(Apr), 503-556.

Fernández, F., & Veloso, M. (2006, May). Probabilistic

policy reuse in a reinforcement learning agent. In

Proceedings of the fifth international joint

conference on Autonomous agents and multiagent

systems (pp. 720-727).

Ferns, N., Castro, P. S., Precup, D., & Panangaden, P.

(2012). Methods for computing state similarity in

Markov decision processes. arXiv preprint

arXiv:1206.6836.

Ho, Y., Bryson, A., & Baron, S. (1965). Differential

games and optimal pursuit-evasion strategies. IEEE

Transactions on Automatic Control, 10(4), 385-389.

Isaacs, R. (1999). Differential games: a mathematical

theory with applications to warfare and pursuit,

control and optimization. Courier Corporation.

Konidaris, G., Scheidwasser, I., & Barto, A. G. (2012).

Transfer in reinforcement learning via shared

features. The Journal of Machine Learning

Research, 13(1), 1333-1371.

Kumar, M. P., Packer, B., & Koller, D. (2010). Self-

paced learning for latent variable models. In

Advances in neural information processing systems

(pp. 1189-1197).

Lagoudakis, M. G., & Parr, R. (2003). Least-squares

policy iteration. Journal of machine learning

research, 4(Dec), 1107-1149.

Lazaric, A. (2008). Knowledge transfer in reinforcement

learning (Doctoral dissertation, PhD thesis,

Politecnico di Milano).

Liu, Y., & Stone, P. (2006, July). Value-function-based

transfer for reinforcement learning using structure

mapping. In Proceedings of the national conference

on artificial intelligence (Vol. 21, No. 1, p. 415).

Menlo Park, CA; Cambridge, MA; London; AAAI

Press; MIT Press; 1999.

Madden, M. G., & Howley, T. (2004). Transfer of

experience between reinforcement learning

environments with progressive difficulty. Artificial

Intelligence Review, 21(3-4), 375-398.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,

Antonoglou, I., Wierstra, D., & Riedmiller, M.

(2013). Playing atari with deep reinforcement

learning. arXiv preprint arXiv:1312.5602.

Narvekar, S., Peng, B., Leonetti, M., Sinapov, J., Taylor,

M. E., & Stone, P. (2020). Curriculum Learning for

Reinforcement Learning Domains: A Framework

and Survey. arXiv preprint arXiv:2003.04960.

Pan, S. J., & Yang, Q. (2009). A survey on transfer

learning. IEEE Transactions on knowledge and data

engineering, 22(10), 1345-1359.

Edwin Torres and Fernando Lozano / Journal of Computer Science 2020, 16 (10): 1465.1476

DOI: 10.3844/jcssp.2020.1465.1476

1476

Parsons, T. D. (1978). Pursuit-evasion in a graph. In

Theory and applications of graphs (pp. 426-441).

Springer, Berlin, Heidelberg.

Piaget, J. (1963). The origins of intelligence in children.

The Norton library, N202. Norton.

Puterman, M. L. (1994). Markov Decision Processes:

Discrete Stochastic Dynamic Programming. (1st

Edn.), John Wiley and Sons, Inc., New York, USA.

Riedmiller, M. (2005, October). Neural fitted Q

iteration–first experiences with a data efficient

neural reinforcement learning method. In European
Conference on Machine Learning (pp. 317-328).

Springer, Berlin, Heidelberg.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-

learning using connectionist systems (Vol. 37, p.

20). Cambridge, UK: University of Cambridge,

Department of Engineering.

Sutton, R. S., & Barto, A. G. (1998). Introduction to

reinforcement learning (Vol. 135). Cambridge:

MIT press.

Sutton, R. S., McAllester, D. A., Singh, S. P., &

Mansour, Y. (2000). Policy gradient methods for
reinforcement learning with function approximation.

In Advances in neural information processing

systems (pp. 1057-1063).

Taylor, M. E., Kuhlmann, G., & Stone, P. (2007a,

September). Accelerating search with transferred

heuristics. In ICAPS Workshop on AI Planning

and Learning.

Taylor, M. E., Stone, P., & Liu, Y. (2007b). Transfer

learning via inter-task mappings for temporal

difference learning. Journal of Machine Learning

Research, 8(Sep), 2125-2167.

Taylor, M. E., & Stone, P. (2009). Transfer learning
for reinforcement learning domains: A survey.

Journal of Machine Learning Research, 10(7).

Thrun, S. (1996). Is learning the n-th thing any easier

than learning the first?. In Advances in neural

information processing systems (pp. 640-646).

Torrey, L., Walker, T., Shavlik, J., & Maclin, R.

(2005, October). Using advice to transfer

knowledge acquired in one reinforcement learning

task to another. In European Conference on

Machine Learning (pp. 412-424). Springer,

Berlin, Heidelberg.

Tsitsiklis, J. N., & Van Roy, B. (1997). Analysis of

temporal-diffference learning with function

approximation. In Advances in neural information

processing systems (pp. 1075-1081).

Tanaka, F., & Yamamura, M. (1997, August). An

approach to lifelong reinforcement learning

through multiple environments. In 6th European

Workshop on Learning Robots (pp. 93-99).

Vygotsky, L. S., & Kozulin, A. (1962). Thought and

Language. (1st Edn.), MIT Press,

Watkins, C. J. C. H. (1989). Learning from delayed

rewards.

Weinshall, D., Cohen, G., & Amir, D. (2018). Curriculum

learning by transfer learning: Theory and experiments

with deep networks. arXiv preprint

arXiv:1802.03796.

White, A., Modayil, J., & Sutton, R. S. (2012,

November). Scaling life-long off-policy learning.

In 2012 IEEE International Conference on

Development and Learning and Epigenetic

Robotics (ICDL) (pp. 1-6). IEEE.

Wilson, A., Fern, A., & Tadepalli, P. (2012, June).

Transfer learning in sequential decision problems: A

hierarchical Bayesian approach. In Proceedings of

ICML Workshop on Unsupervised and Transfer

Learning (pp. 217-227).

