
 

 

 © 2020 Hayder Naser Khraibet AL-Behadilil, Ku Ruhana Ku-Mahamud and Rafid Sagban. This open access article is 

distributed under a Creative Commons Attribution (CC-BY) 3.0 license. 

 Journal of Computer Science 

 

 

Original Research Paper  

Hybrid Ant Colony Optimization and Genetic Algorithm for 

Rule Induction 
 

1Hayder Naser Khraibet AL-Behadili, 2Ku Ruhana Ku-Mahamud and 3Rafid Sagban 

 
1Department of Computer Science, Shatt Alarab University College, Basra, Iraq 
2School of Computing, Universiti Utara Malaysia, Kedah, Malaysia 
3Department of Software, University of Babylon, Babylon, Iraq 

 
Article history 

Received: 12-04-2020 

Revised: 06-07-2020 

Accepted: 23-07-2020 

  

Corresponding Authors: 

Hayder Naser Khraibet Al-

Behadili 

Department of Computer 

Science, Shatt Alarab 

University College, Basra, Iraq 
Email: haider872004@gmail.com 

Abstract: In this study, a hybrid rule-based classifier namely, ant colony 

optimization/genetic algorithm ACO/GA is introduced to improve the 

classification accuracy of Ant-Miner classifier by using GA. The Ant-

Miner classifier is efficient, useful and commonly used for solving rule-

based classification problems in data mining. Ant-Miner, which is an ACO 

variant, suffers from local optimization problem which affects its 

performance. In our proposed hybrid ACO/GA algorithm, the ACO is 

responsible for generating classification rules and the GA improves the 

classification rules iteratively using the principles of multi-neighborhood 

structure (i.e., mutation and crossover) procedures to overcome the local 

optima problem. The performance of the proposed classifier was tested 

against other existing hybrid ant-mining classification algorithms namely, 

ACO/SA and ACO/PSO2 using classification accuracy, the number of 

discovered rules and model complexity. For the experiment, the 10-fold 

cross-validation procedure was used on 12 benchmark datasets from the 

University California Irwine machine learning repository. Experimental 

results show that the proposed hybridization was able to produce 

impressive results in all evaluation criteria.  

 

Keywords: Rules-based Classification, Swarm Intelligence, Machine 

Learning, Data mining, Ant-Miner 
 

Introduction 

Ant Colony Optimization (ACO) is a metaheuristic 

framework that handles combinatorial optimization and 

other problems (Jabbar et al., 2020; López-Ibáñez et al., 

2016; Sagban et al., 2016). The inspiring source of ACO 

is derived from actual behavior of ants and artificial 

pheromone trails used as indirect communication 

medium. Heuristic information and pheromone trails are 

two types of numerical information employed by ACO. 

The heuristic information is taken from the problem 

being solved. Pheromone trails represent a distributed, 

numerical information that the ACO adapt during its 

execution to reflect the search experience (Dorigo and 

Stützle, 2004). Many applications involve the usage of 

ACO metaheuristic framework such as scheduling 

(Blum, 2005), travel salesman problem (Sagban et al., 

2017), assembly line balancing (Blum, 2008), sequential 

ordering (Dorigo and Stützle, 2010), DNA sequencing 

(Blum et al., 2008), packet-switched routing (Di Caro and 

Dorigo, 1998), feature selection (Kanan et al., 2007), 

data clustering (Jabbar and Ku-Mahamud, 2018;    

Jabbar et al., 2019a; 2019b) and data classification    

(Al-Behadili et al., 2019; 2018b; 2018a).  

Ant-Miner classifier is a prominent ACO variant for 

data mining classification task. It generates a set of rules 

from the data to classify them into predetermined classes 

(Al-Behadili et al., 2020a). These rules are used to 

predict the unknown classes for unseen data. The Ant-

Miner generates rules in the form of if–then rules that are 

considered simple and comprehensible knowledge 

representor. Examples of Ant-Miner applications include 

medical diagnosis, bankruptcy determination and stock 

price prediction (Al-Behadili, 2018; Ripon, 2019).  
The hybrid classifier in the Ant-mining literature 

introduced by (Saian and Ku-Mahamud, 2012) proposed 

Ant-Miner coupled with Simulated Annealing (SA) to 

generate a list of classification rules. In Ant-Miner, each ant 

discovers a rule. The study proposed SA as a local search 

procedure to improve this rule iteratively. The SA works for 

each rule on the basis of the temperature variable, which 

starts at a high value and then decreases on the basis of 



Hayder Naser Khraibet AL-Behadili et al. / Journal of Computer Science 2020, 16 (7): 1019.1028 

DOI: 10.3844/jcssp.2020.1019.1028 

 

1020 

predefined factors. The search runs a certain number of 

iterations and selects the best rule from the available 

neighbourhood depending on its quality. Using the SA 

mechanism, which starts with high temperatures, allows the 

rule with low quality to be selected. Then, temperature will 

be decreased and the difference between the current and 

previous qualities will be crucial for selecting the rule with 

high quality. The performance matrix is indicated on the 

basis of the rule quality, the number of discovered rules and 

the terms per rule. The performance of this approach was 

tested using 13 datasets from a UCI repository, showing 

that it is comparable with the original Ant-Miner in the 

predicative accuracy. 

ACO/PSO2 is a hybrid swarm intelligence 

metaheuristic algorithm for rule-based classification that 

combined ACO with Particle Swarm Optimization 

(PSO) (Holden and Freitas, 2008). The pruning 

procedures of ACO/PSO2 are applied to discover the 

best rule from each iteration. ACO/PSO2 uses two 

pruning procedures. The first procedure is the original 

Ant-Miner pruning procedure and applied to the best 

rule discovered whose number of terms is less than a 

fixed value (i.e., 20). If the constructed rule entails 

more than 20 terms for each rule, then the pruning 

iterates to remove the unimportant or detrimental terms 

from the classification rule until the number is 

decreased to 20 terms. Subsequently, the Ant-Miner 

pruning procedure is implemented.  

However, the Ant-Miner classifier suffers from 

premature exploitation because of the absence of any 

local search in its structure. Ant-Miner is not designed to 

explore the neighborhoods of the current rule and does 

not consume more time in improving it iteratively. The 

neighborhood structures are not fully covered. In this 

manner, this type of search is over-explorative because it 

is either a single neighborhood structure movement, as 

exemplified in (Saian and Ku-Mahamud, 2012), or it does 

not profit from local search (Holden and Freitas, 2008; 

Martens et al., 2011). Therefore, various neighborhood 

structures can be developed to catapult the search to 

another point, which makes it possible to completely 

utilize the neighborhood. The present study proposes the 

hybridization of Genetic Algorithm (GA) with Ant-Miner 

classifier algorithm for a more mature exploitation. 

This paper is constructed as follows. The next section 

illustrates the proposed hybrid ACO/GA classifier. The 

materials and methods section present experiments 

method, performance evaluation metrics, databases, 

classifiers and the parameter setting used in our 

experiments. Then, discusses the experimental results of 

the proposed classifier. Finally, provides the conclusions 

and suggestions for possible future research. 

Hybrid ACO/GA algorithm  

The overall goal of ACO/GA is to benefit from the 

characteristics to form the neighborhood structures. In 

GA, a strong inter-correlation exists between exploration 

components (e.g., mutation) and exploitation components 

(e.g., crossover). Furthermore, GA has succeeded in using 

the crossover and mutation operators in utilizing multi-

neighborhood structures. Figure 1 shows how GA utilizes 

crossover and mutation to improve the search in two of its 

neighborhood structures in the proposed hybridization. 

The ACO/GA classifier begins to construct one 

classification rule from the training dataset. This 

discovered rule is then inserted in the rule list, in which 

every case in the data that satisfies this rule is removed 

from the training dataset. These operations terminate 

when all the cases in the training database are lower than 

the pre-specified constant values known as 

UncoveredInstancesNO. 

 

 
 

Fig. 1: Proposed hybrid ACO/GA search strategy 

Best complexity 

C
la

ss
if

ic
at

io
n
 e

rr
o

r 

Local optima 

Local optima 

Local optima 

Local optima 

Mutation (rule) 

Mutation (rule) 

Crossover (rule) 

Global optima 

Crossover (rule) 

Model complexity 



Hayder Naser Khraibet AL-Behadili et al. / Journal of Computer Science 2020, 16 (7): 1019.1028 

DOI: 10.3844/jcssp.2020.1019.1028 

 

1021 

This approach has three major stages namely, rule 

building (RuleConstructs), pruning rule (RulePrune) and 

updating pheromone. The initial procedure is the 

RuleConstructs, where every ant begins to allow terms to 

inserted in the rule. The ant inserts a term at a time while 

raise the classification accuracy according to its 

probability value. The probability function that is use to 

add term to the current rule is expressed in Equation 1 as 

follows (Parpinelli et al., 2002): 

 

 

 1 1

ijij t

a bi

ijij ti j

Probability
xi

 

 
 

     
       

 (1) 

 

where, [ij(t)] is the amount of pheromone concentration 

for each term at iteration (t); [ij] is the problem 

depending upon heuristic function; a is the attribute 

number in the dataset; bi is the term number for each 

attribute; and xi is set to 1 (if the attribute is not yet visited 

by the ant) and 0 (otherwise). In addition, the heuristic 

function value is used together with the pheromone value 

to decide on the term selection. In ACO/GA, the heuristic 

function is inspired by information theory. The ACO/GA 

computes the amount of information contained in each 

term (entropy). The heuristic function can be expressed as 

follows (Parpinelli et al., 2002): 

 

 
  

2

21 1

log |

log |

i ij

ij a bi

i iji j

k H W A V

xi k H W A V


 

 


   
 (2) 

 

 
 

 

1

2

|
|

|
log

k i ij

i ij w
ij

i ij

ij

P W A V
H W A V

T

P W A V

T



 
   
  

 
 
  


 (3) 

 

Where: 

w = The class attribute 

k = Represent the classes number 

P(W|Ai = Vij) = The partition containing the instances, 

where the feature Ai has a value of Vij 

with class w 

|Tij| = Represents the total of instances number 

in partition Tij (instances where attribute 

Ai has a value of Vij) 

a = Represents the total number of attributes 

bi = The number of values in the particular 

attribute i 

 

This process is repeated to complete the construction 

rule based on two conditions. The first one, the current 

rule is not covered the prespecified the minimum 

instances by rule; while the second condition; certain 

attributes from the data are not yet used by the current 

constructed rule. Once the rule is finished, the classifier 

assigns the Then part of the rule by selecting the 

majority class vale among the all instances covered by 

the discovered rule. The discovered rule will then 

undergo pruning procedure RulePrune, which aims to 

avoid the overfitting problem by reducing the length of 

the constructed rules to increase simplicity. The 

procedure deletes one term from the rule at a time as the 

classification quality of the constructed rule improves. 

This method loop until only one term is left in the 

pruned rule or just no more improvement happens. The 

class value of the rule will have a high chance to be 

changed through this stage due to the fact that the pruned 

rule may cover other instances from dataset compared 

with the cases covered by the original one. The 

pheromone is updated after rule construction and prune 

procedures. Updating the pheromone has two basic 

stages. Firstly, the amount of pheromone amount is 

increased in all terms, including the discovered rule, 

according to rule quality function in Equations 4 and 5 as 

follows (Parpinelli et al., 2002): 

 

     1ij t ij t ij t
Q  


    (4) 

 

TP TN
Q

TP FN FP TN
  

 
  (5) 

 

where, TP represents the cases number covered and 

classified by the constructed rule, FN represents the 

number of cases covered by constructed rule but it has a 

different class, TN represents the cases number that not 

covered by the constructed rule and has a class different 

from that classified by the constructed rule and FP 

represents the cases not covered by the constructed rule 

but has a class classified by the rule. 

Secondly, evaporating each term does not appear in 

the rule to avoid cumulative pheromone in un important 

terms. Then, another ant constructs its rule derived from 

pheromone history. The process is finished based on 

the following stopping conditions. The first condition is 

that the number of discovered rules must be equal to 

the number of ants. The second condition is according 

to the number of rule convergence that is statically 

determined, in which the ant starts to converge by 

building a rule similar to that previously constructed. 

The best quality rule from all discovered rules will be 

added to the discovered rule list.  

To speed up the search in the proposed ACO/GA, 

GA is only applied for the iteration-best rule instead of 

applying it for all constructed rules to ensure that the 

algorithm stays lightweight. The change that may be 

applied to the classification rule is defined by a 

neighborhood structure. A neighborhood structure is a 

function N: S → 2S that assigns a set of neighborhood 



Hayder Naser Khraibet AL-Behadili et al. / Journal of Computer Science 2020, 16 (7): 1019.1028 

DOI: 10.3844/jcssp.2020.1019.1028 

 

1022 

N(s) ⊆ S to every s ∈ S. N(s) is also called the 

neighborhood of s. The best rule in discovered-rule-list 

will be treated by crossover and mutation procedures. 

Therefore, the best discovered rule will be kernelled to 

form the neighborhood structure.  

ACO/GA is a multi-neighborhood structure algorithm. 

In each iteration, the mutation generates a new starting 

rule where the crossover can be applied. ACO/GA selects 

two parent chromosomes (rules). The iteration-best rule 

represents the FirstParent. The SecondParent is a random 

classification rule selected from the classification list of 

discovered rules. Then, the mutation operator is used to 

maintain genetic diversity from one generation of a rule to 

the next. The mutation rate parameter is performed to 

decide if the rules should have a mutation. The parameter 

of the mutation rate is compared with a random number to 

perform the mutation operation. The mutation operator 

selects the random bits in the parent chromosomes and 

flips the value of this bit. Thus, the size of mutation is 2-

terms exchange. Figure 2 shows the pseudocode of the 

mutation operator. 

The crossover operator is the process in which parent 

chromosomes (rules) exchange genetic information to 

create the best rule. The crossover rate parameter is used 

to perform crossover in a similar approach to the mutation 

operator. If the crossover rate is greater than the random 

number, then the crossover will be implemented. Different 

methods are used to trade genetic information between 

two individuals. The crossover operation used in this 

study guarantees a fully matured exploitation for such 

promising search regions. The length of crossover 

movement CrossOverLength in ACO/GA is set to half of 

the classification rule. Thus, the crossover terms are 

replaced up to two CrossOverLength from the FirstParent 

and SecondParent. Figure 3 shows the pseudocode of the 

crossover method. 

The procedure then repeatedly performs operations 

from the given rule until no further improvement can be 

achieved. The acceptance criterion used to accept the 

better-quality classification rule during the crossover and 

mutation stages can be expressed in Equations 6 and 7: 
 

   * *,

,

BestRule if Quality BestRule Quality BestRule
Acceptance Criterion

BestRule Otherwise

 
 


 (6) 

 

 * TP TN
Quality BestRule

TP FN FP FP TN
 

  
 (7) 

 
where, TP represents the cases number covered and 

classified by the constructed rule, FN represents the 

number of cases covered by constructed rule but it has a 

different class, TN represents the cases number that not 

covered by the constructed rule and has a class different 

from that classified by the constructed rule and FP 

represents the cases not covered by the constructed rule 

but has a class classified by the rule. The acceptance 

criteria in GA will be the rudder that guides the search 

towards the bottom of the shape of the neighbourhood 

structure. Furthermore, it determines the size of 

movement in the current search region. 

 
Mutation pseudocode   

  

IF MutationRate > Random(); 

     MutatedFirstTerm = SelectMutatedTerm(); 

     MutatedSecondTerm = SelectMutatedTerm(); 

     Offspring = Mutation (MutatedFirstTerm, MutatedSecondTerm, FirstParent, SecondParent); 

ELSE: Offspring= (FirstParent, SecondParent); 

END IF  

 
Fig. 2: Mutation operator pseudocode 

 
Crossover psaeudocode 

        

        IF CrossoverRate > Random(); 

    Offspring = Crossover (FirstParent, SecondParent, CrossOverLength, Rule.length); 

               For (int i = CrossOverLength; i<= Rule.length; i++) 

                     { 

                     int  temp = FirstParent[i]; 

            FirstParent[i] = SecondParent [i]; 

            SecondParent [i] = temp; 

                     } 

              END Loop 

    ELSE: Offspring= (FirstParent, SecondParent); 

    END IF 

  

 
Fig. 3: Crossover operator pseudocode 



Hayder Naser Khraibet AL-Behadili et al. / Journal of Computer Science 2020, 16 (7): 1019.1028 

DOI: 10.3844/jcssp.2020.1019.1028 

 

1023 

ACO/GA algorithm 

 

Input: arff data set 

Output: classification rule-list  

TrainingDataSet= {all TrainingData instances}; 

Initialization of ConstructionRuleList =[]; 

WHILE (TrainingDatset>Maximum UncoveredInstancesNO) 

AntIndexNO =1; ConvergenceTestNO=1; 

PheromoneInitialization; 

REPEAT  

RuleConstructs; 

RulePrune; 

UpdatePheromone; 

IF(Current ConstructedRule = Previous ConstructedRule) 

THEN ConvergenceTestNO = ConvergenceTestNO + 1; 

ELSE ConvergenceTestNO = 1; 

END IF AntIndexNO = AntIndexNO + 1;  

UNTIL(AntIndexNO >= AntNumber) OR (ConvergenceTestNO >=RuleConvergenceNo) 

SelectTheBestRule; 

          REPEAT 

              BestRule′ = Mutation (BestRule);  

              BestRule* =Crossover(BestRule'); 

              BestRule = AcceptanceCriterion (BestRule, BestRule*); 

           UNTIL termination condition met 

Insert BestRule to ConstructionRuleList; 

TrainingData instances = TrainingData instances -{InstancesSetCoveredByRule}; 

END WHILE 

 
Fig. 4: ACO/GA algorithm pseudocode 

 

The ACO/GA pseudocode shows the adaptation of 
the aforementioned components of GA-based algorithm 
(i.e., crossover, mutation and acceptance criteria) in the 
Ant-Miner framework (Fig. 4). The combined feature 
makes the proposed classifier substantially different 
from the previous Ant-Mining classification algorithm. 

Materials and Methods  

Experiments 

A 10-fold cross-validation method is used in our 

experiments. In this method, the dataset is split into 10 

subsets. Each subset is equally sized, where nine are 

used for the training process. The remaining subset is 

used in the testing stage. This process is repeated 10 

times with a different subset for training and testing to 

ensure that all subsets are used for training and testing. 

Subsequently, the performance of all folds is averaged 

and the standard deviations are calculated. The 10-fold 

cross-validation method has been also adopted in other 

ant-mining classifier studies (Al-Behadili et al., 2020b; 

Parpinelli et al., 2002; Saian and Ku-Mahamud, 2012).  

Performance Evaluation  

The evaluation in this study is performed on the basis 

of three criteria. The first criterion is the classification 

accuracy in discovering the rule list, which is called the 

correct classification rate. This criterion is based on the 

correctly classified instances in the test data. Each time, 

the training subsets consist of n number of instances. The 

classifier constructs the training and test subsets that will 

be used to test the performance. The correct 

classification instances will determine the performance 

of the proposed classifier. The second criterion is the 

size in discovering the rule list, which is measured by the 

total number of discovered rules. The third criterion is 

the model size, which is measured by the amount of 

terms per rule. The number of terms (conditions) refers 

to the number of antecedents carried by each rule.  

This study also computes for the classification 

accuracy rank and the model size rank of the statistical 

results, in which the nonparametric Friedman test is 

conducted with the Holm post-hoc test. In this manner, 

the performance of all classifiers in accordance with 

classification accuracy and simplicity can be observed. 

Then, the result of the nonparametric Friedman test with 

Holm’s post hoc test is used to determine the average 

classification accuracy rank versus the average number 

of discovered rule rank and the average model size rank 

for all classifiers. This test aims to find the optimal 

classifier that balances different objectives. The test is 

conducted to rank the algorithms’ performance for each 

dataset in descending order. A low rank implies good 

algorithm performance. The test is used to rank the best 

classifier that balances between classification accuracy 

and model size. The A classifier dominates B classifier if 



Hayder Naser Khraibet AL-Behadili et al. / Journal of Computer Science 2020, 16 (7): 1019.1028 

DOI: 10.3844/jcssp.2020.1019.1028 

 

1024 

and only if the following two (2) conditions are true: The 

first condition, A is not worse than B with respect to 

both objectives, i.e., classification accuracy and the 

model size. The second condition, A is strictly better 

than B at least in one (1) objective. Thus, A classifier is 

becoming optimal only if and only if it is not dominated 

by any other classifiers (Dua and Karra, 2017). 

Databases 

Several experiments are performed using 12 UCI 

benchmark datasets in Weka's ARFF format to test the 

performance of the adaptive algorithm (Dua and Karra, 

2017). These datasets are famous in the ant-mining 

algorithms literature and demonstrate different attribute 

numbers, which lie between 4 and 22. The attributes 

exhibit categorical and continuous styles. The datasets 

also differ in instance size number within the range of 

between 148-8124. The main descriptions of the 

experimental datasets are listed in Table 1. 

Classifiers  

The implementation of hybridizing Ant-Miner with 

GA or ACO/GA is evaluated with two other hybrid 

classifiers, namely, ACO/SA and ACO/PSO 2. These 

classifiers are considered the most related classifiers in 

ant-mining literature. The ACO/PSO 2 classification rule 

discovery software packages is publicly available on: 

https://sourceforge.net/projects/psoaco2/. 

In other hand, the ACO/SA and ACO/GA are 

implemented based on the available open-source 

software packages of Ant-Miner classifier: 

https://sourceforge.net/projects/guiantminer. 

Saian and Ku-Mahamud (2012) combined ACO 

with SA, each ant discovers one best rule according to 

the hybrid ACO with SA algorithm. The SA algorithm 

can find an optimal solution for local optimisation 

problems. It is dependent on a variable named 

temperature (Aarts et al., 1997). The proposed hybrid 

algorithm uses the iteration on the temperature variable 

by starting with a high value. Therefore, in the 

beginning, all rules have the same probability to be 

selected. Then, temperature reduces and all rules will 

have a chance to be selected as the best rule. In this 

manner, the algorithm can avoid the local optimisation 

problem of the solution. Thereafter, the best rule in the 

iteration will be selected and the best among all 

iterations will then be added into the rule set. A 

successful hybridisation between ACO and PSO 

algorithm has been achieved by (Holden and Freitas, 

2008) that introduced a new hybrid ACO and PSO2 

algorithm for the discovery of classification rules. This 

classification algorithm can directly cope with discrete 

and continuous attributes. 

Parameter Setting  

The values of Ant-Miner classifiers parameter are 

adopted from (Robu et al., 2015; López-Ibáñez et al., 

2016; Raymer et al., 2000) to ensure a fair evaluation of 

the results, all classifiers use the same values. Table 2 

shows the parameters values used in the experiment. 

 
Table 1: The datasets characteristics  

 Description 

 ------------------------------------------------------------------------------------------------------------- 

The name of datasets Number of attributes Number of instances Number of classes 

Scale Balance  4 625 3 

Ljubljana Breast Cancer  9 286 2 

Wisconsin Breast Cancer  9 699 2 

CreditA 15 690 2 

Diabetes Data 8 768 2 

Cleveland Heart disease 13 303 5 

Statlog Heart disease 13 270 2 

Iris dataset 4 150 3 

Medical Lymphography  18 148 4 

Mushroom Data 22 8124 2 

Segment Data 19 2310 7 

Vehicle Data 18 846 4 

 
Table 2: Experimental parameters 

Parameter Description Value 

AntNumber The number of ants used to discover rule 10.0 

MCR The mini number of instances covered by rule 5.0 

UncoveredInstancesNO The max number of uncovered instances by the rule 10.0 

RuleConvergenceNo Rules Convergence Number 10.0 

NI iterations Number 10.0 

CR Crossover Rate 0.8 

MR Mutation Rate  0.1 

https://sourceforge.net/projects/psoaco2/
https://sourceforge.net/projects/guiantminer


Hayder Naser Khraibet AL-Behadili et al. / Journal of Computer Science 2020, 16 (7): 1019.1028 

DOI: 10.3844/jcssp.2020.1019.1028 

 

1025 

Experimental Results  

This section compares the results of the ACO/GA 

classifier with those of related classifiers with different 

rule pruning procedures. These classifiers include the 

ACO/PSO2 and ACO/SA. Experiments on 12 datasets 

from the UCI repository are conducted for all 

classification algorithms. In the first evaluation method, 

Table 3 shows the experimental results of the average 

classification accuracy. The result presents the average 

classification accuracy and the numbers after the symbol 

‘+/−’ are standard deviations. For each dataset, the best 

result is written in bold. Table 3 shows that the ACO/GA 

is better than ACO/PSO2 in 11 datasets. The ACO/GA is 

better than ACO/SA in eight datasets. Among all 

classifiers, the ACO/GA achieves the highest results in 

eight datasets. The ACO/SA obtains the second-best 

performance in three datasets [i.e. Wisconsin Breast 

Cancer, Cleveland Heart disease and Vehicle Data], 

whereas the ACO/PSO2 obtains the best results in only 

one dataset. Table 4 shows that the ACO/GA has the 

lowest number of discovered rules in all datasets for 10-

fold cross-validation compared with ACO/PSO 2. The 

ACO/GA obtains the lowest results in 11 datasets 

compared with the ACO/SA. Table 5 shows that the 

ACO/GA achieves the best results for model size in 11 

datasets compared with the ACO/PSO 2. By using the 

same token, the ACO/GA achieves the best results in 11 

datasets compared with the ACO/SA. Furthermore, the 

results obtained by the ACO/GA outperform other 

hybrid classifiers in all benchmark scenarios. This result 

is due to the enhancement by using the concepts of 

multi-neighbourhood structure in GA (i.e., crossover and 

mutation) to overcome the local optima and find the best 

classification rules from the dataset. 

Table 6 and Fig. 5 and 6 show the results of the 

nonparametric Friedman test with Holm’s post-hoc test 

in the second scenario. This scenario determines the 

average classification accuracy rank, average number of 

discovered rule rank and average model size rank of the 

statistical results, which are reported in Table 6, across 

the 12 datasets. Figure 5 displays the results of the 

average classification accuracy rank versus the average 

number of rule rank. Figure 6 presents the results of the 

average classification accuracy rank versus the average 

model size rank. In all cases, the lowest rank indicates a 

good algorithm performance.  

 

Table 3: Classification accuracy result (average+/−standard deviation) obtained using 10-fold-cross-validation for all the classifiers 

Dataset ACO/PSO 2 ACO/SA ACO/GA 

Scale Balance  68.66+/-4.97 71.04+/-3.91  71.22%+/-2.31% 

Ljubljana Breast Cancer  70.94+/-5.37 72.39+/-9.09  73.06%+/-2.01%  

Wisconsin Breast Cancer  93.86+/-4.56 96.14+/-2.93  95.57%+/-0.84% 

CreditA  84.69+/-4.39 85.80+/-2.58  86.52%+/-1.22% 

Diabetes Data 76.31+/-4.32 76.70+/-4.11  77.72%+/-1.48% 

Cleveland Heart disease 78.51+/-6.16 81.78+/-7.29  81.34%+/-2.1%  

Statlog Heart disease 78.89+/-7.78 81.11+/-9.14  81.48%+/-1.56%   

Iris dataset 94.0+/-8.14 93.33+/-8.43  96%+/-1.09%  

Medical Lymphography  77.19+/-12.59 78.29+/-6.88  80.26%+/-3.03% 

Mushroom Data 100.0+/-0.0 99.01+/-2.55  98.52%+/-0.14%  

Segment Data 82.08+/-4.64 92.42+/-1.60  92.56%+/-0.67%     

Vehicle Data 60.64+/-5.18 69.98+/-4.04  64.64%+/-2.13% 

 
Table 4: Number of rules result (average+/−standard deviation) obtained using 10-fold-cross-validation methods for all the 

classifiers 

Dataset ACO/PSO 2 ACO/SA ACO/GA 

Scale Balance  22+/-0  19.20+/-1.72  8.9+/-0.03 

Ljubljana Breast Cancer  11.3+/-2.05  16.40+/-1.02   9.2+/-0.42  

Wisconsin Breast Cancer  9.9+/-1.37 11.90+/-0.83   8.5+/-0.17  

CreditA 20.1+/-1.37 20.40+/-2.33  13.8+/-0.66  

Diabetes Data 37.1+/-2.23 29.30+/-1.10  16.4+/-0.69  

Cleveland Heart disease 10.6+/-1.42 12.80+/-0.87  9.5+/-0.34  

Statlog Heart disease 9.7+/-1.70 12.50+/-1.12   8.8+/-0.43  

Iris dataset 4.7+/-0.48 4.70+/-0.46  4.3+/-0.22 

Medical Lymphography  15.4+/-1.34 7.90+/-0.83 8.4+/-0.27 

Mushroom Data 17.6+/-1.42  24.90+/-1.76  7+/-0.11 

Segment Data 33.2+/-4.36 57.60+/-2.42  27.3+/-0.4  

Vehicle Data 30.5+/-3.5 41.30+/-1.35  23.7+/-0.92 



Hayder Naser Khraibet AL-Behadili et al. / Journal of Computer Science 2020, 16 (7): 1019.1028 

DOI: 10.3844/jcssp.2020.1019.1028 

 

1026 

Table 5: Model size result (average+/−standard deviation) obtained using 10-fold-cross-validation method for all classifiers  

Dataset ACO/PSO 2 ACO/SA ACO/GA 

Scale Balance  52+/-0 42.90+/-5.15   13.4+/-0.16 

Ljubljana Breast Cancer  26.8+/-6.196 33.20+/-3.74  16.1+/-0.81 

Wisconsin Breast Cancer  17.1+/-2.42 18.90+/-2.02 10+/-0.52 

CreditA 70.6+/-7.6  53.50+/-8.88  26.5+/-2.11 

Diabetes Data 112.5+/-9.312 65.70+/-3.90 27.8+/-1.79 

Cleveland Heart disease 28.3+/-4.347  29.10+/-3.53  20.5+/-1.34 

Statlog Heart disease 25.9+/-4.30 27.60+/-3.98  18.4+/-1.59 

Iris dataset 3.3+/-0.94 4.80+/-1.08   3.8+/-0.44 

Medical Lymphography  42.8+/-6.48 16.50+/-2.97   17.7+/-0.87 

Mushroom Data 33.4+/-2.87 37.00+/-2.90   7.1+/-0.1 

Segment Data 59.3+/-7.9 121.60+/-5.97  42.9+/-1.25 

Vehicle Data 98.2-11.85 116.80+/-7.14  60.2+/-2.84 

 

Table 6: Results of the non-parametric Friedman test with Holm post-hoc test based on average performance rank on all datasets 

  ACO/PSO 2 ACO/SA ACO/GA 

Accuracy 2.75 1.83 1.42 

Rule 2.29 2.63 1.08 

Terms 2.25 2.58 1.17 

 

 
 

Fig. 5: Results of ACO/GA on the average classification accuracy rank versus the average number of discovered rule rank 

 

 
 

Fig. 6: Results of ACO/GA on the average classification accuracy rank versus the average model size rank 

A
v

er
ag

e 
cl

as
si

fi
ca

ti
o
n

 a
cc

u
ra

cy
 r

an
k

 3.00 

 
2.50 

 
2.00 

 
1.50 

 
1.00 

1.00 1.50 2.00 2.50 3.00 

Average number of rules rank 

ACO/PSO 2 ACO/SA ACO/GA 

A
v

er
ag

e 
cl

as
si

fi
ca

ti
o
n

 a
cc

u
ra

cy
 r

an
k

 3.00 

 
2.50 

 
2.00 

 
1.50 

 
1.00 

1.00 1.50 2.00 2.50 3.00 

Average model size rank 

ACO/PSO 2 ACO/SA ACO/GA 



Hayder Naser Khraibet AL-Behadili et al. / Journal of Computer Science 2020, 16 (7): 1019.1028 

DOI: 10.3844/jcssp.2020.1019.1028 

 

1027 

Figure 5 and 6 show that the results obtained by our 

proposed ACO/GA classifier dominate the other two 

classifiers. Therefore, the ACO/GA dominates the 

hybridisation with Ant-Miner classifier in all evaluation 

criteria. This result is due to the enhancement process 

achieved by the GA algorithm to the classification rule 

discovered by the Ant-Miner classifier. GA uses the 

multiple neighbourhood structures (i.e., crossover and 

mutation) procedures to escape from local minima. 

Conclusion 

This study proposes a hybrid Ant-Miner classification 

algorithm with GA (ACO/GA) classifier. The proposed 

classifier improves the classification accuracy, the number 

of discovered rules and classification complexity. The 

intensification of GA is used to improve the local 

exploitation of Ant-Miner search. GA uses three 

components, that is, (i) rule mutation to create a new 

starting rule from the best-found rules; (ii) crossover to 

find the best improvement in neighborhood structures; and 

(iii) acceptance criterion to accept or reject the current 

accuracy improvement of the generated rule. This type of 

local search assists the Ant-Miner to enhance the 

exploitation by focusing on promising areas of the search 

space. The classification performance of the proposed 

classifier is tested against other hybridization ant-mining 

classifiers (i.e., ACO/SA and ACO/PSO2) by using 10-

fold cross validation on 12 datasets from UCI. The 

results of the proposed classifier outperform the other 

classifiers in all evaluation criteria. In future work, the 

application of this classifier can be observed by real-

world applications in various domains, such as DNA 

sequence classification, medical diagnosis, credit scoring 

and text mining. These real-life applications can provide 

extensive knowledge in the behavior and performance of 

the proposed classifier. Another research direction is that 

other stochastic local search algorithms (e.g., randomized 

iterative improvement, iterated greedy and evolutionary 

algorithms) can be hybridised with Ant-Miner algorithms. 

Funding Information 

The researchers would like to thank the Malaysian 

Ministry of Higher Education for financially supporting 

this research under Grant Scheme 

(TRGS/1/2018/UUM/02/3/3 (S/O code14163). 

Author’s Contributions 

All researchers are contributed in this article equally. 

Ethics 

This article is original and contains unpublished 

material. The corresponding author confirms that all of 

the other authors have read and approved the manuscript 

and there are no ethical issues involved. 

References 

Aarts, E. H. L., Korst, J. H. M., & Laarhoven, P. J. M. 

Van. (1997). Simulated annealing. Local Search in 

Combinatorial Optimization, 27(3), 797–802. 

AL-Behadili, H. N. K. (2018). Intelligent hypothermia 

care system using ant colony optimization for rules 

prediction. Journal of University of Babylon for 

Pure and Applied Sciences, 26(2), 47-56. 

Al-Behadili, H. N. K., Ku-Mahamud, K. R., & 

Sagban, R. (2019). Annealing strategy for an 

enhance rule pruning technique in ACO-based 

rule classification. Indones. J. Electr. Eng. 

Comput. Sci, 16(3), 1499-1507. 

Al-Behadili, H. N. K., Ku-Mahamud, K. R., & Sagban, 

R. A. F. I. D. (2018a). Ant colony optimization 

algorithm for rule-based classification: Issues and 

potential solutions. J. Theor. Appl. Inf. Technol, 

96(21), 7139-7150. 

Al-Behadili, H. N. K., Ku-Mahamud, K. R., & Sagban, 

R. (2018b, April). Rule pruning techniques in the 

ant-miner classification algorithm and its variants: A 

review. In 2018 IEEE Symposium on Computer 

Applications & Industrial Electronics (ISCAIE) (pp. 

78-84). IEEE. 

Al-Behadili, H. N. K., Ku-Mahamud, K. R., & Sagban, 

R. A. F. I. D. (2020a). HYBRID ANT COLONY 

OPTIMIZATION AND ITERATED LOCAL 

SEARCH FOR RULES-BASED 

CLASSIFICATION. J. Theor. Appl. Inf. Technol, 

98(04), 657-671. 

Al-Behadili, H. N. K., Sagban, R., & Ku-Mahamud, K. 

R. (2020b). Adaptive Parameter Control Strategy for 

Ant-Miner Classification Algorithm. Indonesian 

Journal of Electrical Engineering and Informatics 

(IJEEI), 8(1), 149-162. 

Blum, C. (2005). Beam-ACO—Hybridizing ant colony 

optimization with beam search: An application to 

open shop scheduling. Computers & Operations 

Research, 32(6), 1565-1591. 

Blum, C. (2008). Beam-ACO for simple assembly line 

balancing. INFORMS Journal on Computing, 20(4), 

618-627. 

Blum, C., Vallès, M. Y., & Blesa, M. J. (2008). An ant 

colony optimization algorithm for DNA sequencing 

by hybridization. Computers & Operations 

Research, 35(11), 3620-3635. 

Di Caro, G., & Dorigo, M. (1998). AntNet: 

Distributed stigmergetic control for 

communications networks. Journal of Artificial 

Intelligence Research, 9, 317-365. 

Dorigo, M., & Stützle, T. (2004). Ant Colony 

Optimization. Cambridge, MA, USA: MIT Press. 



Hayder Naser Khraibet AL-Behadili et al. / Journal of Computer Science 2020, 16 (7): 1019.1028 

DOI: 10.3844/jcssp.2020.1019.1028 

 

1028 

Dorigo, M., & Stützle, T. (2010). Ant Colony 

Optimization: Overview and Recent Advances. In 

Handbook of Metaheuristics (Vol. 146, pp. 227–

264). Springer US. 

Dua, D., & Karra, T. (2017). UCI Machine Learning 

Repository. http://archive.ics.uci.edu/ml 

Holden, N., & Freitas, A. A. (2008). A hybrid PSO/ACO 

algorithm for discovering classification rules in data 

mining. Journal of Artificial evolution and 

Applications, 2008. 

Jabbar, A. M., Ku-Mahamud, K. R., & Sagban, R. (2018, 

April). Ant-based sorting and ACO-based clustering 

approaches: A review. In 2018 IEEE Symposium on 

Computer Applications & Industrial Electronics 

(ISCAIE) (pp. 217-223). IEEE. 

Jabbar, A. M., Ku-Mahamud, K. R., & Sagban, R. 

(2019a). Modified ACS Centroid Memory for Data 

Clustering. J. Comput. Sci, 15(10), 1439-1449. 

Jabbar, A. M., Sagban, R. A. F. I. D., & Ku-Mahamud, 

K. R. (2019b). BALANCING EXPLORATION 

AND EXPLOITATION IN ACS ALGORITHMS 

FOR DATA CLUSTERING. J. Theor. Appl. Inf. 

Technol, 97(16), 4320-4333. 

Jabbar, A. M., Ku-Mahamud, K. R., & Sagban, R. (2020). 

An improved ACS algorithm for data clustering. 

Indonesian Journal of Electrical Engineering and 

Computer Science, 17(3), 1506-1515. 

Kanan, H. R., Faez, K., & Taheri, S. M. (2007, July). 

Feature selection using ant colony optimization 

(ACO): a new method and comparative study in the 

application of face recognition system. In Industrial 

Conference on Data Mining (pp. 63-76). Springer, 

Berlin, Heidelberg. 

López-Ibáñez, M., Stützle, T., & Dorigo, M. (2016). Ant 

colony optimization: A component-wise overview. 

Handbook of heuristics, 1-37. 

Martens, D., Baesens, B., & Fawcett, T. (2011). Editorial 

survey: swarm intelligence for data mining. 

Machine Learning, 82(1), 1-42. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parpinelli, R. S., Lopes, H. S., & Freitas, A. A. (2002). 

Data mining with an ant colony optimization 

algorithm. IEEE transactions on evolutionary 

computation, 6(4), 321-332. 

Raymer, M. L., Punch, W. F., Goodman, E. D., Kuhn, L. 

A., & Jain, A. K. (2000). Dimensionality reduction 

using genetic algorithms. IEEE transactions on 

evolutionary computation, 4(2), 164-171. 

Ripon, S. H. (2019, February). Rule induction and 

prediction of chronic kidney disease using boosting 

classifiers, Ant-Miner and J48 Decision Tree. In 

2019 International Conference on Electrical, 

Computer and Communication Engineering (ECCE) 

(pp. 1-6). IEEE. 

Robu, R., Vaçar, C., Robu, N., & Holban, Ş. (2015, 

July). A study on Ant Miner parameters. In 2015 6th 

International Conference on Information, 

Intelligence, Systems and Applications (IISA) (pp. 

1-11). IEEE. 

Sagban, R., Ku-Mahamud, K. R., & Abu Bakar, M. S. 

(2016). Reactive max-min ant system with recursive 

local search and its application to TSP and QAP. 

Intelligent Automation & Soft Computing, 23(1), 

127-134. 

Sagban, R., Ku-Mahamud, K. R., & Bakar, M. S. A. 

(2017, May). Unified strategy for intensification and 

diversification balance in ACO metaheuristic. In 

2017 8th International Conference on Information 

Technology (ICIT) (pp. 139-143). IEEE. 

Saian, R., & Ku-Mahamud, K. R. (2012, March). Ant 

colony optimization for rule induction with 

simulated annealing for terms selection. In 2012 

UKSim 14th International Conference on Computer 

Modelling and Simulation (pp. 33-38). IEEE. 

http://archive.ics.uci.edu/ml

