

 © 2020 Fernando L. Rodríguez-Gallegos, César A. Rodríguez-Gallegos, Andrés A. Rodríguez-Gallegos and Carlos D.

Rodríguez-Gallegos. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Natural Reforestation Optimization (NRO): A Novel

Optimization Algorithm Inspired by the Reforestation Process

1Fernando L. Rodríguez-Gallegos, 2César A. Rodríguez-Gallegos,
3Andrés A. Rodríguez-Gallegos and 4Carlos D. Rodríguez-Gallegos*

1Department of Electrical Engineering and Information Technology, Paderborn University, Paderborn 33098, Germany
2Department of Mechanical and Industrial Engineering, Concordia University, Montreal H3G 1M8, Canada
3Faculty of Systems, Telecommunications and Electronics,

Universidad de Especialidades Espíritu Santo, Samborondón 092301, Ecuador
4Department of Electrical and Computer Engineering, National University of Singapore (NUS), Singapore 117583

Article history

Received: 19-05-2020

Revised: 29-07-2020

Accepted: 01-09-2020

Corresponding Author:

Carlos D. Rodríguez-Gallegos

Department of Electrical and

Computer Engineering,

National University of

Singapore (NUS), Singapore

117583
Email: carlos.rodriguez@nus.edu.sg

Abstract: This paper proposes a new meta-heuristic-based optimization

algorithm for single-objective problems. The algorithm is called Natural

Reforestation Optimization (NRO) and is inspired by the process in which

natural reforestation takes place. The features of this algorithm (such as the

distribution of the initial population, the exploration and exploitation

mechanisms, the interactions between the particles, the stopping criteria,

among others) are discussed and analyzed to show how they are applied to

enhance the search of the global solution. The performance of this algorithm

is tested with standard single-objective optimization problems (which contain

from 2 to 20 optimization variables) and is compared with other optimization

algorithms. The results reveal that in general, the NRO algorithm produces

solutions close to the global optimal and is able to surpass the other

optimization algorithms for many of the benchmark functions. The current

study shows the qualities of the NRO algorithm and serves as the starting

point for further investigation to take place to keep improving its capabilities.

Keywords: Meta-Heuristic Optimization Algorithm, Single-Objective

Optimization, Global Optimization

Introduction

Meta-heuristic optimization algorithms are generally

employed for problems which cannot be solved directly.

Many of these algorithms are inspired by different

natural phenomena such as the social behavior of bird

flocking (Particle Swarm Optimization (Clerc, 2010;

Parsopoulos and Vrahatis, 2010)), the biological

evolution of the organisms (Genetic Algorithm (Davis,

1991; Kantardzic, 2003)), among others (Suman and

Kumar, 2006; Rashedi et al., 2009; Dasgupta et al., 2011;

Krishnanand et al., 2009; Yang, 2011; Beheshti and

Shamsuddin, 2013; Dorigo and Blum, 2005; Alvarez-

Alvarado and Jayaweera, 2018a; Kohli and Arora, 2018;

Alvarez-Alvarado and Jayaweera, 2018b; Cui et al.,

2016). In this study we propose a new optimization

approach based on the natural reforestation of trees

named Natural Reforestation Optimization (NRO).

Similar to other meta-heuristic algorithms, NRO

algorithm optimizes a defined problem by iteratively

searching for the best solution. For this, it employs a

population of particles (called trees) from which new

particles are produced (called seeds) which are

distributed within the search space (called forest). The

amount of seeds each tree produces is based on the

fertility of the place it was planted i.e., how good is its

current solution. To distribute the seeds, they can, on the

one hand, fall from the tree without the influence of the

wind (these will then land close to their parent tree) or,

on the other hand, leave their parent tree due to the wind

influence in which the wind direction (that is influenced

by the location of the current best solution) and speed are

taken into account. The reduction of the wind speed due

to other trees that block its path is also considered. Once

the seeds have landed, they will grow and become trees

and their associated solution is evaluated. The

reforestation process is then repeated.

Based on the reforestation principle, our algorithm

has the following characteristics:

 It prioritizes the exploration of the search space in

the beginning i.e., the number of seeds influenced

by the wind (which can travel a long distance) is the

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1173

highest at the first iteration and reduces as the

number of iteration increases. These seeds are also

useful to escape from local optimal regions

 It prioritizes the exploitation of the search space

towards the end i.e., the number of seeds not

influenced by the wind (which travel only a short

distance) increases as the number of iteration

increases. The area range within these seeds can land

is also reduced with increasing number of iterations

 For the case of the seeds influenced by the wind, the

search of the new solutions is affected by the

location of the current best solution (which

influences the wind direction) as well as the location

of other trees (if close to the trajectory of the seeds)

since they can reduce the wind speed based on how

good is their associated solution. Therefore, the new

population of particles (seeds) have the opportunity

to interact with the current population (trees) in

order to search for the best solution

 The seeds that are not influenced by the wind are

especially useful when the solutions are close to the

global solution as they can perform a more intensive

search within this area (exploitation). Particles

located close to the global solution are expected to

be obtained as the number of iterations increases and

hence the number of these seeds increases (while the

ones influenced by the wind decreases) as the

number of iterations rises

 The better the solution obtained by a tree, the more

seeds it will be assigned so that more exploration

and exploitation can take place in this area

The rest of the paper is arranged as follows. In

Section II, the principles of the natural reforestation
process, from which our algorithm is inspired, are
explained. Subsequently, the algorithm formulation is
detailed in section III while the method to set the values
of the variables are given in section IV. In section V, the
performance of the NRO algorithm is compared with

other optimization algorithms to solve different
optimization problems. Section VI then concludes the
paper. An Appendix section is presented at the end of
this document describing the benchmark functions and
providing the nomenclature table (Table 3).

Natural Reforestation Process

The NRO algorithm takes into account the following

elements involved in the natural reforestation process: The

forest, the trees, the seeds and the wind. Here, the forest

represents the range of values in which the optimization

variables are bounded. The trees represent the population

of solutions whose location within the forest defines the

value of their optimization variables. Their height is

calculated from a fitness function based on the

optimization problem. In case of a minimization

(maximization) problem, the lower (higher) the

objective function value for a particular tree, the greater

its height. The seeds represent the new solutions that

are utilized to search for better solutions within the

forest. They are generated from the trees (the tree that

generates a seed is referred as its parent tree). The place

where they are planted can depend on several factors

such as the location and height of the trees as well as the

wind direction and speed.

The natural reforestation process is as follows:

1) The population of trees is planted among the forest

2) The taller the tree, the more seeds it can generate

3) The seeds produced by the trees can be dispersed

with two options:

a) No wind influence: Some seeds can fall without

the wind intervention. These will land close to

their parent tree

b) Wind influence: The wind can separate the

seeds from their parent tree and the place where

they are planted depends on their parent tree’s

location, the wind direction and speed. The

wind speed may be reduced due to other trees

blocking its path

4) Based on the soil quality of the place where the seed is

planted, it will grow into a tree with a certain height

(the more fertile the land, the greater its height)

5) As the forest has a limited space, the trees will

compete with each other for nutrients and sunlight

and the ones with the greatest heights will remain

6) The process is then repeated

Algorithm Formulation

Based on the process described in the previous

section, the steps of the NRO algorithm for an

optimization problem are formulated below:

1) Initialization. The following parameters are defined:

a) Objective function fobj which is in terms of the

nvar optimization variables x(k), k = 1, 2,…, nvar

b) Range of values the optimization variables can

have xmin,(k) < x(k) < xmax,(k), k = 1, 2,…, nvar. This

will constitute the size of the forest

c) Population size npop

d) Total number of seeds that will be generated at

each iteration Nseed

e) Percentage of seeds that are planted without the

wind influence, called internal seeds, at the initial

iteration perseed,ini and at the final iteration perseed,fin

f) Multidimensional sphere size within which the

internal seeds are planted (the parent tree is the

center of the sphere) at the initial iteration

Sphseed,ini and at the final iteration Sphseed,fin. The

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1174

sphere size is measured as a percentage of the

maximum distance within the forest

g) Minimum distance between the traveling external

seeds and the trees in order for the latter (called

blocking trees) to reduce the speed of the wind

that is transporting the external seeds ,

min

wind treedist .

This distance is measured as a percentage of the

maximum distance within the forest

h) Maximum distance that an external seed will

reach if it is generated from the highest tree

of the current iteration and with the highest

wind speed (without the influence of blocking

trees) max, max

seed

h vdist . This distance is measured

as a percentage of the maximum distance

within the forest

i) Percentage of the wind speed reduction when it

is blocked by the highest tree of the current

iteration ,

max

wind red

hspeed

j) Height of the tree with the best (closest to the
optimal solution) and worst (furthest from the
optimal solution) objective value at the current
iteration: hmax and hmin, respectively

k) Neighborhood parameter to generate the initial
population neigh

l) Radius of the individual neighborhood of the

initial population rneigh = var / neighn 

m) Maximum accepted distance between the trees

to stop the algorithm
max

stopdist

n) Maximum number of consecutive iterations to

stop the algorithm in which no improved

solution has been obtained
max1itn

o) Maximum number of iterations to stop the

algorithm
max2itn

p) The number of the consecutive iterations without
an improvement of the solution n3it is set to zero

q) The number of the current iteration nit is set to one

2) Generation of the initial population

a) Each of the npop initial trees are randomly

distributed in the search space and are assigned

with optimization variables values
 ,

tree

k p
x , k = 1,

2,…, nvar, p = 1, 2,…, npop with the condition that

no particle should be within the neighborhood of

another particle (to assure diversity, similar to

(Chelouah and Siarry, 2000)). Therefore, for any

two particles with values of the optimization

variables of
 ,

tree

k a
x and

 ,

tree

k b
x , a  b, respectively,

the following condition must hold (this is

represented in Fig. 1a for a problem with two

optimization variables)1:

1 Because the optimization variables can have different searching ranges,

they should be normalized. This takes place in Equation 1, 7, 9 and 11.

   

   

var
2

, ,

1 max min

tree tree
n

k a k b neigh

k k k

x x
r

x x

 
  
 
 

 (1)

b) Calculation of the objective value for each of

the initial trees Obj(p), p = 1, 2,…, npop

c) Calculation of the height for each of the initial

trees. The tree height
 
tree

p
h , p = 1, 2,…, npop is

calculated based on a linear relation with its

objective value. Here, the trees with the best

and worst Obj(p) are assigned a height of
max

treeh

and
min

treeh , respectively, as shown2:

 

        

        

max min

max

max min

min

. min
min max

,

. min
max min

,

tree tree

p

tree

tree

p tree tree

p

tree

h h
Obj Obj

Obj Obj

h if minimization problem
h

h h
Obj Obj

Obj Obj

h if maximization problem

 





 
 

 



 (2)

d) Among the current population, the tree with the

best solution is selected (the tree closest to the

optimal result). The value of the optimization

variables and the objective value of this tree are

stored in Bx(k) and BObj, respectively

3) Seeds production

a) The number of seeds that each tree will produce

 
seed

p
n , p = 1, 2,…, npop is based on their height

(the greater their height, the more seeds they

will produce)3:

 

 

 
1

round
pop

seed tree

pseed

p n
tree

k
k

N h
n

h


 
 
 
 
 
 


 (3)

b) When the algorithm starts, the percentage of

internal seeds is low with a value of perseed,ini

while the one of external seeds is high. As the

iterations go on, the percentage of internal

seeds increases reaching a maximum of

perseed,fin when nit =
max2itn , while the one of

external seeds decreases. This takes place to

give emphasis to the exploration at the

beginning and then to the exploitation towards

2 The functions min(z) and max(z) represent the minimum and

maximum values within the z values, respectively.
3 The function round(z) rounds the value of z to its closest integer.

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1175

the end of the algorithm. The number of

internal seeds
 

,seed int

p
n , p = 1, 2, …, npop from

each tree is then calculated as:

   

 

, ,
,

max

,

round
2 1

1

100% 100%

seed fin seed ini
seed int tree

p p it

it seed ini

per per
n n

n

n per

 
     


 



 (4)

c) The number of external seeds for each tree

 
,seed ext

p
n , p = 1, 2, …, npop is:

     
, ,seed ext seed seed int

p p p
n n n  (5)

4) Estimation of the place where the internal seeds are

planted

a) The internal seeds are the ones that fall from

the trees without the wind influence.

Consequently, they are expected to land close

to their parent tree   ,

tree

k p
x who acts as the

sphere center where these seeds can be placed.

At the initial iteration, the radius of this sphere

is Sphseed,ini, this is then linearly reduced after

each iteration reaching a value of Sphseed,fin

when nit =
max2itn . The reduction of the sphere

size takes place to intensify the search of the

current area. The location (values of the

optimization variables) for each of the
 

,seed int

p
n

internal seeds associated to each of the npop

trees
 

,

, ,

seed int

k p m
x , k = 1, 2,…, nvar, p = 1, 2,…, npop,

m = 1, 2, …,
 

,seed int

p
n is estimated as4:

        

 

,

, , , max min

, ,

max

,

rand
1 2

1

100% 100%

seed int tree

k p m k p k k

seed ini seed fin

it

it seed ini

x x x x

Sph Sph

n

n Sph

  

 
     


 



 (6)

b) In case any of the particles goes beyond the

search space, they will be brought back to the

searching boundary:

4 The function rand generates a random number between zero and one

drawn from the standard uniform distribution. The  symbol indicates

that it can be an addition or a subtraction (the operation is randomly

selected).

   

   

   

   

,

, , max

,

, , max

,

, , min

,

, , min

,

,

seed int

k p m k

seed int

k p m k

seed int

k p m k

seed int

k p m k

if x x then

x x

if x x then

x x









5) Estimation of the place where the external seeds are

planted

a) The external seeds are the ones dispersed from
their parent tree with the wind influence. The
location where they are planted depends on the
wind direction and speed, the height of their
parent tree and the blocking trees. The falling
seeds are assumed to experience a two
dimensional - consisting of x and y axis -
parabolic movement which follows the
kinematic equations. Here, the gravity and
height of the parent tree control the movement
of the seeds in the y axis (height of the seed)
while their movement in the x axis (travelled
distance of the seed) is affected by the wind as
well as the height and location of the parent
and blocking trees (the direction of the x axis
is the same as the wind direction). For
simplicity, the rest of this section deals with
the travelled trajectory of an individual seed.
This procedure can then be repeated for the
other external seeds

b) Once the external seed is traveling, its travelled

distance distseed, when reaching a final position

of xseed,fin, k = 1, 2,…, nvar within the forest, is

calculated based on its initial location xseed,ini, k

= 1, 2,…, nvar (location of its parent tree), as:

   

   

var
2

, ,

1 max min

seed fin seed ini
n

k kseed

k k k

x x
dist

x x

 
 
 
 

 (7)

c) To estimate the value of the gravity g, it is

assumed that, when the external seed is

generated from the tree with the highest

height in the current iteration and the wind is

at maximum speed, it will be able to travel a

total distance of max, max

seed

h vdist within the forest

(assuming no blocking tree is present to

reduce the wind speed). The gravity is then

defined as5:

  

 
2

var

max, max

2 max

/ 100%

tree

p

seed

h v

h
g

n dist






 (8)

5 Equation 8 and 13 are obtained based on the kinematic equations.

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1176

d) The wind direction
 
wind

k
dir , k = 1, 2,…, nvar is a

nvar-dimensional vector due to the nvar

optimization variables. It is calculated taking

into account the position where the tree with the

best result is located, as follows:

 

    
   

,

max min

rand
k

tree

k px
wind

k

k k

B x

dir
x x



 


 (9)

e) The initial wind speed is randomly selected

between zero (no wind) and one (maximum

wind speed):

 
, randwind ini

k
speed  (10)

f) Based on the wind direction, the position of

the trees that are close to its traveling path

(the blocking trees) are stored. Among the

total population, the blocking trees are the

ones whose minimum distance between them

and the traveling seed is lower than ,

min

wind treedist .

This is represented in Fig. 1b for the case of a

problem with two optimization variables

g) Once all the blocking trees are found, the

traveling seeds will reach a particular

blocking tree (which is located at a position

of
 

,tree block

k
x k = 1, 2,…, nvar) when it has

travelled a distance of:

   

   

var
2

, ,

,

1 max min

1tree block seed ini
n

k kseed tree

k k k

x x
dist

x x

 
 
 
 

 (11)

h) To estimate the location at which the external

seed is planted, it is considered that it starts at

an initial height equal to the height of its

parent tree
 

,tree parent

p
h and moves with an initial

speed and direction equal to the one of the

wind (
 

,wind ini

k
speed and

 
wind

k
dir , respectively).

Once the seed reaches a blocking tree, its

speed
 
wind

k
speed , k = 1, 2,…, nvar is linearly

reduced based on the height of this tree

htree,block. The greater the height of the

blocking tree, the higher will be the speed

reduction. If the blocking tree is the one with

the maximum height at the current iteration,

it will reduce the wind speed by a factor of

100%- ,

max

wind red

hspeed . Based on this, when a

blocking tree is reached, the new value of

 
wind

k
speed is calculated as:

   

  

, ,

max1
100%max

wind wind

k k

tree block wind red

h

p

speed speed

h speed

h



 
   
  
 

 (12)

i) Because the seed is in a state of free fall in the y

axis, its height
 , ,

seed

k p n
h is first equal to its tree

parent height   tree

p
h but it is then reduced in

time t in the following way:

   

2

, ,
2

seed tree

k p n p

g t
h h


  (13)

j) When
 , ,

seed

k p n
h reaches zero, the seed has landed.

Figure 1c illustrates the parabolic trajectory of

an external seed

k) The landing position of all the
 

,seed ext

p
n external

seeds from the npop trees are stored in
 

,

, ,

seed ext

k p m
x ,

k = 1, 2,…, nvar, p = 1, 2,…, npop, n = 1, 2,…,

 
,seed ext

p
n

l) The equations defined in this section are

employed to calculate the landing positions of

the external seeds by assuming that the units for

the distance and height (distseed, distseed,tree,
 
tree

p
h ,

 
,tree block

p
h and

 , ,

seed

k p n
h) are in m, for the gravity (g)

is in m/s2, for the
  ,wind ini

k
speed is in m/s and for

the time (t) is in s

m) In case any of the particles goes beyond the

search space, they will be brought back to the

searching boundary:

   

   

   

   

,

, , max

,

, , max

,

, , min

,

, , min

,

,

seed ext

k p m k

seed ext

k p m k

seed ext

k p m k

seed ext

k p m k

if x x then

x x

if x x then

x x









6) Estimation of the new population of trees

a) At this step it is assumed that the seeds have

grown into trees. So it is necessary to select

the npop trees that will stay for the next

iteration. For this, the objective values from

the particles stored in
 , ,

int

k p m
x and

 
,

, ,

seed ext

k p m
x are

obtained and are stored together with the

objective values from parent trees in the

Objseed,tree list. From this list, the npop particles

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1177

with the best objective values (the ones closest

to the optimal solution) are selected to become

the remaining trees within the forest

b) The objective value of the remaining trees are

stored in Obj(p)

c) The height of the remaining trees are calculated

and stored in
 
tree

p
h

d) Among the current population, the tree with the

best solution is selected (the tree associated

with the best objective value). The value of the

optimization variables and the objective value

of this tree are stored in
 kx

B and BObj,

respectively

e) If the BObj value from the current iteration is

lower than the one from the previous iteration,

then n3it = 0. Otherwise n3it = n3it + 1

f) The iteration number is increased by one:

1it itn n  (14)

7) Analysis of the stopping criteria

a) If any of the following conditions are fulfilled,

then the algorithm is stopped and the final

results (
 kx

B and BObj) are provided:

i) if max(Obj(p))-BObj < ,

max

tree stopdist

ii) if n3it =
max1itn

iii) if nit =
max2itn

b) If neither of the conditions from the previous

step were fulfilled, the algorithm goes back to

the numeral 3. Seeds production

The algorithm structure previously described is

summarized in Fig. 2.

Table 1: Value assignment of the constants required for the

NRO algorithm

Parameters Values

npop max (30, 4nvar)

Nseed npop

perseed,ini 5%

perseed,fin 95%

Sphseed,ini 5%

Sphseed,fin 0.001%
,

min

wind treedist 5%

max, max

seed

h vdist 50%

,

max

wind red

hspeed 50%

hmax 100

hmin 10

neigh npopnvar
,

max

tree stopdist 0.01

max1itn max (10, npopnvar/10)

max2itn 10npopnvar

Fig. 1: (a) Neighborhood constraint for the definition of the initial population for a problem with two optimization variables x(1)

and x(2). The solution s2 cannot be taken into account as it is within the neighborhood of s1 while s3 can be considered as it

is not within this neighborhood. (b) Selection of the blocking trees based on their shortest distance to the seed traveling

path. In this example, the minimum distance from the solutions s1 and s3 (d1 and d3, respectively) are assumed to be lower

than ,

min

wind treedist so they are considered as blocking trees while the distance d2 from s2 is assumed to be greater and

therefore it is not considered as a blocking tree. Because the analyzed seed will not travel towards s4 (due to the wind

direction), s4 is not considered as a blocking tree. (c) Representation of the trajectory of the external seeds. The dashed

lines show the locations of the blocking trees. At the beginning the seed has a height equal to the one of its parent tree and

moves with a speed equal to the one of the wind speed. As it travels, its height decreases following a parabolic trajectory.

Once it reaches the location of a blocking tree, the wind speed is reduced based on its height, changing the parabolic

trajectory of the seed. The seed lands in the location where it reaches a height equal to zero

a)

x(2) x(2)

x(1) x(1)

b) c)

Searching field (forest) Searching field (forest)

s3

s1

s2

s2

s3 d1

s4

d2 d3

Seed
s1 neighborhood

dirwind

sp
ee

d
w

in
d

distseed

distseed

h
se

ed

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1178

Fig. 2: Flow chart of the NRO algorithm

Parameter Specifications

Based on an empirical analysis in which the algorithm

was tested under several objective functions, the assigned

values to the constants defined in section III Algorithm

Formulation are presented in Table 1. Despite the proposed

values provided in this table, they can be further improved

when dealing with a specific optimization problem.

Results and Discussion

The performance of the NRO algorithm is evaluated

by employing a series of benchmark functions typically

employed to test optimization algorithms. These are

described at the Appendix section. Furthermore, four

optimization algorithms are also tested to compare their

results to the ones from NRO: Particle Swarm

Optimization (PSO) (Eberhart and Shi, 2000)6,

Continuous Genetic Algorithm (CGA) (Chelouah and

6 The value of the PSO parameters are the employed in this study when

the Clerc’s constriction method was applied. As no stopping criteria

was formulated, the ones from [16] were considered.

Siarry, 2000), Enhanced Simulated Annealing (ESA)

(Siarry et al., 1997) and Enhanced Continuous Tabu

Search (ECTS) (Chelouah and Siarry, 1999). These are

selected due to the high number of optimization problems

found in the literature which have been solved with them.

The authors programmed the previous algorithms by

following the descriptions of the cited papers so that a

deeper analysis can be made. All the simulations were run

on the super computer from the National University of

Singapore which is composed by clusters with RAM of

48 GB and Intel Xeon X5650 of 2.67 GHz. Their results

are then summarized in Table 2 and Fig. 3.

Because of the semi-randomness presented in the

optimization algorithms (e.g., the location of the initial

population is variable), each of them were evaluated 100

times so that a fair analysis could be performed. Table 2

presents the obtained outcomes of these algorithms with

respect to the benchmark functions, each composed by a

number of nvar optimization variables. Only the

successful results were taken into account and their

averaged values are provided. A simulated result rsim is

considered successful if it is close to the known/real

analytical solution of the optimization problem rreal, by

fulfilling the following condition:

1 2

sim real realr r r     (15)

where |rsim-rreal| is the error of the simulation while 1

and 2 are the coefficients to determine the success

condition, both were set to 0.1.

Table 2 presents the percentage of successful results

(persuccess), the average number of times the objective

function was evaluated (nfobj), the average simulation

time (timeavg) and the average absolute error (erroravg).

As previously indicated, nfobj and erroravg were

calculated by considering only the successful results.

Here, it can be appreciated that the NRO algorithm

achieves the highest percentage of success for most of

the benchmark functions. In comparison to the other

optimization algorithms, the NRO shows a noticeable

advantage when dealing with the Bea, Pow (nvar = 10,

20) and Per (nvar = 10, 20) functions. In general, it can be

seen that, as the number of optimization variables

increases, the performance of the algorithms tend to

decrease (in particular for the PSO). Nevertheless,

among them, the ESA is the one who achieves 100% of

success rate for the SS, SDP and Sph regardless of the

employed optimization variables. For a few functions

(Pow with nvar = 20 and Per with nvar = 5, 10, 20) the

NRO algorithm achieves values of less than 80% success

rate. However, with respect to the Pow (nvar = 20) and

Per (nvar = 10, 20) functions, it still reaches a better result

than the ones obtained from the benchmark optimization

algorithms being overcome only by the PSO and ECTS

algorithms when evaluating the Per (nvar = 5) function.

Start

Initialization

Generation of the

initial population

Internal seeds

estimation

Seeds production

External seeds

estimation

Estimation of the new

population of trees

Stopping criteria

fulfilled?

No

Yes

Present Bx(k), BObj

End

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1179

Fig. 3: Results based on the number of optimization variables the benchmark functions contain

Table 2: Successful results from the optimization algorithms. The numbers in violet and blue are the best and worst result from each category respectively

 persuccess(%) nfobj timeavg(s) erroravg

 -- -- --- ---

Functions nvar NRO PSO CGA ESA ECTS NRO PSO CGA ESA ECTS NRO PSO CGA ESA ECTS NRO PSO CGA ESA ECTS

Bea 2 90 78 93 25 65 322 4588 784 1170 507 5 47 8 13 2 2E-4 9E-12 2E-2 4E-2 3E-3

Boo 2 100 99 92 99 100 554 4207 857 1401 519 5 29 6 10 3 6E-4 6E-11 2E-2 5E-3 5E-4

Mat 2 100 94 100 100 100 251 3725 749 1468 518 2 23 5 10 2 2E-4 7E-12 3E-3 0 2E-5

CT 2 100 96 100 100 100 239 7518 685 10100 451 2 43 4 64 8 4E-04 2E-6 1E-3 3E-6 2E-2

Sch_N2 2 100 90 99 100 65 782 4821 677 1686 409 5 21 3 8 2 2E-4 2E-14 2E-2 0 4E-2

Sch_N4 2 100 76 100 100 80 842 9000 693 10025 412 4 29 2 32 3 7E-4 4E-7 1E-2 4E-4 4E-2

DW 2 100 94 98 100 87 599 8611 713 10100 382 4 40 3 51 3 5E-2 1E-3 6E-2 0 7E-2

Gri 2 100 99 35 100 68 3966 8991 942 1399 477 102 182 21 30 13 1E-2 4E-3 6E-2 0 6E-2

Boh_f1 2 97 100 12 100 38 3907 5372 1109 1395 493 23 25 5 7 3 1E-2 4E-12 2E-2 0 5E-2

Boh_f2 2 97 100 23 100 51 3639 5326 1014 1398 495 28 31 6 9 4 2E-2 5E-13 3E-2 0 4E-2

Boh_f3 2 100 99 26 100 64 4116 5455 984 1399 493 33 34 7 9 4 5E-3 2E-12 3E-2 0 3E-2

SHC 2 100 100 100 100 88 333 5783 695 6508 524 2 34 4 40 4 7E-4 3E-5 6E-3 3E-5 3E-5

DP 2 100 94 90 85 99 450 7735 793 1247 517 2 26 3 4 3 5E-4 4E-14 2E-2 3E-2 3E-3

Pow 5 100 68 49 98 100 1173 20153 4593 3265 2863 4 54 13 9 10 3E-3 1E-7 2E-2 2E-2 7E-3

Pow 10 98 13 23 79 85 4569 45000 22922 6459 5419 43 377 189 60 54 2E-2 6E-7 4E-2 5E-2 4E-2

Pow 20 45 0 9 2 0 69708 - 81880 16969 - 618 - 655 218 - 5E-2 - 4E-2 10E-2 -

SS 2 100 100 94 100 100 480 3855 836 1393 489 3 19 4 7 3 5E-4 2E-11 2E-2 0 2E-4

SS 5 100 89 48 100 100 3345 4632 8463 3586 2768 25 27 50 22 21 4E-3 2E-9 1E-2 0 4E-3

SS 10 95 19 26 100 72 19122 6159 29412 7383 5358 457 124 607 153 126 1E-2 3E-7 2E-2 0 4E-2

SS 20 85 0 16 100 2 121726 - 80945 22003 10581 449 - 227 85 35 2E-2 - 3E-2 0 8E-2

SDP 2 100 100 100 100 100 124 2538 660 1387 492 1 10 3 6 3 6E-5 2E-11 10E-5 0 7E-7

SDP 5 100 92 100 100 100 201 2591 1714 3464 2768 2 15 10 21 20 5E-4 2E-10 4E-4 0 4E-6

SDP 10 100 44 100 100 100 333 2960 8109 6982 5375 2 11 31 29 24 1E-3 3E-9 4E-4 0 10E-6

SDP 20 100 6 100 100 100 663 4325 77525 14405 10569 7 33 653 188 108 6E-4 2E-8 6E-5 0 1E-5

Sph 2 100 99 100 100 100 271 3489 795 1400 487 2 15 4 6 2 4E-4 8E-12 4E-3 0 4E-5

Sph 5 100 94 63 100 100 1447 4011 5871 3645 2771 4 9 14 9 15 3E-3 4E-9 3E-2 0 2E-4

Sph 10 100 38 23 100 100 5680 5004 24624 7789 5359 31 21 107 36 43 1E-2 2E-7 3E-2 0 2E-3

Sph 20 94 1 10 100 100 27114 9210 71699 23103 10570 128 34 246 124 33 2E-2 3E-5 1E-2 0 2E-2

Per 2 100 99 100 100 100 221 7073 660 1413 481 1 22 2 5 2 5E-4 2E-12 2E-3 2E-3 3E-4

Per 5 75 87 28 1 91 2447 17732 7880 3078 2873 15 85 39 17 17 2E-2 1E-2 4E-2 10E-2 2E-2

Per 10 52 36 2 0 30 22110 40238 18085 - 5431 75 109 50 - 18 6E-3 1E-4 1E-2 - 4E-2

Per 20 57 8 0 0 0 370997 85871 - - - 1835 320 - - - 1E-2 7E-4 - - -

100

50

0

a) b)

d) c)

104

p
er

su
cc

es
s (

%
)

10

5

0

NRO PSO CGA ESA ECTS NRO PSO CGA ESA ECTS

NRO PSO CGA ESA ECTS NRO PSO CGA ESA ECTS

0.03

0.02

0.01

0

600

400

200

0

nvar = 2

n
fo

b
j

ti
m

eav
g
 (

s)

er
ro

rav
g

nvar = 5 nvar = 10 nvar = 20

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1180

Table 3: Nomenclature table

neigh Neighborhood parameter to generate the initial population

dirwind Wind direction

distseed Travelled distance of a seed

max, max

seed

h vdist Maximum distance that a seed can reach if it is generated from the highest tree with the highest wind speed

distseed,tree Travelled distance by a seed at which will encounter a blocking tree
,

max

tree stopdist Maximum accepted distance between the trees to stop the algorithm

,

min

wind treedist Minimum distance between the traveling external seeds and the trees in order for the latter to reduce the speed

 of the wind that is transporting the external seeds

erroravg Average simulation error

fobj Objective function

hseed Height of the seed

htree Height of the tree

 max min

tree treeh h Height of the tree with the best (and worst) objective value

htree,block Height of the blocking tree

nit Number of the current iteration

npop Population size

nseed Number of produced seeds from a tree

nseed,ext Number of external seeds

nseed,int Number of internal seeds

nvar Number of optimization variables

max1itn Maximum number of consecutive iterations to stop the algorithm in which no improved solution has been obtained

max2itn Maximum number of iterations to stop the algorithm

n3it Number of the consecutive iterations without an improvement of the solution

nfobj Average number of times the objective function was evaluated

Nseed Total number of seeds generated per iteration

Obj Objective value

Objseed,tree Objective values from all the seeds and trees

perseed,fin Percentage of seeds at the final iteration

perseed,ini Percentage of seeds at the initial iteration

persuccess Percentage of simulation success

rneigh Radius of the individual neighborhood of the initial population

rreal Real analytical result

rsim Simulated result

speedwind Wind speed

speedwind,ini Initial wind speed
,

max

wind red

hspeed Percentage of the wind speed reduction when it is blocked by the highest tree

Sphseed,fin Multidimensional sphere size at the final iteration

Sphseed,ini Multidimensional sphere size at the initial iteration

timeavg Average simulation time

x(k) kth optimization variable

xmax,(k) (xmin,(k)) Maximum (and minimum) allowed value of the kth optimization variable

xseed,ext Landing position from the external seeds

xseed,fin Location of seed after travelling

xseed,ini Original location of travelling seed

xseed,int Landing position from the internal seeds

xtree Tree location

xtree,block Blocking tree location

The analysis of the algorithms based on their value

of nfobj is required as, for complex problems, the

evaluation of the objective function tends to represent a

high (if not the highest) percentage of the simulation

time. So, the lower this value is, the less computational

time is required. All of the evaluated optimization

algorithms reveal that as the number of its optimization

variable increases, so does the nfobj value. This is an

expected result because by the increase of nvar, the

problem becomes more complex and more evaluations

are needed. Among them all, the NRO algorithm

achieves the lowest nfobj values for most of the

analyzed functions. For the Bea, Mat, CT, SHC, DP,

Pow (nvar = 5, 10), SS (nvar = 2), SDP (nvar = 2, 5, 10,

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1181

20), Sph (nvar = 2, 5) and Per (nvar = 2, 20) functions,

the NRO algorithm reaches nfobj values lower than the

ones from the benchmark algorithms with a higher (or

similar) success rate. This illustrates the high

computational performance of NRO. Nevertheless, for

particular cases such as the SS (nvar = 20) and Per (nvar

= 20) functions, the NRO algorithm produces the

highest value of nfobj. This, however, is required in

order to achieve the highest success rate among the

optimization algorithm (except for the ESA algorithm

which achieved a greater success rate for the case of SS

with nvar = 20). As expected, the average simulation

time has a similar trend as nfobj.

At this point it can be noted that, when the number

optimization variables increase considerably, the NRO

algorithm still achieves the highest success rate by

sacrificing its computational time. This is different to the

benchmark algorithms that will produce a lower

simulation time with a lower success rate.

Based on the average error values, it can be

appreciated that in general, the algorithms achieve very

low values. This means that their successful results are

close to the global minimum. It is worth mentioning

that the ESA algorithm produces the lowest simulation

errors for most of the benchmark functions reaching

even values of zero.

Figure 3 presents the performance of each algorithm

based on the number of evaluated optimization

variables. These graphs are obtained by averaging the

results from Table 2 among the benchmark functions

which contain the same number of optimization

variables. Here, Fig. 3a reveals that, in general, the

NRO algorithm outperforms the other algorithms with

respect to the success rate regardless of the number of

optimization variables (except for the case of nvar = 5 in

which the ECTS reaches a slightly higher value). It can

also be seen that the PSO algorithm experiences the

highest decrease in performance with the increase of nvar.

Furthermore, with respect to the number of times the

objective function is evaluated, Fig. 3b shows that for

nvar = 2, 5, 10, the NRO achieves low nfobj values, similar

to the other algorithms. Nevertheless, for the case of nvar

= 20, a high increase of nfobj is observed for NRO. This,

as previously explained, is because the optimization

problem is more complex with nvar = 20 and more

evaluations on nfobj are required to achieve satisfactory

results (this can be seen in Fig. 3a). The average

simulation time shown in Fig. 3c presents a similar trend

as the one from Fig. 3b due to the high influence that the

number of evaluations of the objective function has on the

simulation time for the analyzed benchmark functions.

With respect to the simulation errors, Fig. 3d reveals that

all the successful results achieve low errors. Among them,

the PSO algorithm reaches the lowest errors regardless

of the number of optimization variables.

Conclusion

This work proposed a new meta-heuristic optimization

technique for single objective optimization problems

named Natural Reforestation Optimization (NRO). The

NRO, as suggested by its name, is inspired by the natural

reforestation process. The characteristics of this algorithm

(which enhance the performance of the searching

technique) were discussed in this study, among them: The

initialization procedure, the exploration and exploitation

process, the interaction between the particles, the stopping

criteria, among others. The performance of this algorithm

was tested with many benchmark functions against four

other optimization algorithms. The results revealed that in

general, the NRO is capable to generate a high success

rate, reaching values close to the global optimum. It was

also noted that when the number of optimization variables

increased considerably (20 in this study), the success rate

of the NRO algorithm would still be superior to the one

from the benchmark requiring, however, a higher

simulation time. Therefore, the potential of this

algorithm was confirmed as a strong optimization tool

opening the path for more work to be done to further

enhance its performance. As a future work we will aim

to further develop this algorithm so that it could also be

applied for multi-objective optimization problems.

Appendix

The benchmark functions used in this study, shown in

Table 2, are described in this section7.

Beale Function (Bea):

     

 

2 2
2

1 1 2 1 1 2

2
3

1 1 2

1.5 2.25

2.625

Bea x x x x x x x

x x x

       

   

 (16)

The Bea function contains two variables and is

evaluated in the range of xi ϵ [-4.5, 4.5], for all i = 1, 2.

Its global minimum is 0 and is located in x* = (3, 0.5).

Booth Function (Boo):

     
2 2

1 2 1 22 7 2 5Boo x x x x x        (17)

The Boo function contains two variables and is

evaluated in the range of xi ϵ [-10, 10], for all i = 1, 2. Its

global minimum is 0 and is located in x* = (1, 3).

Matyas Function (Mat):

   
2

2 2

1 2 1 20.26 0.48Mat x x x x x      (18)

7 The searching ranges of the optimization variables are obtained from

the literature.

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1182

The Mat function contains two variables and is

evaluated in the range of xi ϵ [-10, 10], for all i = 1, 2. Its

global minimum is 0 and is located in x* = (0, 0).

Cross-in-Tray Function (CT)

      1 2

0.1

2 2

1 2

0.0001 sin sin

exp 100 1

CT x x x

x x



   

     
  

  

 (19)

The CT function contains two variables and is

evaluated in the range of xi ϵ [-10, 10], for all i = 1, 2. Its

global minimum is -2.06261 and is located in x* =

(1.3491, -1.3491), (1.3491, 1.3491), (-1.3491, 1.3491), (-

1.3491, -1.3491).

Schaffer Function N.2 (Sch_N2):

 
 

  

2 2 2

1 2

2
2 2

1 2

sin 0.5
_ 2 0.5

1 0.001

x x
Sch N x

x x

 
 

  
 (20)

The Sch_N2 function contains two variables and is

evaluated in the range of xi ϵ [-100, 100], for all i = 1, 2.

Its global minimum is 0 and is located in x* = (0, 0).

Schaffer Function N.4 (Sch_N4):

 
  

  

2 2

1 2

2
2 2

1 2

cos sin 0.5
_ 4 0.5

1 0.001

x x
Sch N x

x x

 
 

  

 (21)

The Sch_N4 function contains two variables and is

evaluated in the range of xi ϵ [-100, 100], for all i = 1,

2. Its global minimum is 0.292579 and is located in x*

= (0, 1.25313).

Drop-Wave Function (DW):

 
 
 

2 2

1 2

2 2

1 2

1 cos 12

0.5 2

x x
DW x

x x

  
 

  
 (22)

The DW function contains two variables and is

evaluated in the range of xi ϵ [-5.12, 5.12], for all i = 1, 2.

Its global minimum is -1 and is located in x* = (0, 0).

Griewank Function (Gri):

   
2 2

1 2 2
1cos cos 1

4000 2

x x x
Gri x x

 
    

 
 (23)

The Gri function contains two variables and is

evaluated in the range of xi ϵ [-600, 600], for all i = 1, 2.

Its global minimum is 0 and is located in x* = (0, 0).

Bohachevsky Function 1 (Boh_f1):

   

 

2 2

1 2 1

2

_ 1 2 0.3 cos 3

0.4 cos 4 0.7

Boh f x x x x

x





      

    
 (24)

The Boh_f1 function contains two variables and is

evaluated in the range of xi ϵ [-100, 100], for all i = 1, 2.

Its global minimum is 0 and is located in x* = (0, 0).

Bohachevsky Function 2 (Boh_f2):

   

 

2 2

1 2 1

2

_ 2 2 0.3 cos 3

cos 4 0.3

Boh f x x x x

x





      

   
 (25)

The Boh_f2 function contains two variables and is

evaluated in the range of xi ϵ [-100, 100], for all i = 1, 2.

Its global minimum is 0 and is located in x* = (0, 0).

Bohachevsky Function 3 (Boh_f3):

 

 

2 2

1 2

1 2

_ 3 2

0.3 cos 3 4 0.3

Boh f x x x

x x 

  

       
 (26)

The Boh_f3 function contains two variables and is

evaluated in the range of xi ϵ [-100, 100], for all i = 1, 2.

Its global minimum is 0 and is located in x* = (0, 0).

Six-Hump Camel Function (SHC):

 

 

4
2 21
1 1 1 2

2 2

2 2

4 2.1
3

4 4

x
SHC x x x x x

x x

 
       
 

    

 (27)

The SHC function contains two variables and is

evaluated in the range of x1 ϵ [-3, 3], x2 ϵ [-2, 2]. Its

global minimum is -1.0316 and is located in x* =

(0.0898, -0.7126), (-0.0898, 0.7126).

Dixon-Price Function (DP):

     
2 2

2 2

1 2 11 2 2DP x x x x      (28)

The DP function contains two variables and is

evaluated in the range of xi ϵ [-10, 10], for all i = 1, 2. Its

global minimum is 0 and is located in x* =  1, 0.5 .

Powell Function (Pow):

     

    

/ 4
2 2

4 3 4 2 4 1 4

1

4 4

4 2 4 1 4 3 4

10 5

2 10

n

i i i i

i

i i i i

Pow x x x x x

x x x x

  



  

     

     


 (29)

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1183

The Pow function contains n variables and is

evaluated in the range of xi ϵ [-4, 5], for all i = 1,…, n. Its

global minimum is 0 and is located in x* = (0,…, 0).

Sum Squares Function (SS):

  2

1

n

i

i

SS x i x


  (30)

The SS function contains n variables and is evaluated

in the range of xi ϵ [-10, 10], for all i = 1,…, n. Its global

minimum is 0 and is located in x* = (0,…, 0).

Sum of Different Powers Function (SDP):

 
1

1

x
i

i

i

SDP x x




 (31)

The SDP function contains n variables and is

evaluated in the range of xi ϵ [-1, 1], for all i = 1,…, n. Its

global minimum is 0 and is located in x* = (0,…, 0).

Sphere Function (Sph):

  2

1

n

i

i

Sph x x


 (32)

The Sph function contains n variables and is evaluated

in the range of xi ϵ [-5.12, 5.12], for all i = 1,…, n. Its global

minimum is 0 and is located in x* = (0,…, 0).

Perm Function 0, d,  (Per):

   

2

1 1

1n n
i

j i
i j

Per x j x
j


 

  
      

  
  (33)

The Per function contains n variables and is

evaluated in the range of xi ϵ [-n, n], for all i = 1,…, n

with  = 0. Its global minimum is 0 and is located in x* =

1 1
1, ,...,

2 n

 
 
 

.

Acknowledgment

The authors of this manuscript would like to express

their appreciations and gratitude to their respective

universities for supporting this research.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and there are no ethical issues involved.

References

Alvarez-Alvarado, M. S., & Jayaweera, D. (2018a,

June). A New Approach for Reliability Assessment

of a Static V ar Compensator Integrated Smart Grid.

In 2018 IEEE International Conference on

Probabilistic Methods Applied to Power Systems

(PMAPS) (pp. 1-7). IEEE.

Alvarez-Alvarado, M. S., & Jayaweera, D. (2018b,

October). A multi-stage accelerated quantum

particle swarm optimization for planning and

operation of static var compensators. In 2018 IEEE

Third Ecuador Technical Chapters Meeting (ETCM)

(pp. 1-6). IEEE.

Beheshti, Z., & Shamsuddin, S. M. H. (2013). A review

of population-based meta-heuristic algorithms. Int.

J. Adv. Soft Comput. Appl, 5(1), 1-35.

Chelouah, R., & Siarry, P. (1999). Enhanced continuous

tabu search: An algorithm for optimizing

multiminima functions. In Meta-Heuristics (pp. 49-

61). Springer, Boston, MA.

Chelouah, R., & Siarry, P. (2000). A continuous genetic

algorithm designed for the global optimization of

multimodal functions. Journal of Heuristics, 6(2),

191-213.

Clerc, M. (2010). Particle swarm optimization (Vol. 93).

John Wiley & Sons.

Cui, L., Li, G., Lin, Q., Chen, J., & Lu, N. (2016).

Adaptive differential evolution algorithm with novel

mutation strategies in multiple sub-populations.

Computers & Operations Research, 67, 155-173.

Dasgupta, D., Yu, S., & Nino, F. (2011). Recent

advances in artificial immune systems: models

and applications. Applied Soft Computing, 11(2),

1574-1587.

Davis, L. (1991). Handbook of genetic algorithms.

Dorigo, M., & Blum, C. (2005). Ant colony optimization

theory: A survey. Theoretical computer science,

344(2-3), 243-278.

Eberhart, R. C., & Shi, Y. (2000, July). Comparing

inertia weights and constriction factors in particle

swarm optimization. In Proceedings of the 2000

congress on evolutionary computation. CEC00 (Cat.

No. 00TH8512) (Vol. 1, pp. 84-88). IEEE.

Kantardzic, M. (2003). Genetic algorithms. In: Data

Mining: Concepts, Models, Methods and

Algorithms (pp. 385–413).

Kohli, M., & Arora, S. (2018). Chaotic grey wolf

optimization algorithm for constrained optimization

problems. Journal of computational design and

engineering, 5(4), 458-472.

Fernando L. Rodríguez-Gallegos et al. / Journal of Computer Science 2020, 16 (8): 1172.1184

DOI: 10.3844/jcssp.2020.1172.1184

1184

Krishnanand, K. R., Nayak, S. K., Panigrahi, B. K., &

Rout, P. K. (2009, December). Comparative study of

five bio-inspired evolutionary optimization

techniques. In 2009 World Congress on Nature &

Biologically Inspired Computing (NaBIC) (pp.

1231-1236). IEEE.

Parsopoulos, K. E., & Vrahatis, M. N. (2010). Particle

swarm optimization and intelligence: advances and

applications.

Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S.

(2009). GSA: a gravitational search algorithm.

Information sciences, 179(13), 2232-2248.

Siarry, P., Berthiau, G., Durdin, F., & Haussy, J. (1997).

Enhanced simulated annealing for globally

minimizing functions of many-continuous variables.

ACM Transactions on Mathematical Software

(TOMS), 23(2), 209-228.

Suman, B., & Kumar, P. (2006). A survey of simulated

annealing as a tool for single and multiobjective

optimization. Journal of the operational research

society, 57(10), 1143-1160.

Yang, X. S. (2011). Review of meta-heuristics and

generalised evolutionary walk algorithm. International

Journal of Bio-Inspired Computation, 3(2), 77-84.

