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Abstract: This paper proposes a new meta-heuristic-based optimization 

algorithm for single-objective problems. The algorithm is called Natural 

Reforestation Optimization (NRO) and is inspired by the process in which 

natural reforestation takes place. The features of this algorithm (such as the 

distribution of the initial population, the exploration and exploitation 

mechanisms, the interactions between the particles, the stopping criteria, 

among others) are discussed and analyzed to show how they are applied to 

enhance the search of the global solution. The performance of this algorithm 

is tested with standard single-objective optimization problems (which contain 

from 2 to 20 optimization variables) and is compared with other optimization 

algorithms. The results reveal that in general, the NRO algorithm produces 

solutions close to the global optimal and is able to surpass the other 

optimization algorithms for many of the benchmark functions. The current 

study shows the qualities of the NRO algorithm and serves as the starting 

point for further investigation to take place to keep improving its capabilities. 

 

Keywords: Meta-Heuristic Optimization Algorithm, Single-Objective 
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Introduction 

Meta-heuristic optimization algorithms are generally 

employed for problems which cannot be solved directly. 

Many of these algorithms are inspired by different 

natural phenomena such as the social behavior of bird 

flocking (Particle Swarm Optimization (Clerc, 2010; 

Parsopoulos and Vrahatis, 2010)), the biological 

evolution of the organisms (Genetic Algorithm (Davis, 

1991; Kantardzic, 2003)), among others (Suman and 

Kumar, 2006; Rashedi et al., 2009; Dasgupta et al., 2011; 

Krishnanand et al., 2009; Yang, 2011; Beheshti and 

Shamsuddin, 2013; Dorigo and Blum, 2005; Alvarez-

Alvarado and Jayaweera, 2018a; Kohli and Arora, 2018; 

Alvarez-Alvarado and Jayaweera, 2018b; Cui et al., 

2016). In this study we propose a new optimization 

approach based on the natural reforestation of trees 

named Natural Reforestation Optimization (NRO). 

Similar to other meta-heuristic algorithms, NRO 

algorithm optimizes a defined problem by iteratively 

searching for the best solution. For this, it employs a 

population of particles (called trees) from which new 

particles are produced (called seeds) which are 

distributed within the search space (called forest). The 

amount of seeds each tree produces is based on the 

fertility of the place it was planted i.e., how good is its 

current solution. To distribute the seeds, they can, on the 

one hand, fall from the tree without the influence of the 

wind (these will then land close to their parent tree) or, 

on the other hand, leave their parent tree due to the wind 

influence in which the wind direction (that is influenced 

by the location of the current best solution) and speed are 

taken into account. The reduction of the wind speed due 

to other trees that block its path is also considered. Once 

the seeds have landed, they will grow and become trees 

and their associated solution is evaluated. The 

reforestation process is then repeated. 

Based on the reforestation principle, our algorithm 

has the following characteristics: 

 

 It prioritizes the exploration of the search space in 

the beginning i.e., the number of seeds influenced 

by the wind (which can travel a long distance) is the 
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highest at the first iteration and reduces as the 

number of iteration increases. These seeds are also 

useful to escape from local optimal regions 

 It prioritizes the exploitation of the search space 

towards the end i.e., the number of seeds not 

influenced by the wind (which travel only a short 

distance) increases as the number of iteration 

increases. The area range within these seeds can land 

is also reduced with increasing number of iterations 

 For the case of the seeds influenced by the wind, the 

search of the new solutions is affected by the 

location of the current best solution (which 

influences the wind direction) as well as the location 

of other trees (if close to the trajectory of the seeds) 

since they can reduce the wind speed based on how 

good is their associated solution. Therefore, the new 

population of particles (seeds) have the opportunity 

to interact with the current population (trees) in 

order to search for the best solution 

 The seeds that are not influenced by the wind are 

especially useful when the solutions are close to the 

global solution as they can perform a more intensive 

search within this area (exploitation). Particles 

located close to the global solution are expected to 

be obtained as the number of iterations increases and 

hence the number of these seeds increases (while the 

ones influenced by the wind decreases) as the 

number of iterations rises 

 The better the solution obtained by a tree, the more 

seeds it will be assigned so that more exploration 

and exploitation can take place in this area 
 

The rest of the paper is arranged as follows. In 

Section II, the principles of the natural reforestation 
process, from which our algorithm is inspired, are 
explained. Subsequently, the algorithm formulation is 
detailed in section III while the method to set the values 
of the variables are given in section IV. In section V, the 
performance of the NRO algorithm is compared with 

other optimization algorithms to solve different 
optimization problems. Section VI then concludes the 
paper. An Appendix section is presented at the end of 
this document describing the benchmark functions and 
providing the nomenclature table (Table 3). 

Natural Reforestation Process 

The NRO algorithm takes into account the following 

elements involved in the natural reforestation process: The 

forest, the trees, the seeds and the wind. Here, the forest 

represents the range of values in which the optimization 

variables are bounded. The trees represent the population 

of solutions whose location within the forest defines the 

value of their optimization variables. Their height is 

calculated from a fitness function based on the 

optimization problem. In case of a minimization 

(maximization) problem, the lower (higher) the 

objective function value for a particular tree, the greater 

its height. The seeds represent the new solutions that 

are utilized to search for better solutions within the 

forest. They are generated from the trees (the tree that 

generates a seed is referred as its parent tree). The place 

where they are planted can depend on several factors 

such as the location and height of the trees as well as the 

wind direction and speed. 

The natural reforestation process is as follows: 

 

1) The population of trees is planted among the forest 

2) The taller the tree, the more seeds it can generate 

3) The seeds produced by the trees can be dispersed 

with two options: 

a) No wind influence: Some seeds can fall without 

the wind intervention. These will land close to 

their parent tree 

b) Wind influence: The wind can separate the 

seeds from their parent tree and the place where 

they are planted depends on their parent tree’s 

location, the wind direction and speed. The 

wind speed may be reduced due to other trees 

blocking its path 

4) Based on the soil quality of the place where the seed is 

planted, it will grow into a tree with a certain height 

(the more fertile the land, the greater its height) 

5) As the forest has a limited space, the trees will 

compete with each other for nutrients and sunlight 

and the ones with the greatest heights will remain 

6) The process is then repeated 

 

Algorithm Formulation 

Based on the process described in the previous 

section, the steps of the NRO algorithm for an 

optimization problem are formulated below: 

 

1) Initialization. The following parameters are defined: 

a) Objective function fobj which is in terms of the 

nvar optimization variables x(k), k = 1, 2,…, nvar 

b) Range of values the optimization variables can 

have xmin,(k) < x(k) < xmax,(k), k = 1, 2,…, nvar. This 

will constitute the size of the forest 

c) Population size npop 

d) Total number of seeds that will be generated at 

each iteration Nseed 

e) Percentage of seeds that are planted without the 

wind influence, called internal seeds, at the initial 

iteration perseed,ini and at the final iteration perseed,fin 

f) Multidimensional sphere size within which the 

internal seeds are planted (the parent tree is the 

center of the sphere) at the initial iteration 

Sphseed,ini and at the final iteration Sphseed,fin. The 
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sphere size is measured as a percentage of the 

maximum distance within the forest 

g) Minimum distance between the traveling external 

seeds and the trees in order for the latter (called 

blocking trees) to reduce the speed of the wind 

that is transporting the external seeds ,

min

wind treedist . 

This distance is measured as a percentage of the 

maximum distance within the forest 

h) Maximum distance that an external seed will 

reach if it is generated from the highest tree 

of the current iteration and with the highest 

wind speed (without the influence of blocking 

trees) max, max

seed

h vdist . This distance is measured 

as a percentage of the maximum distance 

within the forest 

i) Percentage of the wind speed reduction when it 

is blocked by the highest tree of the current 

iteration ,

max

wind red

hspeed  

j) Height of the tree with the best (closest to the 
optimal solution) and worst (furthest from the 
optimal solution) objective value at the current 
iteration: hmax and hmin, respectively 

k) Neighborhood parameter to generate the initial 
population neigh 

l) Radius of the individual neighborhood of the 

initial population rneigh = var / neighn   

m) Maximum accepted distance between the trees 

to stop the algorithm 
max

stopdist  

n) Maximum number of consecutive iterations to 

stop the algorithm in which no improved 

solution has been obtained 
max1itn  

o) Maximum number of iterations to stop the 

algorithm 
max2itn  

p) The number of the consecutive iterations without 
an improvement of the solution n3it is set to zero 

q) The number of the current iteration nit is set to one 

2) Generation of the initial population 

a) Each of the npop initial trees are randomly 

distributed in the search space and are assigned 

with optimization variables values 
 ,

tree

k p
x , k = 1, 

2,…, nvar, p = 1, 2,…, npop with the condition that 

no particle should be within the neighborhood of 

another particle (to assure diversity, similar to 

(Chelouah and Siarry, 2000)). Therefore, for any 

two particles with values of the optimization 

variables of 
 ,

tree

k a
x  and 

 ,

tree

k b
x , a  b, respectively, 

the following condition must hold (this is 

represented in Fig. 1a for a problem with two 

optimization variables)1: 

                                                           
1 Because the optimization variables can have different searching ranges, 

they should be normalized. This takes place in Equation 1, 7, 9 and 11. 

   

   

var
2

, ,

1 max min

tree tree
n

k a k b neigh

k k k

x x
r

x x

 
  
 
 

  (1) 

 

b) Calculation of the objective value for each of 

the initial trees Obj(p), p = 1, 2,…, npop 

c) Calculation of the height for each of the initial 

trees. The tree height 
 
tree

p
h , p = 1, 2,…, npop is 

calculated based on a linear relation with its 

objective value. Here, the trees with the best 

and worst Obj(p) are assigned a height of 
max

treeh  

and 
min

treeh , respectively, as shown2: 

 

 

        

        

max min

max

max min

min

. min
min max

,

. min
max min

,

tree tree

p

tree

tree

p tree tree

p

tree

h h
Obj Obj

Obj Obj

h if minimization problem
h

h h
Obj Obj

Obj Obj

h if maximization problem

 





 
 

 



 (2) 

 

d) Among the current population, the tree with the 

best solution is selected (the tree closest to the 

optimal result). The value of the optimization 

variables and the objective value of this tree are 

stored in Bx(k) and BObj, respectively 

3) Seeds production 

a) The number of seeds that each tree will produce 

 
seed

p
n , p = 1, 2,…, npop is based on their height 

(the greater their height, the more seeds they 

will produce)3: 

 

 

 

 
1

round
pop

seed tree

pseed

p n
tree

k
k

N h
n

h


 
 
 
 
 
 


 (3) 

 

b) When the algorithm starts, the percentage of 

internal seeds is low with a value of perseed,ini 

while the one of external seeds is high. As the 

iterations go on, the percentage of internal 

seeds increases reaching a maximum of 

perseed,fin when nit = 
max2itn , while the one of 

external seeds decreases. This takes place to 

give emphasis to the exploration at the 

beginning and then to the exploitation towards 

                                                           
2 The functions min(z) and max(z) represent the minimum and 

maximum values within the z values, respectively. 
3 The function round(z) rounds the value of z to its closest integer. 
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the end of the algorithm. The number of 

internal seeds 
 

,seed int

p
n , p = 1, 2, …, npop from 

each tree is then calculated as: 

 

   

 

, ,
,

max

,

round
2 1

1

100% 100%

seed fin seed ini
seed int tree

p p it

it seed ini

per per
n n

n

n per

 
     


 



 (4) 

 

c) The number of external seeds for each tree 

 
,seed ext

p
n , p = 1, 2, …, npop is: 

 

     
, ,seed ext seed seed int

p p p
n n n   (5) 

 

4) Estimation of the place where the internal seeds are 

planted 

a) The internal seeds are the ones that fall from 

the trees without the wind influence. 

Consequently, they are expected to land close 

to their parent tree   ,

tree

k p
x  who acts as the 

sphere center where these seeds can be placed. 

At the initial iteration, the radius of this sphere 

is Sphseed,ini, this is then linearly reduced after 

each iteration reaching a value of Sphseed,fin 

when nit = 
max2itn . The reduction of the sphere 

size takes place to intensify the search of the 

current area. The location (values of the 

optimization variables) for each of the 
 

,seed int

p
n  

internal seeds associated to each of the npop 

trees 
 

,

, ,

seed int

k p m
x , k = 1, 2,…, nvar, p = 1, 2,…, npop, 

m = 1, 2, …, 
 

,seed int

p
n  is estimated as4: 

 

        

 

,

, , , max min

, ,

max

,

rand
1 2

1

100% 100%

seed int tree

k p m k p k k

seed ini seed fin

it

it seed ini

x x x x

Sph Sph

n

n Sph

  

 
     


 



 (6) 

 

b) In case any of the particles goes beyond the 

search space, they will be brought back to the 

searching boundary: 

                                                           
4 The function rand generates a random number between zero and one 

drawn from the standard uniform distribution. The  symbol indicates 

that it can be an addition or a subtraction (the operation is randomly 

selected). 

   

   

   

   

,

, , max

,

, , max

,

, , min

,

, , min

,

,

seed int

k p m k

seed int

k p m k

seed int

k p m k

seed int

k p m k

if x x then

x x

if x x then

x x









 

 

5) Estimation of the place where the external seeds are 

planted 

a) The external seeds are the ones dispersed from 
their parent tree with the wind influence. The 
location where they are planted depends on the 
wind direction and speed, the height of their 
parent tree and the blocking trees. The falling 
seeds are assumed to experience a two 
dimensional - consisting of x and y axis - 
parabolic movement which follows the 
kinematic equations. Here, the gravity and 
height of the parent tree control the movement 
of the seeds in the y axis (height of the seed) 
while their movement in the x axis (travelled 
distance of the seed) is affected by the wind as 
well as the height and location of the parent 
and blocking trees (the direction of the x axis 
is the same as the wind direction). For 
simplicity, the rest of this section deals with 
the travelled trajectory of an individual seed. 
This procedure can then be repeated for the 
other external seeds 

b) Once the external seed is traveling, its travelled 

distance distseed, when reaching a final position 

of xseed,fin, k = 1, 2,…, nvar within the forest, is 

calculated based on its initial location xseed,ini, k 

= 1, 2,…, nvar (location of its parent tree), as: 

 

   

   

var
2

, ,

1 max min

seed fin seed ini
n

k kseed

k k k

x x
dist

x x

 
 
 
 

  (7) 

 

c) To estimate the value of the gravity g, it is 

assumed that, when the external seed is 

generated from the tree with the highest 

height in the current iteration and the wind is 

at maximum speed, it will be able to travel a 

total distance of max, max

seed

h vdist within the forest 

(assuming no blocking tree is present to 

reduce the wind speed). The gravity is then 

defined as5: 

 

  

 
2

var

max, max

2 max

/ 100%

tree

p

seed

h v

h
g

n dist






 (8) 

                                                           
5 Equation 8 and 13 are obtained based on the kinematic equations. 
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d) The wind direction 
 
wind

k
dir , k = 1, 2,…, nvar is a 

nvar-dimensional vector due to the nvar 

optimization variables. It is calculated taking 

into account the position where the tree with the 

best result is located, as follows: 

 

 

    
   

,

max min

rand
k

tree

k px
wind

k

k k

B x

dir
x x



 


 (9) 

 

e) The initial wind speed is randomly selected 

between zero (no wind) and one (maximum 

wind speed): 

 

 
, randwind ini

k
speed   (10) 

 

f) Based on the wind direction, the position of 

the trees that are close to its traveling path 

(the blocking trees) are stored. Among the 

total population, the blocking trees are the 

ones whose minimum distance between them 

and the traveling seed is lower than ,

min

wind treedist . 

This is represented in Fig. 1b for the case of a 

problem with two optimization variables 

g) Once all the blocking trees are found, the 

traveling seeds will reach a particular 

blocking tree (which is located at a position 

of 
 

,tree block

k
x k = 1, 2,…, nvar) when it has 

travelled a distance of: 
 

   

   

var
2

, ,

,

1 max min

1tree block seed ini
n

k kseed tree

k k k

x x
dist

x x

 
 
 
 

  (11) 

 

h) To estimate the location at which the external 

seed is planted, it is considered that it starts at 

an initial height equal to the height of its 

parent tree 
 

,tree parent

p
h  and moves with an initial 

speed and direction equal to the one of the 

wind (
 

,wind ini

k
speed and

 
wind

k
dir , respectively). 

Once the seed reaches a blocking tree, its 

speed 
 
wind

k
speed , k = 1, 2,…, nvar is linearly 

reduced based on the height of this tree 

htree,block. The greater the height of the 

blocking tree, the higher will be the speed 

reduction. If the blocking tree is the one with 

the maximum height at the current iteration, 

it will reduce the wind speed by a factor of 

100%- ,

max

wind red

hspeed . Based on this, when a 

blocking tree is reached, the new value of 

 
wind

k
speed  is calculated as: 

   

  

, ,

max1
100%max

wind wind

k k

tree block wind red

h

p

speed speed

h speed

h



 
   
  
 

 (12) 

 

i) Because the seed is in a state of free fall in the y 

axis, its height 
 , ,

seed

k p n
h  is first equal to its tree 

parent height   tree

p
h  but it is then reduced in 

time t in the following way: 

 

   

2

, ,
2

seed tree

k p n p

g t
h h


   (13) 

 

j) When 
 , ,

seed

k p n
h reaches zero, the seed has landed. 

Figure 1c illustrates the parabolic trajectory of 

an external seed 

k) The landing position of all the 
 

,seed ext

p
n  external 

seeds from the npop trees are stored in 
 

,

, ,

seed ext

k p m
x , 

k = 1, 2,…, nvar, p = 1, 2,…, npop, n = 1, 2,…, 

 
,seed ext

p
n  

l) The equations defined in this section are 

employed to calculate the landing positions of 

the external seeds by assuming that the units for 

the distance and height (distseed, distseed,tree, 
 
tree

p
h , 

 
,tree block

p
h  and 

 , ,

seed

k p n
h ) are in m, for the gravity (g) 

is in m/s2, for the 
  ,wind ini

k
speed is in m/s and for 

the time (t) is in s 

m) In case any of the particles goes beyond the 

search space, they will be brought back to the 

searching boundary: 

 

   

   

   

   

,

, , max

,

, , max

,

, , min

,

, , min

,

,

seed ext

k p m k

seed ext

k p m k

seed ext

k p m k

seed ext

k p m k

if x x then

x x

if x x then

x x









 

 

6) Estimation of the new population of trees 

a) At this step it is assumed that the seeds have 

grown into trees. So it is necessary to select 

the npop trees that will stay for the next 

iteration. For this, the objective values from 

the particles stored in 
 , ,

int

k p m
x  and 

 
,

, ,

seed ext

k p m
x are 

obtained and are stored together with the 

objective values from parent trees in the 

Objseed,tree list. From this list, the npop particles 
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with the best objective values (the ones closest 

to the optimal solution) are selected to become 

the remaining trees within the forest 

b) The objective value of the remaining trees are 

stored in Obj(p) 

c) The height of the remaining trees are calculated 

and stored in 
 
tree

p
h  

d) Among the current population, the tree with the 

best solution is selected (the tree associated 

with the best objective value). The value of the 

optimization variables and the objective value 

of this tree are stored in 
 kx

B  and BObj, 

respectively 

e) If the BObj value from the current iteration is 

lower than the one from the previous iteration, 

then n3it = 0. Otherwise n3it = n3it + 1 

f) The iteration number is increased by one: 
 

1it itn n    (14) 

 
7) Analysis of the stopping criteria 

a) If any of the following conditions are fulfilled, 

then the algorithm is stopped and the final 

results (
 kx

B  and BObj) are provided: 

i) if max(Obj(p))-BObj < ,

max

tree stopdist  

ii) if n3it = 
max1itn  

iii) if nit = 
max2itn  

b) If neither of the conditions from the previous 

step were fulfilled, the algorithm goes back to 

the numeral 3. Seeds production 

 

The algorithm structure previously described is 

summarized in Fig. 2. 

 
Table 1: Value assignment of the constants required for the 

NRO algorithm 

Parameters Values 

npop max (30, 4nvar) 

Nseed npop 

perseed,ini 5% 

perseed,fin 95% 

Sphseed,ini 5% 

Sphseed,fin 0.001% 
,

min

wind treedist  5% 

max, max

seed

h vdist  50% 

,

max

wind red

hspeed  50% 

hmax 100 

hmin  10 

neigh npopnvar 
,

max

tree stopdist  0.01 

max1itn  max (10, npopnvar/10) 

max2itn  10npopnvar 

 

 
 
Fig. 1: (a) Neighborhood constraint for the definition of the initial population for a problem with two optimization variables x(1) 

and x(2). The solution s2 cannot be taken into account as it is within the neighborhood of s1 while s3 can be considered as it 

is not within this neighborhood. (b) Selection of the blocking trees based on their shortest distance to the seed traveling 

path. In this example, the minimum distance from the solutions s1 and s3 (d1 and d3, respectively) are assumed to be lower 

than ,

min

wind treedist  so they are considered as blocking trees while the distance d2 from s2 is assumed to be greater and 

therefore it is not considered as a blocking tree. Because the analyzed seed will not travel towards s4 (due to the wind 

direction), s4 is not considered as a blocking tree. (c) Representation of the trajectory of the external seeds. The dashed 

lines show the locations of the blocking trees. At the beginning the seed has a height equal to the one of its parent tree and 

moves with a speed equal to the one of the wind speed. As it travels, its height decreases following a parabolic trajectory.  

Once it reaches the location of a blocking tree, the wind speed is reduced based on its height, changing the parabolic 

trajectory of the seed. The seed lands in the location where it reaches a height equal to zero 

a) 
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Fig. 2: Flow chart of the NRO algorithm 

 

Parameter Specifications 

Based on an empirical analysis in which the algorithm 

was tested under several objective functions, the assigned 

values to the constants defined in section III Algorithm 

Formulation are presented in Table 1. Despite the proposed 

values provided in this table, they can be further improved 

when dealing with a specific optimization problem. 

Results and Discussion 

The performance of the NRO algorithm is evaluated 

by employing a series of benchmark functions typically 

employed to test optimization algorithms. These are 

described at the Appendix section. Furthermore, four 

optimization algorithms are also tested to compare their 

results to the ones from NRO: Particle Swarm 

Optimization (PSO) (Eberhart and Shi, 2000)6, 

Continuous Genetic Algorithm (CGA) (Chelouah and 

                                                           
6 The value of the PSO parameters are the employed in this study when 

the Clerc’s constriction method was applied. As no stopping criteria 

was formulated, the ones from [16] were considered. 

Siarry, 2000), Enhanced Simulated Annealing (ESA) 

(Siarry et al., 1997) and Enhanced Continuous Tabu 

Search (ECTS) (Chelouah and Siarry, 1999). These are 

selected due to the high number of optimization problems 

found in the literature which have been solved with them. 

The authors programmed the previous algorithms by 

following the descriptions of the cited papers so that a 

deeper analysis can be made. All the simulations were run 

on the super computer from the National University of 

Singapore which is composed by clusters with RAM of 

48 GB and Intel Xeon X5650 of 2.67 GHz. Their results 

are then summarized in Table 2 and Fig. 3. 

Because of the semi-randomness presented in the 

optimization algorithms (e.g., the location of the initial 

population is variable), each of them were evaluated 100 

times so that a fair analysis could be performed. Table 2 

presents the obtained outcomes of these algorithms with 

respect to the benchmark functions, each composed by a 

number of nvar optimization variables. Only the 

successful results were taken into account and their 

averaged values are provided. A simulated result rsim is 

considered successful if it is close to the known/real 

analytical solution of the optimization problem rreal, by 

fulfilling the following condition: 

 

1 2

sim real realr r r      (15) 

 

where |rsim-rreal| is the error of the simulation while 1 

and 2 are the coefficients to determine the success 

condition, both were set to 0.1. 

Table 2 presents the percentage of successful results 

(persuccess), the average number of times the objective 

function was evaluated (nfobj), the average simulation 

time (timeavg) and the average absolute error (erroravg). 

As previously indicated, nfobj and erroravg were 

calculated by considering only the successful results. 

Here, it can be appreciated that the NRO algorithm 

achieves the highest percentage of success for most of 

the benchmark functions. In comparison to the other 

optimization algorithms, the NRO shows a noticeable 

advantage when dealing with the Bea, Pow (nvar = 10, 

20) and Per (nvar = 10, 20) functions. In general, it can be 

seen that, as the number of optimization variables 

increases, the performance of the algorithms tend to 

decrease (in particular for the PSO). Nevertheless, 

among them, the ESA is the one who achieves 100% of 

success rate for the SS, SDP and Sph regardless of the 

employed optimization variables. For a few functions 

(Pow with nvar = 20 and Per with nvar = 5, 10, 20) the 

NRO algorithm achieves values of less than 80% success 

rate. However, with respect to the Pow (nvar = 20) and 

Per (nvar = 10, 20) functions, it still reaches a better result 

than the ones obtained from the benchmark optimization 

algorithms being overcome only by the PSO and ECTS 

algorithms when evaluating the Per (nvar = 5) function. 
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Fig. 3: Results based on the number of optimization variables the benchmark functions contain 

 
Table 2: Successful results from the optimization algorithms. The numbers in violet and blue are the best and worst result from each category respectively 

  persuccess(%)    nfobj     timeavg(s)    erroravg 

  ---------------------------------------- ---------------------------------------------------- ----------------------------------------- --------------------------------------------- 

Functions nvar NRO PSO CGA ESA ECTS NRO PSO CGA ESA ECTS NRO PSO CGA ESA ECTS NRO PSO CGA ESA ECTS 

Bea 2 90 78 93 25 65 322 4588 784 1170 507 5 47 8 13 2 2E-4 9E-12 2E-2 4E-2 3E-3 

Boo 2  100  99  92  99  100  554  4207  857  1401 519  5  29  6  10  3  6E-4  6E-11  2E-2  5E-3  5E-4 

Mat 2  100  94  100  100  100  251  3725  749  1468  518  2  23  5  10  2  2E-4  7E-12  3E-3  0  2E-5 

CT 2  100  96  100  100  100  239  7518  685  10100  451  2  43  4  64  8  4E-04  2E-6  1E-3  3E-6  2E-2 

Sch_N2 2  100  90  99  100  65  782  4821  677  1686  409  5  21  3  8  2  2E-4  2E-14  2E-2  0  4E-2 

Sch_N4 2  100 76  100  100  80  842  9000  693  10025  412  4  29  2  32  3  7E-4  4E-7  1E-2  4E-4  4E-2 

DW 2  100  94  98  100  87  599  8611  713  10100  382  4  40  3  51  3  5E-2  1E-3  6E-2  0  7E-2 

Gri 2  100  99  35  100  68  3966  8991  942  1399  477  102  182  21  30  13  1E-2  4E-3  6E-2  0  6E-2 

Boh_f1 2  97  100  12  100  38  3907  5372  1109  1395  493  23  25  5  7  3  1E-2  4E-12  2E-2  0  5E-2 

Boh_f2 2  97  100  23  100  51  3639  5326  1014  1398  495  28  31  6  9  4  2E-2  5E-13  3E-2  0  4E-2 

Boh_f3 2  100  99  26  100  64  4116  5455  984  1399  493  33  34  7  9  4  5E-3  2E-12  3E-2  0  3E-2 

SHC 2  100  100  100  100  88  333  5783  695  6508  524  2  34  4  40  4  7E-4  3E-5  6E-3  3E-5  3E-5 

DP 2  100  94  90  85  99  450  7735  793  1247  517  2  26  3  4  3  5E-4  4E-14  2E-2  3E-2  3E-3 

Pow 5  100  68  49  98  100  1173  20153 4593  3265  2863  4  54  13  9  10  3E-3  1E-7  2E-2  2E-2  7E-3 

Pow 10  98  13  23  79  85  4569  45000 22922  6459  5419  43  377  189  60 54  2E-2  6E-7  4E-2  5E-2  4E-2 

Pow 20  45  0  9  2  0  69708  -  81880 16969  -  618  -  655  218  -  5E-2  -  4E-2  10E-2 - 

SS 2  100  100  94  100  100  480  3855  836  1393  489  3  19  4  7  3  5E-4  2E-11  2E-2  0  2E-4 

SS 5  100  89  48  100  100  3345  4632  8463  3586  2768  25  27  50  22  21  4E-3  2E-9  1E-2  0  4E-3 

SS 10 95  19  26  100  72  19122  6159  29412  7383  5358  457 124  607  153  126  1E-2  3E-7  2E-2  0  4E-2 

SS 20  85  0  16  100  2  121726 - 80945  22003  10581  449  -  227  85  35  2E-2  -  3E-2  0  8E-2 

SDP 2  100  100  100  100  100  124  2538  660  1387  492  1  10  3  6  3  6E-5  2E-11  10E-5  0  7E-7 

SDP 5  100  92  100  100  100  201  2591  1714  3464  2768  2  15  10  21  20  5E-4  2E-10  4E-4  0  4E-6 

SDP 10  100  44  100  100  100  333  2960  8109  6982  5375  2  11  31  29  24  1E-3  3E-9  4E-4  0  10E-6 

SDP 20  100  6  100  100  100  663  4325  77525  14405  10569  7  33  653  188  108  6E-4  2E-8  6E-5  0  1E-5 

Sph 2  100  99  100  100  100  271  3489  795  1400  487  2  15  4  6  2  4E-4  8E-12  4E-3  0  4E-5 

Sph 5  100  94  63  100  100  1447  4011  5871  3645  2771  4  9  14  9  15  3E-3  4E-9  3E-2  0  2E-4 

Sph 10  100  38  23  100  100  5680  5004  24624  7789  5359  31  21  107  36  43  1E-2  2E-7  3E-2  0  2E-3 

Sph 20  94  1  10  100  100  27114  9210  71699  23103  10570  128  34  246  124  33  2E-2  3E-5  1E-2  0  2E-2 

Per 2  100  99  100  100  100  221  7073  660  1413  481  1  22  2  5  2  5E-4  2E-12  2E-3  2E-3  3E-4 

Per 5  75  87  28  1  91  2447  17732  7880  3078  2873  15  85  39  17  17  2E-2  1E-2  4E-2  10E-2  2E-2 

Per 10  52  36  2  0  30  22110  40238  18085 - 5431  75  109  50  -  18  6E-3  1E-4  1E-2  -  4E-2 

Per 20  57  8  0  0 0  370997  85871 -  -  -  1835  320  -  -  -  1E-2 7E-4 - - - 
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Table 3: Nomenclature table 

neigh Neighborhood parameter to generate the initial population 

dirwind Wind direction 

distseed Travelled distance of a seed 

max, max

seed

h vdist  Maximum distance that a seed can reach if it is generated from the highest tree with the highest wind speed 

distseed,tree Travelled distance by a seed at which will encounter a blocking tree 
,

max

tree stopdist  Maximum accepted distance between the trees to stop the algorithm 

,

min

wind treedist  Minimum distance between the traveling external seeds and the trees in order for the latter to reduce the speed 

 of the wind that is transporting the external seeds 

erroravg Average simulation error 

fobj Objective function 

hseed Height of the seed 

htree Height of the tree 

 max min

tree treeh h   Height of the tree with the best (and worst) objective value 

htree,block Height of the blocking tree 

nit Number of the current iteration 

npop Population size 

nseed Number of produced seeds from a tree 

nseed,ext Number of external seeds 

nseed,int Number of internal seeds 

nvar Number of optimization variables 

max1itn   Maximum number of consecutive iterations to stop the algorithm in which no improved solution has been obtained 

max2itn  Maximum number of iterations to stop the algorithm 

n3it Number of the consecutive iterations without an improvement of the solution 

nfobj Average number of times the objective function was evaluated 

Nseed Total number of seeds generated per iteration 

Obj Objective value 

Objseed,tree Objective values from all the seeds and trees 

perseed,fin Percentage of seeds at the final iteration 

perseed,ini Percentage of seeds at the initial iteration 

persuccess Percentage of simulation success 

rneigh Radius of the individual neighborhood of the initial population 

rreal Real analytical result 

rsim Simulated result 

speedwind Wind speed 

speedwind,ini Initial wind speed 
,

max

wind red

hspeed   Percentage of the wind speed reduction when it is blocked by the highest tree 

Sphseed,fin Multidimensional sphere size at the final iteration 

Sphseed,ini Multidimensional sphere size at the initial iteration 

timeavg Average simulation time 

x(k) kth optimization variable 

xmax,(k) (xmin,(k)) Maximum (and minimum) allowed value of the kth optimization variable 

xseed,ext Landing position from the external seeds 

xseed,fin Location of seed after travelling 

xseed,ini Original location of travelling seed 

xseed,int Landing position from the internal seeds 

xtree Tree location 

xtree,block Blocking tree location 

 

The analysis of the algorithms based on their value 

of nfobj is required as, for complex problems, the 

evaluation of the objective function tends to represent a 

high (if not the highest) percentage of the simulation 

time. So, the lower this value is, the less computational 

time is required. All of the evaluated optimization 

algorithms reveal that as the number of its optimization 

variable increases, so does the nfobj value. This is an 

expected result because by the increase of nvar, the 

problem becomes more complex and more evaluations 

are needed. Among them all, the NRO algorithm 

achieves the lowest nfobj values for most of the 

analyzed functions. For the Bea, Mat, CT, SHC, DP, 

Pow (nvar = 5, 10), SS (nvar = 2), SDP (nvar = 2, 5, 10, 
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20), Sph (nvar = 2, 5) and Per (nvar = 2, 20) functions, 

the NRO algorithm reaches nfobj values lower than the 

ones from the benchmark algorithms with a higher (or 

similar) success rate. This illustrates the high 

computational performance of NRO. Nevertheless, for 

particular cases such as the SS (nvar = 20) and Per (nvar 

= 20) functions, the NRO algorithm produces the 

highest value of nfobj. This, however, is required in 

order to achieve the highest success rate among the 

optimization algorithm (except for the ESA algorithm 

which achieved a greater success rate for the case of SS 

with nvar = 20). As expected, the average simulation 

time has a similar trend as nfobj. 

At this point it can be noted that, when the number 

optimization variables increase considerably, the NRO 

algorithm still achieves the highest success rate by 

sacrificing its computational time. This is different to the 

benchmark algorithms that will produce a lower 

simulation time with a lower success rate. 

Based on the average error values, it can be 

appreciated that in general, the algorithms achieve very 

low values. This means that their successful results are 

close to the global minimum. It is worth mentioning 

that the ESA algorithm produces the lowest simulation 

errors for most of the benchmark functions reaching 

even values of zero. 

Figure 3 presents the performance of each algorithm 

based on the number of evaluated optimization 

variables. These graphs are obtained by averaging the 

results from Table 2 among the benchmark functions 

which contain the same number of optimization 

variables. Here, Fig. 3a reveals that, in general, the 

NRO algorithm outperforms the other algorithms with 

respect to the success rate regardless of the number of 

optimization variables (except for the case of nvar = 5 in 

which the ECTS reaches a slightly higher value). It can 

also be seen that the PSO algorithm experiences the 

highest decrease in performance with the increase of nvar. 

Furthermore, with respect to the number of times the 

objective function is evaluated, Fig. 3b shows that for 

nvar = 2, 5, 10, the NRO achieves low nfobj values, similar 

to the other algorithms. Nevertheless, for the case of nvar 

= 20, a high increase of nfobj is observed for NRO. This, 

as previously explained, is because the optimization 

problem is more complex with nvar = 20 and more 

evaluations on nfobj are required to achieve satisfactory 

results (this can be seen in Fig. 3a). The average 

simulation time shown in Fig. 3c presents a similar trend 

as the one from Fig. 3b due to the high influence that the 

number of evaluations of the objective function has on the 

simulation time for the analyzed benchmark functions. 

With respect to the simulation errors, Fig. 3d reveals that 

all the successful results achieve low errors. Among them, 

the PSO algorithm reaches the lowest errors regardless 

of the number of optimization variables. 

Conclusion 

This work proposed a new meta-heuristic optimization 

technique for single objective optimization problems 

named Natural Reforestation Optimization (NRO). The 

NRO, as suggested by its name, is inspired by the natural 

reforestation process. The characteristics of this algorithm 

(which enhance the performance of the searching 

technique) were discussed in this study, among them: The 

initialization procedure, the exploration and exploitation 

process, the interaction between the particles, the stopping 

criteria, among others. The performance of this algorithm 

was tested with many benchmark functions against four 

other optimization algorithms. The results revealed that in 

general, the NRO is capable to generate a high success 

rate, reaching values close to the global optimum. It was 

also noted that when the number of optimization variables 

increased considerably (20 in this study), the success rate 

of the NRO algorithm would still be superior to the one 

from the benchmark requiring, however, a higher 

simulation time. Therefore, the potential of this 

algorithm was confirmed as a strong optimization tool 

opening the path for more work to be done to further 

enhance its performance. As a future work we will aim 

to further develop this algorithm so that it could also be 

applied for multi-objective optimization problems. 

Appendix 

The benchmark functions used in this study, shown in 

Table 2, are described in this section7. 

Beale Function (Bea): 
 

     

 

2 2
2

1 1 2 1 1 2

2
3

1 1 2

1.5 2.25

2.625

Bea x x x x x x x

x x x

       

   

 (16) 

 
The Bea function contains two variables and is 

evaluated in the range of xi ϵ [-4.5, 4.5], for all i = 1, 2. 

Its global minimum is 0 and is located in x* = (3, 0.5). 

Booth Function (Boo): 
 

     
2 2

1 2 1 22 7 2 5Boo x x x x x         (17) 

 

The Boo function contains two variables and is 

evaluated in the range of xi ϵ [-10, 10], for all i = 1, 2. Its 

global minimum is 0 and is located in x* = (1, 3). 

Matyas Function (Mat): 
 

   
2

2 2

1 2 1 20.26 0.48Mat x x x x x        (18) 

                                                           
7 The searching ranges of the optimization variables are obtained from 

the literature. 
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The Mat function contains two variables and is 

evaluated in the range of xi ϵ [-10, 10], for all i = 1, 2. Its 

global minimum is 0 and is located in x* = (0, 0). 

Cross-in-Tray Function (CT) 
 

      1 2

0.1

2 2

1 2

0.0001 sin sin

exp 100 1

CT x x x

x x



   

     
  

  

  (19) 

 
The CT function contains two variables and is 

evaluated in the range of xi ϵ [-10, 10], for all i = 1, 2. Its 

global minimum is -2.06261 and is located in x* = 

(1.3491, -1.3491), (1.3491, 1.3491), (-1.3491, 1.3491), (-

1.3491, -1.3491). 

Schaffer Function N.2 (Sch_N2): 
 

 
 

  

2 2 2

1 2

2
2 2

1 2

sin 0.5
_ 2 0.5

1 0.001

x x
Sch N x

x x

 
 

  
  (20) 

 
The Sch_N2 function contains two variables and is 

evaluated in the range of xi ϵ [-100, 100], for all i = 1, 2. 

Its global minimum is 0 and is located in x* = (0, 0). 

Schaffer Function N.4 (Sch_N4): 
 

 
  

  

2 2

1 2

2
2 2

1 2

cos sin 0.5
_ 4 0.5

1 0.001

x x
Sch N x

x x

 
 

  

 (21) 

 
The Sch_N4 function contains two variables and is 

evaluated in the range of xi ϵ [-100, 100], for all i = 1, 

2. Its global minimum is 0.292579 and is located in x* 

= (0, 1.25313). 

Drop-Wave Function (DW): 
 

 
 
 

2 2

1 2

2 2

1 2

1 cos 12

0.5 2

x x
DW x

x x

  
 

  
 (22) 

 

The DW function contains two variables and is 

evaluated in the range of xi ϵ [-5.12, 5.12], for all i = 1, 2. 

Its global minimum is -1 and is located in x* = (0, 0). 

Griewank Function (Gri): 
 

   
2 2

1 2 2
1cos cos 1

4000 2

x x x
Gri x x

 
    

 
 (23) 

 
The Gri function contains two variables and is 

evaluated in the range of xi ϵ [-600, 600], for all i = 1, 2. 

Its global minimum is 0 and is located in x* = (0, 0). 

Bohachevsky Function 1 (Boh_f1): 
 

   

 

2 2

1 2 1

2

_ 1 2 0.3 cos 3

0.4 cos 4 0.7

Boh f x x x x

x





      

    
 (24) 

 

The Boh_f1 function contains two variables and is 

evaluated in the range of xi ϵ [-100, 100], for all i = 1, 2. 

Its global minimum is 0 and is located in x* = (0, 0). 

Bohachevsky Function 2 (Boh_f2): 
 

   

 

2 2

1 2 1

2

_ 2 2 0.3 cos 3

cos 4 0.3

Boh f x x x x

x





      

   
 (25) 

 

The Boh_f2 function contains two variables and is 

evaluated in the range of xi ϵ [-100, 100], for all i = 1, 2. 

Its global minimum is 0 and is located in x* = (0, 0). 

Bohachevsky Function 3 (Boh_f3): 
 

 

 

2 2

1 2

1 2

_ 3 2

0.3 cos 3 4 0.3

Boh f x x x

x x 

  

       
 (26) 

 

The Boh_f3 function contains two variables and is 

evaluated in the range of xi ϵ [-100, 100], for all i = 1, 2. 

Its global minimum is 0 and is located in x* = (0, 0). 

Six-Hump Camel Function (SHC): 
 

 

 

4
2 21
1 1 1 2

2 2

2 2

4 2.1
3

4 4

x
SHC x x x x x

x x

 
       
 

    

  (27) 

 

The SHC function contains two variables and is 

evaluated in the range of x1 ϵ [-3, 3], x2 ϵ [-2, 2]. Its 

global minimum is -1.0316 and is located in x* = 

(0.0898, -0.7126), (-0.0898, 0.7126). 

Dixon-Price Function (DP): 
 

     
2 2

2 2

1 2 11 2 2DP x x x x       (28) 

 

The DP function contains two variables and is 

evaluated in the range of xi ϵ [-10, 10], for all i = 1, 2. Its 

global minimum is 0 and is located in x* =  1, 0.5 . 

Powell Function (Pow): 
 

     

    

/ 4
2 2

4 3 4 2 4 1 4

1

4 4

4 2 4 1 4 3 4

10 5

2 10

n

i i i i

i

i i i i

Pow x x x x x

x x x x

  



  

     

     


 (29) 
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The Pow function contains n variables and is 

evaluated in the range of xi ϵ [-4, 5], for all i = 1,…, n. Its 

global minimum is 0 and is located in x* = (0,…, 0). 

Sum Squares Function (SS): 
 

  2

1

n

i

i

SS x i x


   (30) 

 
The SS function contains n variables and is evaluated 

in the range of xi ϵ [-10, 10], for all i = 1,…, n. Its global 

minimum is 0 and is located in x* = (0,…, 0). 

Sum of Different Powers Function (SDP): 
 

 
1

1

x
i

i

i

SDP x x




  (31) 

 
The SDP function contains n variables and is 

evaluated in the range of xi ϵ [-1, 1], for all i = 1,…, n. Its 

global minimum is 0 and is located in x* = (0,…, 0). 

Sphere Function (Sph): 
 

  2

1

n

i

i

Sph x x


  (32) 

 

The Sph function contains n variables and is evaluated 

in the range of xi ϵ [-5.12, 5.12], for all i = 1,…, n. Its global 

minimum is 0 and is located in x* = (0,…, 0). 

Perm Function 0, d,  (Per): 

 

   

2

1 1

1n n
i

j i
i j

Per x j x
j


 

  
      

  
   (33) 

 

The Per function contains n variables and is 

evaluated in the range of xi ϵ [-n, n], for all i = 1,…, n 

with  = 0. Its global minimum is 0 and is located in x* = 

1 1
1, ,...,

2 n

 
 
 

. 
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