

 © 2020 Saugat Aryal, Dheynoshan Nadarajah, Prabath Lakmal Rupasinghe, Chandimal Jayawardena and Dharshana

Kasthurirathna. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Comparative Analysis of Deep Learning Models for Multi-

Step Prediction of Financial Time Series

1Saugat Aryal, 2Dheynoshan Nadarajah, 3Prabath Lakmal Rupasinghe,
3Chandimal Jayawardena and 1Dharshana Kasthurirathna

1Department of Software Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka
2Independent Researcher, Colombo, Sri Lanka
3Department of Computer Systems Engineering, Sri Lanka Institute of Information Technology, Malabe, Sri Lanka

Article history

Received: 10-08-2020

Revised: 16-10-2020

Accepted: 21-10-2020

Corresponding Author:

Saugat Aryal

Department of Software

Engineering, Sri Lanka Institute

of Information Technology,

Malabe, Sri Lanka

Email: saugat.aryl@gmail.com

Abstract: Financial time series prediction has been a key topic of

interest among researchers considering the complexity of the domain

and also due to its significant impact on a wide range of applications. In

contrast to one-step ahead prediction, multi-step forecasting is more

desirable in the industry but the task is more challenging. In recent

days, advancement in deep learning has shown impressive

accomplishments across various tasks including sequence learning and

time series forecasting. Although most previous studies are focused on

applications of deep learning models for single-step ahead prediction,

multi-step financial time series forecasting has not been explored

exhaustively. This paper aims at extensively evaluating the performance

of various state-of-the-art deep learning models for multiple multi-steps

ahead prediction horizons on real-world stock and forex markets dataset.

Specifically, we focus on Long-Short Term Memory (LSTM) network

and its variations, Encoder-Decoder based sequence to sequence models,

Temporal Convolution Network (TCN), hybrid Exponential Smoothing-

Recurrent Neural Networks (ES-RNN) and Neural Basis Expansion

Analysis for interpretable Time Series forecasting (N-BEATS).

Experimental results show that the latest deep learning models such as N-

BEATS, ES-LSTM and TCN produced better results for all stock

market related datasets by obtaining around 50% less Root Mean

Squared Error (RMSE) and Mean Absolute Error (MAE) scores for each

prediction horizon as compared to other models. However, the

conventional LSTM-based models still prove to be dominant in the

forex domain by comparatively achieving around 2% less error values.

Keywords: Financial Time Series, Forecasting, Multi-Step Prediction,

Deep Learning

Introduction

Financial time series forecasting has drawn

significant attention among the researchers from both

academia and financial industry. It is a complex domain

which requires modelling of nonlinear behaviour and

stochastic pattern while learning the temporal

dependencies between the data. The signal to noise ratio is

considerably low which contributes to the intricacy while

forecasting. Researchers and stakeholders are consistently

working on implementing new methodologies for

improving the accuracy of predictive models due to the

higher demand from the financial market. Numerous

studies have been carried out in regards to both statistical

and machine learning based forecasting techniques. Deep

learning based models have achieved commendable

results across various fields of natural language

processing (Devlin et al., 2018; Brown et al., 2020),

speech processing (Ogunfunmi et al., 2019), neural

machine translation (Bahdanau et al., 2014; Wu et al.,

2016), image classification (Krizhevsky et al., 2012) and

reinforcement learning (Silver et al., 2017). Moreover,

recent deep architectures have also demonstrated

significant improvements in accuracy for time series

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1402

forecasting (Rangapuram et al., 2018; Salinas et al.,

2020) and specifically in the financial setting (Yan and

Ouyang, 2018; Chen et al., 2019) over traditional time

series models. One of the key reasons for effectively

handling the non-stationary nature and complications of

the changing financial environment is due to its ability

to learn representations through hierarchical hidden

layer structure. The multi-layer architecture allows the

deep models to process and analyze the complex non-

linear temporal dependencies and establish proper

latent representations.

In most real world applications, multi-step or multi-

horizon forecasting are more valued as opposed to single

or one-step ahead prediction. Long-term prediction

mechanisms can help provide key insights for optimizing

resource allocation and assisting the decision making

process. Investors and financial firms can re-evaluate

and efficiently plan their investment strategy to gain

maximum profits by observing the longer predicted

trajectory. Two major multi-horizon forecasting

approaches have been explored lately, based on the

foundation of deep learning architecture, Iterative and

Direct (Sequence-to-Sequence). Iterative method deals

with recursively applying one-step ahead prediction

where the predicted output is fed as input for the next

forecast while direct approach overcomes the

shortcoming of recursive technique by forecasting the

prediction vector directly at once.

While there have been numerous investigations of

multi-step forecasting across diverse fields, such as,

electricity load consumption (Zheng et al., 2017;

Masum et al., 2018), traffic flow (Li et al., 2017; Lv et al.,

2014), renewable energy production (Ghaderi et al.,

2017), Electrocardiogram (ECG) analysis (Chauhan and

Vig, 2015), very few research have focused on financial

applications (Ouyang and Yin, 2018). A comprehensive

analysis of the performance of sophisticated deep

learning techniques for multi-step financial time series

forecasting is lacking in the literature.

This work considers the most novel and relevant deep

architectures and compare them in terms of performance

accuracy on financial benchmarks. Specifically, we

focus on LSTM and it’s two variations, Bi-directional

LSTM, Stacked LSTMs, Encoder-Decoder architecture,

TCN, ESRNN and N-BEATS. The experiment is carried

out on stock market datasets including S&P500, DJIA

and NASDAQ 100 and forex markets such as EURUSD,

EURGBP and EURJPY for multiple multi-steps ahead

forecast horizons (2, 3, 5, 7 and 10 steps). To the best of

our knowledge, such comparison of multi-step

forecasting using deep learning models for financial

markets has not been done yet.
The remainder of the paper is structured into four

sections. Works related to multi-step forecasting and

financial multi-horizon forecasting using deep learning is

described in section 2. Section 3 describes the deep

learning models considered for this research. In section 4

we present the details of experiments conducted and

discuss the results. The conclusion, limitations and

future work is provided in section 5.

Related Work

In the field of multi-horizon time series prediction,

deep learning models have been employed increasingly

due to their performance dominance over statistical and

traditional time series models. Direct strategy used for

forecasting generally consists of sequence-to-sequence

(Sutskever et al., 2014; Cho et al., 2014) architecture

where the encoder encodes the historical inputs to

provide a compressed representation and the decoder

architecture is used to generate future predictions based

on the vector. The overall model is jointly trained to

generate the vector of forecast for pre-defined horizon.

The Multi-horizon Quantile Recurrent forecaster

(MQRNN) technique (Wen et al., 2017) generates the

hidden latent representation of historical time series using

LSTM which is then fed to Multi-Layer Perceptrons

(MLPs) to produce multiple quantile forecasts for multiple

horizons. The authors in (Fox et al., 2018) propose a

novel deep multi-output forecasting framework called

DeepMo for predicting blood glucose trajectories. They

introduce the concept of function forecasting which

predicts the representation of the data in contrast to

learning the distribution of future values based on the

past. To complement this model, the authors also

develop new architecture to model temporal

dependencies and allow information propagation across

the prediction window.

A new LSTM based architecture (Laptev et al., 2017)

for extreme event forecasting at Uber is proposed which

uses an autoencoder for feature extraction which is then

combined using an ensembling technique and fed to

LSTM based forecaster. The novel architecture provides

a framework which is trained using heterogeneous time

series and achieves significant improvement over

traditional stacked LSTMs. Similarly, a novel Diffusion

Convolutional Recurrent Neural Network (DCRNN) for

traffic forecasting is introduced in (Li et al., 2017). The

framework integrates both spatial dependency using

bidirectional random walks on the directed graph and the

temporal dependency using the encoder-decoder

architecture. Higher-Order Tensor RNN (HOT-RNN) is

presented in (Yu et al., 2017) to address the long-term

forecasting challenges. The proposed architecture

captures the higher-order nonlinear dynamics using

higher-order state interactions of previous hidden states.

The authors show that the proposed architecture is more

expressive and accurate than standard Recurrent Neural

Network (RNN) and LSTM. With recent advancements,

attention-based model like in (Fan et al., 2019) is also

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1403

used which allows to focus on relevant and important

time steps and patterns in the historical data. In addition,

Transformer-based architecture like in (Li et al., 2019;

Lim et al., 2019) has also been explored.

Iterative strategy in contrast operates by recursively

feeding the single-step ahead forecast as future inputs

to obtain multiple forecasts. Inspired by WaveNet

(Oord et al., 2016) architecture, authors in (Borovykh et al.,

2017) extended it for predicting financial time series

achieving better results than autoregressive and LSTM

based recurrent networks. The proposed model employs

dilated convolutions followed by residual skip

connections and uses ReLU activation function for

optimizing the training time. To account for correlation

between financial time series, the model takes

multivariate time series as input which allows

conditioning the forecast of a time series based on its

own past data as well as that of other time series.

Authors in (Hussein et al., 2016) utilized coevolutionary

RNN for multi-step time series prediction using

recursive technique where cooperative coevolution and

Back-Propagation Through Time (BPTT) is employed

for training the neural network model.

There have been studies in regard to multi-steps

ahead probabilistic forecasts as well. DeepAR

(Salinas et al., 2020) uses autoregressive recurrent

neural networks to obtain a global model by training the

historical data of all related time series which

generates the Gaussian distribution for the forecast.

Similarly, Deep State-Space Models (DSSM)

(Rangapuram et al., 2018) follows a similar approach

by exploiting recurrent neural networks to

parameterize the pre-defined linear state-space model

with Kalman filtering based predictive distribution.

In regards to multi-step financial time series

prediction, authors in (Ouyang and Yin, 2018) extended

the concept of self-organizing Autoregressive (AR)

models to Varied Length Mixture models (VLM) to

forecast the financial time series over multiple steps. One

significant advantage of modelling such varied length

models is that it allows to preserve the relationships

among the input points within the forecast horizon. A

comprehensive review of deep learning based financial

time series prediction across various domains is presented

in (Sezer et al., 2020). The authors observed that deep

learning models performed better than machine learning

models in most of the studies. Also, most researches are

based on movement prediction of financial assets for

short-term forecasting and the literature on multi-step

price prediction is still scarce. Specifically, a detailed

overview of applicability of deep models in the stock

market domain is carried out in (Jiang, 2020).

In a recent study (Chatigny et al., 2020) related to

multivariate multi-step setting, a novel variable-length

attention mechanism is proposed for improving the

performance of RNN based on the Dynamic Factor

Graph (DFG) framework using which a new class of

self-supervised generative neural architecture is also

introduced. The overall model has the capacity to

effectively capture temporal dependencies for

multivariate time series and performs better even with

limited data. Hwang (2020) used LSTM model with

trainable initial hidden states which allows the model to

reconstruct the abstract representation of the time series

along with its parameters and forecast the future values

based on the latent representation. A comparative

analysis of Autoregressive Integrated Moving Average

(ARIMA), LSTM and Bidirectional LSTM (BiLSTM)

for various stock indices prediction is performed in

(Siami-Namini et al., 2019) which showed that BiLSTM

performs better as compared to others.

Methodology

In this section, we provide an overview of different

deep learning models used in this study. We also briefly

describe the multi-step prediction technique utilized for

the comparative analysis purpose.

Long-Short Term Memory

LSTM networks (Hochreiter and Schmidhuber, 1997)

belong to the special category of RNN family that

overcomes the exploding and vanishing gradients

limitation of simple RNNs (Hochreiter, 1998). By

introducing an internal cell state or memory state and

gating mechanisms, it can capture long-range

dependencies in the data while retaining the short term

memory. They have achieved state-of-the-art

performance in sequence learning domain such as

machine translation (Sutskever et al., 2014), language

modeling (Sundermeyer et al., 2015), signal processing

(Yildirim, 2018) and audio and video processing (Eck

and Schmidhuber, 2002; Liu et al., 2019). Application of

LSTM models in the financial domain (Fischer and

Krauss, 2018; Heaton et al., 2017; Bao et al., 2017) have

also shown promising results outperforming other

traditional statistical models.

The inner working structure of an LSTM cell is

shown in Fig. 1. There are three main gates in each cell

that contribute to the cell state ct: Input gate (it), output

gate (ot) and forget gate (ft). The first component is the

forget gate which is responsible for controlling how

much of the information should be forgotten or removed

from the previous cell state. It takes two inputs, output of

the previous hidden state (ht-1) and input of the current

state (xt) and passes them through the sigmoid activation

function which outputs a vector between 0 and 1 for each

value in the cell state. The 0 output for a particular value

in the cell state indicates that the information is

completely removed whereas 1 represents that the

information is remembered.

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1404

Fig. 1: LSTM cell

The input gate deals with updating the cell state with

new information. It performs similar sigmoid calculation

to the same set of inputs like in the forget gate and acts

as a filter for the information from the previous hidden

state (ht-1) and current input (xt). A candidate memory

cell tC is also created to modulate the network which

applies tanh activation function on the same inputs while

squeezing the result in between -1 and 1. It generates a

vector of all possible information that can be added to

the cell state as perceived from its inputs. The negative

value from tanh function indicates dropping information

from the cell state while positive result infers adding

new information. The output from the tanh and input

gate sigmoid activation is multiplied to obtain a result

which defines how much each cell state value should be

updated by based on the new information:

 1,t i t t ii W h x b
 (1)

 1,t f t t ff W h x b
 (2)

 1tanh ,t C t t CC W h x b
 (3)

Finally to obtain a new cell state, the forget vector (ft)

is multiplied with the previous cell state (ct-1) and the

result is combined with the multiplication between input

gate and tanh vector via additive operation:

1t t t t tC f C i C (4)

The output gate contributes in updating the hidden

state (ht) of the cell and evaluates which information

from the cell state is to be used as output for the next

step. The cell state vector is passed through a tanh

transformation function to scale the values between -1

and +1 and then multiplied with the output vector

sigmoid activation which decides whether or not the cell

state value will be sent as an output for the next step and

also as hidden state for the next cell:

 1,t o t t oo W h x b
 (5)

 tanht t th o C (6)

Stacked LSTM

Deep LSTM or Stacked LSTM (Pascanu et al., 2013;

Graves et al., 2013b) is an extension of the simple LSTM

cell, which contains multiple LSTM cells stacked on top

of each other. Adding several layers brings more depth to

the architecture and increases the level of abstraction of

the input sequence over time (Pascanu et al., 2013).

Figure 2 shows the structure of three layered stacked

LSTM cells. The output from the lower hidden layer cell

 1

1th is passed as input to successive layers while each

layer maintains their own hidden state and cell state.

Bidirectional LSTM

Another variation of LSTM network is Bidirectional

LSTM (Graves and Schmidhuber, 2005) which

processes the sequential data in both forward and

backward direction using two separate hidden LSTM

layers. BiLSTM connects both the layers to the same

output layer. The forward layer processes the

information following the same direction of the given

sequence while the backward layer computes its

operations using inputs from the reverse direction. Given

an input sequence (x) with time steps from t-n to t-1, the

hidden state of the forward layer (h) traverse through

the inputs from t-n to t-1, while for the backward layer

the hidden state (h) propagates from t-1 to t-n. Both the

ht

Ct Ct-1

ht-1 ht

xt

ft it ot

tanh

tanh

tC

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1405

layers constitute LSTM cell performing standard

operations. The final output of the BiLSTM layer is

given by Equation (7) where the function () used to

combine the two hidden states can be a concatenating,

summation, average or a multiplication function:

 ,t f by h h (7)

The architecture of an unfolded BiLSTM layer is

shown in Fig. 3. BiLSTMs have achieved great success

in time series forecasting domain, such as speech

recognition (Graves et al., 2013a) and traffic speed

prediction (Cui et al., 2018).

Encoder-Decoder Model

Encoder-decoder architecture (Cho et al., 2014) or

sequence-to-sequence models (Sutskever et al., 2014)

were first introduced to overcome the limitation of

RNNs to produce output sequences of arbitrary length.

Since then, they have been widely used in neural

machine translation (Cho et al., 2014; Bahdanau et al.,

2014; Wu et al., 2016), speech recognition (Graves et al.,

2013b; Chorowski et al., 2015; Bahdanau et al., 2016)

and also time series forecasting tasks (Qin et al., 2017;

Liang et al., 2018). In the heart of this framework lies

two different networks, namely encoder and decoder

where both are sequential based networks.

Fig. 2: Unfolded stacked LSTM

Fig. 3: Unrolled bidirectional LSTM architecture for three steps (Cui et al., 2018)

c3
t-2

h3
t-1 h3

t h3
t+1

c3
t+1

h3
t+1

c3
t c3

t-1

h3
t-1 h3

t-2 h3
t LSTM cell LSTM cell LSTM cell

LSTM cell LSTM cell LSTM cell

c2
t-2

h2
t-2

h2
t-1

c2
t-1

h2
t-1

c2
t

h2
t

c2
t+1

h2
t+1

h2
t h2

t+1

LSTM cell LSTM cell LSTM cell
c1

t-2

h1
t-2

c1
t-1

h1
t-1

c1
t

h1
t

c1
t+1

h1
t+1

h1
t-1 h1

t h1
t+1

xt-1 xt xt+1

yt-1 yt yt+1

LSTM LSTM LSTM

LSTM LSTM LSTM

Backward
Forward

xt-1 xt xt+1

1th
1th

1th
1th

th

th

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1406

Fig. 4: Encoder-decoder model

The encoder network processes the input

sequence X of length t one time step at a time and

produces a fixed dimensional compressed vector

representation c , which is also commonly termed as

context vector or latent vector and this processing of

obtaining the context vector is called encoding. The

context vector is usually the last hidden state (e

th) produced

from the encoder network. Then, the decoder network

produces the output sequence (ŷ) given the context vector.

While the decoder maintains its own hidden state, the final

hidden state of the encoder network (or context vector) is

replicated across each time step as inputs in a basic

encoder-decoder setting. Both the encoder and decoder

network can be a simple LSTM cell or stacked LSTM

layers conducting its standard gating operations and are

jointly trained to minimize the cost function. A general

overview of the architecture is depicted in Fig. 4:

 1,e e

t encoder t th LSTM x h (8)

e

tc h (9)

 ˆ d

decoder ty LSTM c h (10)

Temporal Convolution Network

Belonging to the family of Convolutional Neural

Networks (CNNs) that were initially dedicated for image

dataset and computer vision tasks (Krizhevsky et al.,

2012; Gu et al., 2018), TCN (Bai et al., 2018) is an

extension to adapt with sequential dataset and problems.

After a series of thorough experiments, the authors

claimed that TCN outperformed regular RNNs such as

LSTMs on various benchmark datasets and tasks while

demonstrating longer effective memory.

The basics of TCN consists of two propositions, first

being that given an input sequence of arbitrary length,

the network maps it to an output sequence of the same

length. This principle is achieved by using 1D fully-

convolutional network architecture, where the length of

each hidden layer is the same as the input layer and zero

padding of length (kernelsize -1) is employed such that

the subsequent layers has the same length as the previous

one. The second concept associated with TCN specifies

that there is no information leakage from future to the

past. To address this point, it replaces standard

convolution operator by causal convolution such that

information only from the past is used for forecasting

and has no access to the future samples.

Decoder

yt+1 yt+3 yt+2

LSTM LSTM LSTM

ct ct ct

hd
0 hd

1 hd
2

xt-2 xt xt-1

LSTM LSTM LSTM

Context vector

ct = he
t

he
t-3 he

t-1

he
t

Encoder

he
t-2

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1407

In order to achieve long-term dependencies in the

sequential data and build a long effective history size,

TCN makes use of dilated convolutions (Oord et al.,

2016). It can skip outputs from the previous layer that

allows to cover information from farther distance values

in the sequence (increase the receptive field). Dilated

convolution F on an element s of the 1-D sequence
nx can be expressed as:

1

0

k

d s d i

i

F s x f s f i x

 (11)

where, d is the dilation factor and k is the filter size. Thus,

the receptive field can be increased by choosing larger

filter sizes k and increasing the dilation factor d. Figure 5

shows an example of a dilated causal convolution with a

kernel size of 2 and a dilation factor of [1,2,4]. In addition

to dilated causal convolution, TCN also implements

residual blocks (He et al., 2016) in place of a

convolutional layer to account for stabilization of deeper

and larger networks. A TCN residual block consists of

two layers of dilated causal convolution, weight

normalization, rectified linear unit and spatial dropout. A

11 convolution operation is also added in each residual

block to account for inconsistent input and output size.

Exponential Smoothing-Long Short Term Memory

This hybrid model (Smyl, 2020) which is an

effective combination of statistical based Exponential

Smoothing (ES) model and modern neural network

based LSTM model is the winner of M4 competition

(Makridakis et al., 2020) with significant margin. It is a

hierarchical model which can be used to forecast

multiple series, where the ES component captures the

local parameters for each series such as seasonality and

level whereas the weights of connections inside the

LSTM model accounts for global parameters shared by

all series. A high-level architecture of ES-LSTM is

shown in Fig. 6. Initially, Holts-Winter exponential

smoothing (Hyndman et al., 2008) with multiplicative

seasonality is computed, however, the trend component

is not accounted for as the model does not consider

linear trend in the series:

 1/ 1t t t tl y s l (12)

 / 1t m t t ts y l s (13)

where, yt is the time series, lt is the smoothing or level

component, s is the multiplicative seasonality

coefficient, m is the number of observations per

seasonal period and , are smoothing coefficients

between zero and one.

To produce non-linear trend forecasting with

multiple steps ahead, a neural network model (RNN)

is used instead, the output of which is subsequently

seasonalized and denormalized again to produce the

forecast. Finally, the Holt-Winters model is combined

with a RNN model to get the forecast from the final

hybrid model:

 1.. 1..
ˆ

t t h t t t t hy RNN X l s (14)

where, h is the forecasting horizon and Xt is a vector of

deseasonalized and normalized time-series derived

features of which a scalar component xt is calculated as:

t
t

t t

y
x

l s
 (15)

The neural network model employs a stack of dilated

LSTM networks (Chang et al., 2017) interlinked with

residual connections (He et al., 2016). Each block

contains a sequence of one to four layers with each layer

belonging to one of the dilated LSTM categories:

Standard dilated LSTM (Chang et al., 2017), dual-stage

attention based LSTM (Qin et al., 2017) and residual

LSTM (Kim et al., 2017).

Neural Basis Expansion Analysis for Interpretable

Time Series Forecasting

N-BEATS model (Oreshkin et al., 2019) is a pure

deep neural based architecture with no time-series

specific components which has achieved better

forecasting accuracy than hybrid ES-RNN model on

M4 competition.

At the fundamental level, the model consists of a

block which is a multi-layered fully connected

network with Rectified Linear Unit (ReLU) activation

function that produces two outputs, the block’s

standard output of given horizon (forecast) and the

best estimate of it’s input given the functional

limitations that it can operate on (backcast). The layer

of blocks are combined together using a novel

hierarchical doubly residual stacking topology.

Different from the common residual architecture

which either involves concatenating the input of a layer

to its output before passing to the subsequent layer or

adding new connection from the output of each layer to

the input of every other layer that follows it, the new

architecture introduces two residual branches. The

backcast residual branch makes it easier for subsequent

blocks to forecast by removing the backcast signal from

the block’s input while the forecast output from each

block is first integrated at the stack level and finally at

the overall network level to produce the final global

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1408

forecast. The high level architecture of the model is

depicted in Fig. 7.

The model is also designed to have interpretable

outputs for each stack by decomposing the trend and

seasonality of the series. In addition, the model is also

associated with the concept of meta-learning, where the

inner training loop is enclosed inside the basic building

blocks while outer training procedure is contained with

the parameters of the overall network, learned through

gradient descent.

Fig. 5: TCN Architecture. The left part is the dilated causal convolution with kernel size = 2 and dilation factors d = [1,2,4]. The

right part is the residual block (Qin, 2019)

Fig. 6: ES-LSTM Architecture

Residual block

Dropout

ReUL

WeightNorm

Dilated causal conv

Dropout

ReUL

WeightNorm

Dilated causal conv

Output

d = 4

Hidden

d = 2

Hidden

d = 1

Input

11 conv

Ŷt+1…t+h

Denormalization + Seasonalization

RNN(Xt) yt, st+m

LSTM LSTM LSTM
h0 h1 h2

Vectors of seasonality and

smoothing components

Exponential smoothing + normalization + De-seasonalization

xt-2 xt-1 xt

yt-2 yt-1 yt

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1409

Fig. 7: N-BEATS Architecture comprising of basic block to stack to multiple stacks combined together to get final forecast

(Oreshkin et al., 2019)

Multi-Step Prediction Strategy

While there are several methods defined in the

literature for multi-step forecasting (Taieb et al., 2012),

we focus only on Multiple-Input Multiple-Output

(MIMO) (Bontempi, 2008) which has outperformed other

techniques and achieved the best results for the task

(Taieb et al., 2012). This strategy employs a single model

to output the vector of future values (forecast) at one shot:

 ˆ
t ty F x (16)

where, xt is the input series vector at time t, F is the

trained model and ŷt is the vector of predicted output for

the input sequence.

Experiments and Results

We first describe the datasets used in this study. Then,

the experimental settings of different models are introduced

followed by the test strategy and evaluation metrics used.

Finally, we compare and analyze the performance results of

various models in our benchmark datasets.

Dataset and Pre-Processing

In order to have a thorough comparison and analyze

the ability of models for long-term forecast, we use six

different financial benchmark datasets from the stock

market and exchange rate domain. These data have been

widely used in financial time series forecasting domain

(Sezer et al., 2020). Description of the datasets is shown

in Table 1. All the datasets are publicly available online

and can be downloaded from the Yahoo finance

website1. In our experiments, all the dataset has been

split into training set (80%), validation set (10%) and test

set (10%) in a chronological order. We perform a

univariate analysis by considering only the closing price

of all assets. The historical closing price values are used

to predict the future values. A sliding window approach

is implemented to create the supervised dataset from the

training set as shown in Fig. 8. We also preprocess the

data considering the large unscaled values which affects

the training of the model and slows down the

convergence. For each dataset, we normalize the values

by subtracting the mean () and dividing by the standard

deviation () to have 0 mean and a standard deviation of

1 as shown in Equation (17). The normalization is fit and

transformed in the training set while the validation and

test set is only transformed to prevent look-ahead bias:

x
x

 (17)

Evaluation Metrics

We use two widely adopted evaluation metrics in

financial time-series forecasting domain (Guo et al.,

2014; Sezer et al., 2020), Root Mean Squared Error

(RMSE) and Mean Absolute Error (MAE) to test the

predictive performance and efficiency of the models:

1https://finance.yahoo.com

Lookback period

horizon nH (here n = 3)
Forecast period

horizon H

Global forecast

(model output)

Lookback window

(model input)

Stack input

Block input
Block 1

Stack 1

Block 2 Stack 2

FC stack
(4 layers)

Block K Stack M

FC FC
Stack

forecast

 b f

gb(b) gf(f)

Backcast Forecast Stack residual

(to next stack)

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1410

2

1

1
ˆ

N

t t

t

RMSE y y
N

 (18)

1

1
ˆ

N

t t

t

MAE y y
N

 (19)

where, N is the number of samples, yt and ŷt are the

actual and model predicted value respectively. Both the

metrics are scale-dependent measures and they represent

how closer are the actual and predicted values. Hence,

there is no definitive maximum value as threshold and

higher values indicate less accuracy. However, values

closer to zero indicate higher accuracy and better

performance. While we relatively compare the error

scores across different models in the same setting, the

model which achieves the least scores can be defined as

best performing and optimal.

Walk-Forward Validation

The test dataset is evaluated using the Walk-Forward

validation sliding window approach. In this method, we

take the first n values from the test set, where n is the

input time lag, for which the model predicts the next h

future values at once. The window shifts one step

towards the right taking the actual values to predict

again. This process continues until the end of the test set.

In this manner, the model always predicts using the

available true data. In our case where we forecast for

multiple steps ahead, h = [2,3,5,7,10]. This process is

similar to the sliding window approach in Fig. 8.

The RMSE and MAE is calculated at each sliding

instance and finally, the average is calculated for the

overall test set. Finally, we compare the average RMSE

and MAE for each model and each horizon.

Experimental Details

While training the model, we have several

parameters to be defined for each model. As a general

setting to all the models, the batch size is set to 32 and

mean squared error is selected as the loss function. We

adopt Adam (Kingma and Ba, 2014) as the

optimization algorithm with the learning rate set to

0.001. All the models are trained for 1000 epochs with

early stopping implemented as a callback function to

prevent overfitting. Specifically, we monitor the

validation loss after the end of each epoch and the

training process is stopped if the loss does not improve

for 50 iterations. Based on the experiments conducted,

we selected the input sliding window size (t) to be 16

days which depicts the best trade-off between

performance accuracy and system requirements.

Table 1: Description of dataset

Domain Dataset Period No. of instances

Stock market S&P 500 index 1999-01-04 to 2019-12-30 5,282

 DJIA index 1999-01-04 to 2019-12-30 5,282

 NASDAQ 100 Index 2000-03-20 to 2019-12-30 4,983

Forex market EURUSD 2003-12-01 to 2019-12-31 4168

 EURGBP 2003-01-01 to 2019-12-31 4,406

 EURJPY 2003-01-23 to 2019-12-31 4,373

Fig. 8: Sliding window approach

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xn-1 xn

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xn-1 xn

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xn-1 xn

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1411

All the LSTM based models adopt 100 hidden units.

The simple LSTM and BiLSTM model adopts a single

hidden layer while the deep LSTM model implements

three layers, stacked on top of each other. Both the

encoder and decoder network consist of a single layer

of LSTM model with the same hidden units to obtain a

compressed representation and generate the output

vector. In the ESLSTM network, the seasonality was

empirically selected to 30 for all the financial assets

and follows the same LSTM configuration with one

layer and 100 neurons.

For the TCN model, the dilations is specified to

[1,2,4,8] with kernel size of 2 and the amount of filters

used is set to 100 to have common grounds with the

LSTM models. The model also employs a single stack of

residual blocks and allows for skip connections from

input to each block. With the configured parameters, the

receptive field of the TCN network is the same as the

selected input window size of 16.

In the N-BEATS architecture, the backcast length is

set to 16 for each forecast lengths. For each stack, two

blocks are considered whereas the hidden layer units in

each block is set to 100. Moreover, generic architecture

based stack types are used which do not depend on

specific knowledge related to time-series.

All the models were implemented based on Keras

library with Tensor flow backend and the experiments

were conducted on a machine with Intel (R) Core (TM)

i7-9700F CPU and Nvidia GeForce RTX 2080 Ti GPU.

The models were trained multiple times to address the

random initialization of weights and the average

performance on the test set was recorded for comparison.

Results and Discussion

Our experimental results for six different financial

datasets on the test dataset are shown in Table 2 to 7.

Each table summarizes the average RMSE and MAE

scores for multi-step continuous forecasts across several

deep learning models used in this study. The error values

are computed after post-processing where the model

predictions are re-scaled to the original range of actual

value. The stock index values are in much higher range

and suffer from significant price movements as

compared to the forex values. Hence, we can observe

substantial difference in RMSE and MAE scores for

stock and forex datasets. The best metrics scores for each

forecast horizon are highlighted in bold.

The results show that the deep neural models depict

inconsistent performances depending on the domain and

behaviour of the financial markets. For S&P 500 index, the

temporal convolutional based model drastically reduces the

RMSE score by more than 50% for all forecast horizons.

The ES-LSTM and pure deep neural based N-BEATS

models also show significant improvements. The deep

LSTM model exhibited poor results followed by simple

LSTM. BiLSTM based architecture beats encoder-decoder

on short-term forecasts but fails when the prediction

horizon is longer (7 and 10 days).

The LSTM based models along with Encoder-Decoder

architecture also performed poorly when applied to DJIA

index with 57% higher error rate. Although the best

performing model in this case was ES-LSTM, the RMSE

and MAE scores for TCN and N-BEATS were also

relatively lower. However, it can be noted that the range of

errors in case of DJIA stock index is much higher in case of

classical LSTM models as compared to S&P 500. Based

on the results, it is also worth commenting that simple

LSTM and BiLSTM outperform sequence to sequence

architecture that are designed to capture the complex

temporal relationship in an effective way.

Similar to the other two stock markets, deep LSTM

recorded the highest error scores compared to other models

for NASDAQ 100. Also, TCN architecture outperformed

other models for all prediction horizons except for 7 days

ahead for which ES-LSTM obtained better result. N-

BEATS also exhibited considerable accuracy compared to

the other models. With regards to memory based models,

the error metrics for BiLSTM is relatively lower as

compared to LSTM and Encoder-Decoder.

Overall, we can observe that the state-of-the-art TCN,

ES-LSTM and N-BEATS architectures heavily

outperformed other traditional models in the stock

market domain for almost all forecast horizons. We can

also note that the RMSE and MAE scores do not

always gradually increase along with the forecast

horizons. This is consistent with previous research

findings (Bao et al., 2014) while forecasting chaotic

time series for multiple horizons.

The forex datasets behave differently as compared to
the stock indexes. LSTM based models prove to be more
dominant and display better results in most cases. N-
BEATS recorded the least error for short-term and long-
range forecast horizons (2,3 and 10 days) for EURUSD.

However, deep LSTM outperformed others in case of
mid-range (5 and 7 days) forecasts. Similarly, LSTM,
stacked LSTM, BiLSTM and Encoder-decoder
architectures performed better for most forecast horizons
for the Euro to Pounds market (EURGBP). In some
scenarios, we can report that multiple models achieve

similar accuracy for same forecast horizons such as,
stacked LSTM and BiLSTM achieved the same score for
2 days ahead forecast. Also, both encoder-decoder and
TCN model recorded least RMSE and MAE scores while
forecasting 5 days ahead. The stacked-LSTM exhibits
the least error score for 3, 5 and 7 days ahead forecast of

EURJPY exchange rate, while BiLSTM and simple
LSTM outperforms other models while forecasting 2 and
10 days ahead respectively. Unlike other two forex
dataset, RMSE and MAE scores are relatively higher for
all models in case of long-range forecast (10 days) of
Euro to Yen. It is interesting to mention that ES-LSTM

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1412

was the least accurate model for all three forex markets.
Similarly, unlike stock market datasets, almost all

models follow gradual linear trend as the forecast
horizon increases.

Table 2: S&P 500 Comparison Results

 Forecast horizon

Models Metrics 2 Days 3 Days 5 Days 7 Days 10 Days

LSTM RMSE 114.840 125.333 178.050 224.790 325.602

 MAE 113.113 110.433 174.615 220.959 321.152

Stacked-LSTM RMSE 151.301 200.239 529.958 414.273 555.635

 MAE 147.466 191.411 528.542 411.932 553.821

BiLSTM RMSE 63.316 58.478 96.854 149.500 246.797

 MAE 56.318 46.648 81.689 133.670 238.542

Encoder-Decoder RMSE 103.707 120.679 88.291 125.773 199.286

 MAE 93.327 111.369 80.764 114.835 187.693

ES-LSTM RMSE 43.887 44.267 86.6217 65.301 81.287

 MAE 41.489 40.138 76.738 58.628 70.002

TCN RMSE 24.617 29.955 36.251 42.306 48.876

 MAE 22.869 26.574 31.748 36.709 41.985

N-BEATS RMSE 30.236 35.069 54.695 56.054 59.727

 MAE 28.320 32.229 47.619 47.963 51.946

Table 3: DJIA comparison results

 Forecast horizon

Models Metrics 2 Days 3 Days 5 Days 7 Days 10 Days

LSTM RMSE 1698.271 1511.102 2399.312 2420.768 2363.74

 MAE 1691.548 1497.159 2380.754 2395.543 2333.575

Stacked-LSTM RMSE 4513.165 5869.620 7365.875 5957.295 6347.864

 MAE 4506.461 5850.385 7361.250 5951.215 6336.358

BiLSTM RMSE 2767.882 3130.423 3058.695 3802.990 3201.650

 MAE 2729.544 3117.111 2896.899 3694.886 3177.442

Encoder-Decoder RMSE 3655.777 3742.156 3805.998 3130.119 4059.851

 MAE 3647.535 3737.042 3794.176 3092.931 4038.078

ES-LSTM RMSE 43.887 44.267 86.621 65.301 81.287

 MAE 41.489 40.138 76.738 58.628 70.002

TCN RMSE 236.790 295.575 355.070 425.817 471.371

 MAE 217.392 265.053 310.963 371.231 406.477

N-BEATS RMSE 364.098 463.798 832.432 611.659 1506.272

 MAE 314.700 405.783 665.600 501.405 1286.235

Table 4: NASDAQ 100 comparison results

 Forecast horizon

 --

Models Metrics 2 Days 3 Days 5 Days 7 Days 10 Days

LSTM RMSE 423.847 780.648 1992.599 682.167 705.546

 MAE 382.708 777.880 1988.240 675.050 694.545

Stacked-LSTM RMSE 973.453 1548.454 2095.927 2306.527 2534.892

 MAE 970.076 1504.349 2059.833 2257.059 2515.681

BiLSTM RMSE 377.478 552.569 416.247 460.123 719.576

 MAE 364.704 548.040 406.244 450.262 709.804

Encoder-Decoder RMSE 467.282 446.732 1025.974 1144.887 889.599

 MAE 409.260 386.498 1018.017 1128.694 844.893

ES-LSTM RMSE 104.654 307.713 213.457 159.068 401.948

 MAE 96.044 282.699 195.484 140.833 377.301

TCN RMSE 88.682 163.101 115.347 227.868 155.766

 MAE 80.513 153.098 101.124 192.354 135.187

N-BEATS RMSE 222.861 238.118 259.671 344.024 247.899

 MAE 218.531 231.058 233.568 333.954 229.427

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1413

Table 5: EURUSD comparison results

 Forecast horizon

Models Metrics 2 Days 3 Days 5 Days 7 Days 10 Days

LSTM RMSE 0.00427 0.00497 0.00607 0.00674 0.00753
 MAE 0.00395 0.00448 0.00536 0.00592 0.00654
Stacked-LSTM RMSE 0.00433 0.00532 0.00587 0.00668 0.00836
 MAE 0.00402 0.00486 0.00520 0.00589 0.00744
BiLSTM RMSE 0.00423 0.00492 0.00593 0.00702 0.00744
 MAE 0.00390 0.00443 0.00523 0.00623 0.00646
Encoder-Decoder RMSE 0.00415 0.00487 0.00593 0.00722 0.00791
 MAE 0.00385 0.00440 0.00525 0.00637 0.00691
ES-LSTM RMSE 0.00504 0.00823 0.00780 0.00791 0.00854
 MAE 0.00454 0.00747 0.00692 0.00693 0.00739
TCN RMSE 0.00418 0.00497 0.00618 0.00693 0.00772
 MAE 0.00384 0.00447 0.00541 0.00605 0.00668
N-BEATS RMSE 0.00412 0.00480 0.00631 0.00735 0.00738
 MAE 0.00378 0.00430 0.00539 0.00643 0.00641

Table 6: EURGBP comparison results

 Forecast horizon
 --
Models Metrics 2 Days 3 Days 5 Days 7 Days 10 Days

LSTM RMSE 0.00377 0.00443 0.00558 0.00664 0.00779
 MAE 0.00347 0.00397 0.00489 0.00573 0.00670
Stacked-LSTM RMSE 0.00372 0.00444 0.00546 0.00640 0.00774
 MAE 0.00344 0.00400 0.00482 0.00558 0.00668
BiLSTM RMSE 0.00372 0.00452 0.00553 0.00673 0.00817
 MAE 0.00344 0.00400 0.00483 0.00585 0.00705
Encoder-Decoder RMSE 0.00407 0.00454 0.00537 0.00609 0.00714
 MAE 0.00377 0.00408 0.00471 0.00528 0.00618

ES-LSTM RMSE 0.00386 0.00733 0.00970 0.01452 0.00849
 MAE 0.00355 0.00694 0.00893 0.01363 0.00756
TCN RMSE 0.00379 0.00445 0.00537 0.00620 0.00773
 MAE 0.00351 0.00400 0.00471 0.00542 0.00676
N-BEATS RMSE 0.00395 0.00463 0.00572 0.00691 0.00997
 MAE 0.00367 0.00416 0.00503 0.00600 0.00844

Table 7: EURJPY comparison results

 Forecast horizon

Models Metrics 2 Days 3 Days 5 Days 7 Days 10 Days

LSTM RMSE 0.56835 0.69033 0.85884 0.99597 1.15732

 MAE 0.52265 0.61943 0.76053 0.86914 1.00114

Stacked-LSTM RMSE 0.57771 0.66684 0.85445 0.98912 1.26894

 MAE 0.53376 0.59929 0.75537 0.86162 1.11844

BiLSTM RMSE 0.56197 0.67186 0.88569 1.01427 1.17914

 MAE 0.51602 0.60178 0.78782 0.88905 1.02423

Encoder-Decoder RMSE 0.56418 0.68552 0.88250 1.04270 1.19979

 MAE 0.52066 0.61837 0.77768 0.91007 1.04313

ES-LSTM RMSE 0.58944 0.72175 0.97596 1.07270 1.22054

 MAE 0.54230 0.65220 0.87310 0.94332 1.05797

TCN RMSE 0.59088 0.69200 0.90328 1.11289 1.27454

 MAE 0.54047 0.61870 0.79469 0.96318 1.10717

N-BEATS RMSE 0.59328 0.71860 0.88381 1.07301 1.22428

 MAE 0.54714 0.65091 0.78455 0.93912 1.06629

Analysis of results show that sophisticated deep

models provides promising avenue in effectively

capturing the underlying dynamics and patterns of the

stock market. Specifically, the inherent hierarchical

learning ability of N-BEATS and TCN architecture as

well as the pre-processed exponential smoothing

combined with LSTM model allows for remarkable

results. However, the gated mechanism based pure

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1414

LSTM, Bidirectional LSTM and the sequential

architecture outperforms the state-of-the-art models in

forex market with small margin.

Conclusion

In this study, we investigated the performance of the

most relevant deep learning models for multi-step-ahead

forecasts in the financial domain. The experiments have

been carried out on three real world datasets of the stock

market and forex domain. After a sound comprehensive

assessment, we can observe that the recent benchmark

models for time-series prediction such as ES-LSTM, TCN

and N-BEATS, showcased exceptional results for the

stock market domain, while the classical LSTM, BiLSTM

and Encoder-Decoder models still have an upperhand in

predicting the forex markets. The results obtained also

conclude that the relationship between forecast horizon

and error values is non-linear for most of the models in

the stock domain, while the forex market manifests

linear correlation for almost all neural networks.

This research is however limited to univariate

analysis where only historical data is considered as the

source of input. The stochastic and dynamically driven

financial field is significantly impacted by several other

external factors such as news (Du and Tanaka-Ishii,

2020) and interrelationship between multiple time series

(Borovykh et al., 2017) which could be incorporated and

examined in the future work. Also, hyper parameter

tuning for each model can be automated using an

optimization algorithm (Bergstra et al., 2011).

Acknowledgement

This research is carried out in collaboration with and

funded by Capital Alliance Limited2.

Author’s Contributions

All the authors have equal contribution for the

completion of the manuscript.

Ethics

This research work is original and contains

unpublished material. All the authors have read and

approved the manuscript and no ethical issues are

involved with no conflict of interest to disclose.

References

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural

machine translation by jointly learning to align and

translate. arXiv preprint arXiv:1409.0473.

2https://cal.lk/

Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., &

Bengio, Y. (2016, March). End-to-end attention-based

large vocabulary speech recognition. In 2016 IEEE

international conference on acoustics, speech and

signal processing (ICASSP) (pp. 4945-4949). IEEE.

Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical

evaluation of generic convolutional and recurrent

networks for sequence modeling. arXiv preprint

arXiv:1803.01271.

Bao, W., Yue, J., & Rao, Y. (2017). A deep learning

framework for financial time series using stacked

autoencoders and long-short term memory. PloS

one, 12(7), e0180944.

Bao, Y., Xiong, T., & Hu, Z. (2014). Multi-step-ahead

time series prediction using multiple-output support

vector regression. Neurocomputing, 129, 482-493.

Bergstra, J. S., Bardenet, R., Bengio, Y., & Kégl, B.

(2011). Algorithms for hyper-parameter

optimization. In Advances in neural information

processing systems (pp. 2546-2554).

Bontempi, G. (2008). Long term time series prediction

with multi-input multi-output local learning. Proc.

2nd ESTSP, 145-154.

Borovykh, A., Bohte, S., & Oosterlee, C. W. (2017).

Conditional time series forecasting with convolutional

neural networks. arXiv preprint arXiv:1703.04691.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M.,

Kaplan, J., Dhariwal, P., ... & Agarwal, S. (2020).

Language models are few-shot learners. arXiv

preprint arXiv:2005.14165.

Chang, S., Zhang, Y., Han, W., Yu, M., Guo, X., Tan,

W., ... & Huang, T. S. (2017). Dilated recurrent

neural networks. In Advances in Neural Information

Processing Systems (pp. 77-87).

Chatigny, P., Patenaude, J. M., & Wang, S. (2020).

Financial Time Series Representation Learning.

arXiv preprint arXiv:2003.12194.

Chauhan, S., & Vig, L. (2015, October). Anomaly

detection in ECG time signals via deep long short-

term memory networks. In 2015 IEEE International

Conference on Data Science and Advanced

Analytics (DSAA) (pp. 1-7). IEEE.
Chen, L., Chi, Y., Guan, Y., & Fan, J. (2019, May). A

hybrid attention-based EMD-LSTM model for
financial time series prediction. In 2019 2nd
International Conference on Artificial Intelligence
and Big Data (ICAIBD) (pp. 113-118). IEEE.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau,
D., Bougares, F., Schwenk, H., & Bengio, Y.
(2014). Learning phrase representations using RNN
encoder-decoder for statistical machine translation.
arXiv preprint arXiv:1406.1078.

Chorowski, J. K., Bahdanau, D., Serdyuk, D., Cho, K., &

Bengio, Y. (2015). Attention-based models for

speech recognition. In Advances in neural

information processing systems (pp. 577-585).

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1415

Cui, Z., Ke, R., Pu, Z., & Wang, Y. (2018). Deep

bidirectional and unidirectional LSTM recurrent

neural network for network-wide traffic speed

prediction. arXiv preprint arXiv:1801.02143.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K.

(2018). Bert: Pre-training of deep bidirectional

transformers for language understanding. arXiv

preprint arXiv:1810.04805.

Du, X., & Tanaka-Ishii, K. (2020, July). Stock

Embeddings Acquired from News Articles and Price

History and an Application to Portfolio

Optimization. In Proceedings of the 58th Annual

Meeting of the Association for Computational

Linguistics (pp. 3353-3363).

Eck, D., & Schmidhuber, J. (2002, September). Finding

temporal structure in music: Blues improvisation

with LSTM recurrent networks. In Proceedings of

the 12th IEEE workshop on neural networks for

signal processing (pp. 747-756). IEEE.

Fan, C., Zhang, Y., Pan, Y., Li, X., Zhang, C., Yuan, R.,

... & Huang, H. (2019, July). Multi-horizon time

series forecasting with temporal attention learning.

In Proceedings of the 25th ACM SIGKDD

International Conference on Knowledge Discovery

& Data Mining (pp. 2527-2535).

Fischer, T., & Krauss, C. (2018). Deep learning with

long short-term memory networks for financial

market predictions. European Journal of Operational

Research, 270(2), 654-669.

Fox, I., Ang, L., Jaiswal, M., Pop-Busui, R., & Wiens, J.

(2018, July). Deep multi-output forecasting:

Learning to accurately predict blood glucose

trajectories. In Proceedings of the 24th ACM

SIGKDD international conference on knowledge

discovery & data mining (pp. 1387-1395).

Ghaderi, A., Sanandaji, B. M., & Ghaderi, F. (2017).

Deep forecast: Deep learning-based spatio-temporal

forecasting. arXiv preprint arXiv:1707.08110.
Graves, A., Jaitly, N., & Mohamed, A. R. (2013a,

December). Hybrid speech recognition with deep
bidirectional LSTM. In 2013 IEEE workshop on
automatic speech recognition and understanding (pp.
273-278). IEEE.

Graves, A., Mohamed, A. R., & Hinton, G. (2013b,
May). Speech recognition with deep recurrent
neural networks. In 2013 IEEE international
conference on acoustics, speech and signal
processing (pp. 6645-6649). IEEE.

Graves, A., & Schmidhuber, J. (2005). Framewise

phoneme classification with bidirectional LSTM and

other neural network architectures. Neural networks,

18(5-6), 602-610.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai,

B., ... & Chen, T. (2018). Recent advances in

convolutional neural networks. Pattern Recognition,

77, 354-377.

Guo, Z., Wang, H., Liu, Q., & Yang, J. (2014). A feature

fusion based forecasting model for financial time

series. PloS one, 9(6), e101113.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep

residual learning for image recognition. In

Proceedings of the IEEE conference on computer

vision and pattern recognition (pp. 770-778).

Heaton, J. B., Polson, N. G., & Witte, J. H. (2017). Deep

learning for finance: deep portfolios. Applied

Stochastic Models in Business and Industry, 33(1),

3-12.

Hochreiter, S. (1998). The vanishing gradient problem

during learning recurrent neural nets and problem

solutions. International Journal of Uncertainty,

Fuzziness and Knowledge-Based Systems, 6, 107-116.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-

term memory. Neural computation, 9(8), 1735-1780.

Hussein, S., Chandra, R., & Sharma, A. (2016, July).

Multi-step-ahead chaotic time series prediction

using coevolutionary recurrent neural networks. In

2016 IEEE Congress on Evolutionary Computation

(CEC) (pp. 3084-3091). IEEE.

Hwang, J. (2020). Modeling Financial Time Series using

LSTM with Trainable Initial Hidden States. arXiv

preprint arXiv:2007.06848.

Hyndman, R., Koehler, A. B., Ord, J. K., & Snyder, R.

D. (2008). Forecasting with exponential smoothing:

the state space approach. Springer Science &

Business Media.

Jiang, W. (2020). Applications of deep learning in stock

market prediction: recent progress. arXiv preprint

arXiv:2003.01859.

Kim, J., El-Khamy, M., & Lee, J. (2017). Residual

LSTM: Design of a deep recurrent architecture for

distant speech recognition. arXiv preprint

arXiv:1701.03360.

Kingma, D. P., & Ba, J. (2014). Adam: A method for

stochastic optimization. arXiv preprint

arXiv:1412.6980.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).

Imagenet classification with deep convolutional

neural networks. In Advances in neural information

processing systems (pp. 1097-1105).

Laptev, N., Yosinski, J., Li, L. E., & Smyl, S. (2017,

August). Time-series extreme event forecasting with

neural networks at uber. In International Conference

on Machine Learning (Vol. 34, pp. 1-5).

Li, S., Jin, X., Xuan, Y., Zhou, X., Chen, W., Wang, Y.

X., & Yan, X. (2019). Enhancing the locality and

breaking the memory bottleneck of transformer on

time series forecasting. In Advances in Neural

Information Processing Systems (pp. 5243-5253).

Li, Y., Yu, R., Shahabi, C., & Liu, Y. (2017). Diffusion

convolutional recurrent neural network: Data-driven

traffic forecasting. arXiv preprint arXiv:1707.01926.

Saugat Aryal et al. / Journal of Computer Science 2020, 16 (10): 1401.1416

DOI: 10.3844/jcssp.2020.1401.1416

1416

Liang, Y., Ke, S., Zhang, J., Yi, X., & Zheng, Y. (2018,

July). Geoman: Multi-level attention networks for

geo-sensory time series prediction. In IJCAI (pp.

3428-3434).
Lim, B., Arik, S. O., Loeff, N., & Pfister, T. (2019).

Temporal fusion transformers for interpretable
multi-horizon time series forecasting. arXiv preprint
arXiv:1912.09363.

Liu, A. A., Shao, Z., Wong, Y., Li, J., Su, Y. T., &

Kankanhalli, M. (2019). LSTM-based multi-label

video event detection. Multimedia Tools and

Applications, 78(1), 677-695.
Lv, Y., Duan, Y., Kang, W., Li, Z., & Wang, F. Y.

(2014). Traffic flow prediction with big data: a deep
learning approach. IEEE Transactions on Intelligent
Transportation Systems, 16(2), 865-873.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V.
(2020). The M4 Competition: 100,000 time series
and 61 forecasting methods. International Journal of
Forecasting, 36(1), 54-74.

Masum, S., Liu, Y., & Chiverton, J. (2018, June). Multi-

step time series forecasting of electric load using

machine learning models. In International

Conference on Artificial Intelligence and Soft

Computing (pp. 148-159). Springer, Cham.
Ogunfunmi, T., Ramachandran, R. P., Togneri, R., Zhao,

Y., & Xia, X. (2019). A primer on deep learning
architectures and applications in speech processing.
Circuits, Systems and Signal Processing, 38(8),
3406-3432.

Oord, A. V. D., Dieleman, S., Zen, H., Simonyan, K.,
Vinyals, O., Graves, A., ... & Kavukcuoglu, K.
(2016). Wavenet: A generative model for raw audio.
arXiv preprint arXiv:1609.03499.

Oreshkin, B. N., Carpov, D., Chapados, N., & Bengio,
Y. (2019). N-BEATS: Neural basis expansion
analysis for interpretable time series forecasting.
arXiv preprint arXiv:1905.10437.

Ouyang, Y., & Yin, H. (2018). Multi-step time series
forecasting with an ensemble of varied length
mixture models. International journal of neural
systems, 28(04), 1750053.

Pascanu, R., Gulcehre, C., Cho, K., & Bengio, Y.

(2013). How to construct deep recurrent neural

networks. arXiv preprint arXiv:1312.6026.

Qin, H. (2019). Comparison of Deep learning models on

time series forecasting: a case study of Dissolved

Oxygen Prediction. arXiv preprint arXiv:1911.08414.

Qin, Y., Song, D., Chen, H., Cheng, W., Jiang, G., &

Cottrell, G. (2017). A dual-stage attention-based

recurrent neural network for time series prediction.

arXiv preprint arXiv:1704.02971.

Rangapuram, S. S., Seeger, M. W., Gasthaus, J., Stella,

L., Wang, Y., & Januschowski, T. (2018). Deep

state space models for time series forecasting. In

Advances in neural information processing systems

(pp. 7785-7794).

Salinas, D., Flunkert, V., Gasthaus, J., & Januschowski,

T. (2020). DeepAR: Probabilistic forecasting with

autoregressive recurrent networks. International

Journal of Forecasting, 36(3), 1181-1191.

Sezer, O. B., Gudelek, M. U., & Ozbayoglu, A. M.

(2020). Financial time series forecasting with deep

learning: A systematic literature review: 2005–2019.

Applied Soft Computing, 90, 106181.

Siami-Namini, S., Tavakoli, N., & Namin, A. S. (2019).

A comparative analysis of forecasting financial time

series using arima, lstm and bilstm. arXiv preprint

arXiv:1911.09512.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,

I., Huang, A., Guez, A., ... & Chen, Y. (2017).

Mastering the game of go without human

knowledge. nature, 550(7676), 354-359.
Smyl, S. (2020). A hybrid method of exponential

smoothing and recurrent neural networks for time
series forecasting. International Journal of
Forecasting, 36(1), 75-85.

Sundermeyer, M., Ney, H., & Schlüter, R. (2015). From
feedforward to recurrent LSTM neural networks for
language modeling. IEEE/ACM Transactions on
Audio, Speech and Language Processing, 23, 517-529.

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence
to sequence learning with neural networks. In
Advances in neural information processing systems
(pp. 3104-3112).

Taieb, S. B., Bontempi, G., Atiya, A. F., & Sorjamaa, A.

(2012). A review and comparison of strategies for

multi-step ahead time series forecasting based on the

NN5 forecasting competition. Expert systems with

applications, 39(8), 7067-7083.

Wen, R., Torkkola, K., Narayanaswamy, B., & Madeka,

D. (2017). A multi-horizon quantile recurrent

forecaster. arXiv preprint arXiv:1711.11053.

Wu, Y., Schuster, M., Chen, Z., Le, Q. V., Norouzi, M.,

Macherey, W., ... & Klingner, J. (2016). Google's

neural machine translation system: Bridging the gap

between human and machine translation. arXiv

preprint arXiv:1609.08144.
Yan, H., & Ouyang, H. (2018). Financial time series

prediction based on deep learning. Wireless
Personal Communications, 102(2), 683-700.

Yildirim, Ö. (2018). A novel wavelet sequence based on
deep bidirectional LSTM network model for ECG
signal classification. Computers in biology and
medicine, 96, 189-202.

Yu, R., Zheng, S., Anandkumar, A., & Yue, Y. (2017).
Long-term forecasting using higher order tensor
RNNs. arXiv preprint arXiv:1711.00073.

Zheng, J., Xu, C., Zhang, Z., & Li, X. (2017, March).
Electric load forecasting in smart grids using long-
short-term-memory based recurrent neural network.
In 2017 51st Annual Conference on Information
Sciences and Systems (CISS) (pp. 1-6). IEEE.

