

 © 2019 Noura Hoshieah, Samer Zein, Norsaremah Salleh and John Grundy. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

A Static Analysis of Android Source Code for Lifecycle

Development Usage Patterns

1
Noura Hoshieah,

2
Samer Zein,

3
Norsaremah Salleh and

4
John Grundy

1Software Engineering Master Program, Birzeit University, Birzeit, Palestine

2Department of Computer Science, Birzeit University, Birzeit, Palestine
3Department of Computer Science, International Islamic University, Kuala Lumpur, Malaysia
4Faculty of Information Technology, Monash University, Clayton, Australia

Article history

Received: 26-11-2018

Revised: 28-12-2018

Accepted: 05-01-2019

Corresponding author:

Noura Hoshieah

Software Engineering Master

Program, Birzeit University,

Birzeit, Palestine
Email: noura.hoshieah.1@gmail.com

Abstract: Building robust Android apps is a non-trivial task that requires

skilled developers to understand various Android platform peculiarities.

However, among the Android developers community, a large fractions are

considered to be novice and inexperienced developers. One of the main

peculiarities in the Android app development is the activity lifecycle

model. A developer needs to have deep understanding of the different

lifecycle states and callback methods that an Android activity can go

through during its runtime. These callback methods are called by the

system whenever an app activity changes its state. The developer needs to

override appropriate callback methods correctly to avoid app memory

leaks and data loss or other phone resource compromise. Detailed static

analysis of software applications provides actionable insights and helps us

to understand how applications are actually built. Although there have

been many studies focusing on static analysis of Android apps in the areas

of testing, quality, design, privacy and security; no studies to date focus

on lifecycle development practices and usage patterns thus far. In this

paper, we analyzed 842 open-source Android apps containing 5577

activities to explore and understand how Android developers actually

comply with best practices regarding the Android activity lifecycle

model. We developed a tool named SAALC that is capable of analyzing

Android activities and extracting valuable information about lifecycle

callback methods usage. Our results show, which callback methods are

implemented and the nature of the code they contain. The results also

show incorrect implementation of the callback methods and incorrect

acquiring and releasing of system resources in many Android apps and we

argue that a relatively large fraction of Android developers do not

sufficiently well understand the app lifecycle model. We also discuss our

results in comparison to the Android app lifecycle model best practices.

Keywords: Android, Activity Lifecycle, Static Analysis, Application,

Mobile Apps

Introduction

Mobile applications (apps) usage has increased

exponentially with millions of apps being available at the

online stores (Wasserman, 2010). Nowadays, users rely

on mobile apps to deliver their daily tasks. Indeed,

mobile apps cover various fields such as social, business,

health, productivity and gaming to mention a few

(Dehlinger and Dixon, 2011). Moreover, mobile devices

offer the same functionality as PC through wireless, web

browsers, video and audio. At the same time, the mobile

app development is not a trivial task and has its own

challenges (Zein et al., 2017).

Android is the most common mobile platform in

use and the most popular mobile open source

Operating Systems (OS) in the mobile apps market

(Lamba et al., 2015). Industrial analysts expect that

the Android platform will remain the dominant mobile

vendor for many years to come. Google Play is the

main online store providing Android apps. Since the

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

93

Android first release in 2008, developers have been

heavily contributing in developing new apps that

facilitate various user needs. As a result, In April 2017, the

number of available Android apps has exceeded 2.8

millions (Wasserman, 2010; Number of apps, n.d.).

Further, the number of worldwide downloaded Android

apps from Google play was estimated in billions in 2016

to 2017 (Number of apps, n.d). Accordingly, the

complexities of mobile apps increase to fulfill a variety of

functionality and features.

Mobile app development is different than other

traditional web and desktop paradigms. Developers face a

new set of challenges, including developing apps for

different platforms (iOS and Android), handling the issues

of OS and hardware fragmentation and managing app

lifecycle conformance (Joorabchi et al., 2013; Zein et al.,

2016; Franke et al., 2011; 2012). Even though much

research has been directed to address some of these

challenges, little research has been done in the area of

lifecycle conformance.

When developing for Android, activities represent the

User Interface (UI) and each activity goes through

different states during its lifecycle. These states are

running, paused, stopped and shutdown. Each activity

makes transitions between these states due to some

events, such as receiving an incoming call, by calling a

specific callback method (Joorabchi et al., 2013).

Android developers need to have good understanding of

the lifecycle model in order to develop apps that function

correctly (Franke et al., 2011; 2012; Zein et al., 2017).

Google documentation provides narrative information

about the lifecycle model to assist developers in building

robust apps (Franke et al., 2011). However, a large

fraction of Android developers are known to be novices

and amateurs who may not properly understand or

follow the lifecycle model and will end up with

unreliable and faulty apps (Zein et al., 2017).

Additionally, there are as yet no automated testing tools

available for Android that enable developers to fully

check the correctness of the app adherence to the

lifecycle model (Zein et al., 2017).

This study aims to explore how android app

developers actually utilize the lifecycle callback

methods. More specifically, we aim at analyzing

Android open-source apps to reveal how these apps

are built in terms of lifecycle callback methods and

the utilization of system resources such as memory,

Camera, GPS, Sensors, etc. Analyzing Android app’s

source code is a popular recent topic (Panichella et al.,

2015) and provides good insights about how these

apps are developed and structured (Haotian and Shu,

2013). For instance, this analysis helps increase the

quality of app code and improve reliability and

performance of the software (Haotian and Shu, 2013;

Danphitsanuphan and Suwantada, 2012). Another

example is rule mining (Khatoon et al., 2011). Rule

mining aims to extract hidden rules from existing

project in order to improve new development projects

(Khatoon et al., 2011). Further, rule mining has been

used in automated defect detection for complementing

the compiler work and this is done through analyzing

the source code to find the most common bugs

(Panichella et al., 2015; Khatoon et al., 2011). Indeed,

analyzing the source code gives more insights and

helps the research community and the software industry

to understand how developers actually code their apps.

In other cases, it can be useful to understand the

architecture of the app and consequently to reduce the

development time and programming effort (Haotian

and Shu, 2013; Khatoon et al., 2011). Other benefits

of analyzing source code include identification and

elimination of security vulnerabilities in software

(Ramos, 2016) and providing statistical measures

about the code complexity and quality, such as

numbers of methods, attributes, parameters, children,

line of codes, depth of inheritance, algorithm

complexity, coupling and coherence, etc

(Danphitsanuphan and Suwantada, 2012).

Although there are a lot of studies focusing on

analyzing Android source code insights and usage

patterns in different fields such as testing; quality;

design; privacy and security, to our knowledge, there

have been no studies to date focusing on analyzing

Android source code for lifecycle adherence. To address

this, we conducted a quantitative study to analyze

Android source code. The main aim of our study is to

explore how real Android developers develop their apps

in terms of usage of lifecycle callback methods. To

achieve this, we analyzed 842 open-source Android apps

containing 5577 activities. These apps were downloaded

from the FDriod repository. Our dataset includes

different apps with varying code sizes and from different

categories such as Gaming, Navigation, Internet,

Multimedia, etc. We built a statistical analysis tool called

SAALC which is able to analyze and extract all data

related to activity lifecycle callback methods. The

resulting statistics reveal the usage of callback methods

and where system resources, such as camera, Bluetooth,

GPS, etc., are acquired and released among other

important information. Also, we analyzed the nature of

code implemented inside these callback methods to

understand for what they are used.

More specifically, the results show that the

onCreate() callback method is the one that is mostly

utilized (92%) among all activities. On the other hand,

the onRestart() and onStart() callback methods are about

1% and 6% respectively. Further, the onDestroy() and

onStop() have 14% and 6% usage respectively (Number

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

94

of apps,n.d.). We also found that the average percentages

of wrongly acquired and wrongly released system

resources are about 20% and 8% respectively. Such

results enable us to better understand more how Android

developers utilize lifecycle callback methods. Our study

makes the following key contributions:

• We developed a tool named SAALC for analyzing

Android activity lifecycle files generated statistics

about each callback method used

• We conducted the first detailed study to explore how

Android developers utilize activity lifecycle

callback methods

• We generated app lifecycle adherence statistics

about acquiring and releasing of system resources

during the lifecycle of Android apps from a large

corpus of open source Android apps

• We identified where improvements or alterations are

required into aid developers

The structure of the remainder of this paper is as

follows. In section 1, we show a brief background about

Android and activity lifecycle and the most research and

related work for our study. Section 2 explains our study

design which includes the research questions, data

collection method and basic statistics of our collected

data. Also, we show our proposed tool and algorithms

which called SAALC. Section 3 present s the results of

current state of Android lifecycle callback methods and

system recourse usage. We discuss the results of the

study in section 4.

Background and Related Work

In Android development, the “app lifecycle” can

be defined as the different activity states and the

transitions between them during the runtime of an

Android activity (Franke et al., 2012). Every Android

app consists of one or more activities which manage

the behavior of the app. Each activity has its own

lifecycle. When an activity is first run till the moment

it is released and destroyed by the system, it passes

through different states. Whenever an activity goes

into a new state, a special callback method is called

by the system. The developers respond to state

transitions by overriding relevant callback methods.

This event-driven behavior model is well-known to be

challenging to manage when many activities are

created or when activities go through complex sets of

transitions.

As with other mobile platforms android cannot

preserve the state of an app during lifecycle changes

due to the lack of system resources (Franke et al.,

2012). Thus the developers themselves must ensure

that no data is lost when the state changes (Franke et al.,

2011; Zein et al., 2017). An activity changes its state

due to some event such as the mobile phone receiving

an incoming call, a user interaction event, or starting

another activity to mention a few. Mobile operating

systems such as Android are very efficient when

dealing with the device resources such as memory,

CPU and battery (Franke et al., 2012). Thus, the

Android OS may swap out or kill an activity without

saving its current state in case of lack of resources

(Franke et al., 2012). It is the developer’s job to make

sure the app conforms correctly to the lifecycle model

(Franke et al., 2012).

When activity callback methods are executed, the

activity state will change and the control return to the

system (Franke et al., 2011; 2012). Developers must follow

Android lifecycle model documentation offered by the

Android vendor (Franke et al., 2012). The Google official

website is the main portal for the Android developer, it

contains the guidelines of the Android development model

lifecycle and documentation (Zein et al., 2017). The

Android activity lifecycle model shown in Fig. 1 from

the Android Developers Guide (Zein et al., 2017). An

activity can be at one of the following states (Franke et al.,

2011; Zein et al., 2017):

• Created: When the activity is first created and initiated

• Started: Activity is ready

• Resumed: Activity is ready and in the foreground,

the user can start interacting with it

• Paused: when anther activity obscured the running

activity (Franke et al., 2011)

• Stopped: when the activity is not visible on screen and

running in the background, it will stay in the memory

• Destroyed: Activity is removed from the memory

and lo longer exists (Franke et al., 2011)

In Fig. 1, the ellipse shape represents activity state

while the arrows illustrate lifecycle callback methods,

which the developer should override (Franke et al.,

2011). Note that the activities will not stay on created,

started, paused states for a long time because it passes

them quickly (Franke et al., 2011; Zein et al., 2017).

However, researchers have found errors commonly

occurring in the transitions between the states in the

official model shown at Fig. 1. For instance, the study

by (Franke et al., 2011) reversed-engineer the

lifecycle of Android activities using assertion-based

test cases. The results of their study show that the

onStop() and onDestroy() callback methods are not

guaranteed to be called by the system when the

system is very low on resources. Thus, an activity

may be destroyed and removed from memory without

executing the code written inside onStop() and

onDestroy() callback methods.

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

95

Fig. 1: Android activity lifecycle model (Franke et al., 2011)

Zein et al. (2017) developed an automated testing

tool called Android Lifecycle Inspector (ALCI) to check
if system resources such as camera, GPS, sensors, etc.,
are correctly acquired and released by developers. This
tool helps novice developers to build more robust mobile
apps. The approach is based on mobile software model
to extract lifecycle system resources rules and create

repositories for these resources. ALCI approach analyzes
the source code of an application against rule models to
verify that the developer has been correctly initiated and
release an application system resources. Also, ALCI
generates a report notification of incorrect system
resource for the developer. Bartel et al. (2014) presented

a test suite approach using taint-based static analysis
called FLOWDROID for evaluating the effectiveness
and accuracy of Android apps and it take in the
consideration Android lifecycle and callback methods
challenges. In our study, we take in consideration the
issues and problems presented by (Franke et al., 2011).

Android static analysis has become a popular

research topic. Lamba et al. (2015) proposed an

approach of analyzing and mining 1,120 android source

code applications from F-Driod using Java parser to

extract API Call Usage Patterns (ACUP), methods,

classes, interfaces and packages information to show

the developer styles and feedback of using android

platforms in the mobile application for the new

developers. Batyuk et al. (2011) proposed a static

analysis service that is able to assess the apps market and

provide a user with a detailed report on the security and

privacy insight level inside an app. It offers the user the

ability to mitigate the malicious code and security threats

inside the app. Schmidt et al. (2009) suggested a static

analysis for Android executable which locate inside a

lunix system (ELF file inside/bin) using a command

readelf in order to extract the functions calls and

compare them with a malware executable to detect them

using three simple classifiers. Payet and Spoto (2012)

used the Julia static analyzer for Java byte code inside

Android apps to ensure that the apps doesn’t contain

programming bugs. Bartel et al. (2014) proposed an

automatic static analyzer called SCANDAL and used it

to analyze 90 Android apps in order to detect privacy

leaks. Zhongyang et al. (2013) suggested alarm attack

called DroidAlarm which used static analysis and able to

parse for sensitive permissions and public interfaces for

identifying potential capability leaks for Android apps.

Feng et al. (2014) showed an approach called

Apposcopy which uses a taint static analysis and

represent Android code in Inter-Component Call Graph

to detect control and flow of data that causes a malware.

Desnos (2012) presented a static analysis algorithm

which based on a customized similarity distance to

decide if the developer protect them app from piracy and

identify code updates and releases to find dissimilarities

between versions of an app.

The above studies signify a growing interest in the

software engineering research community to analyze

Android source code apps. However, to our best

knowledge, there are no studies so far that analyze

Android apps for their lifecycle usage and conformance

except one study for Zein et al. (2017) which used

analysis for testing lifecycle conformance. However, in

this study, we fill this gap by presenting the analysis of

Android lifecycle activities on a large number of open

source apps and describe how Android developers

utilize lifecycle callback methods and the system

resources acquired/released.

Study Design

We first present the key research questions

investigated in this study. We also present information

about our data set.

Resumed

(visible)

onResume() onPause()
onResume()

Started

(visible)

Paused

(partially visible)

onStart()
onStart()

onStop()

onRestart()

onCreat() onDestory()

Stopped

(hidden)
Created

Destroyed

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

96

Research Questions

After analyzing 5000+ activities from various

Android apps, we wanted to know how callback methods

are typically utilized by developers. We developed a set

of research questions to help us to understand the

activity lifecycle practices commonly followed by real

Android developers. First, we want to understand the

usage of lifecycle callback methods in Android

activities. This leads us to our first research question:

RQ1: To what extent Android developers utilize the

lifecycle callback methods in developing mobile

apps?

Similar to the first RQ, we are also motivated to

analyze the source code related to activities and collect

statistics about main system resources management, such

as camera and Bluetooth, GPS, sensors, etc. We want to

know whether Android developers acquired and released

these system resources correctly as compared to the

standard Google documentation. Thus, our second

research question is:

RQ2: Do Android developers correctly acquire and

release the Android system resources?

In the third RQ, we aim to analyze all activities to
better understand the nature of code implemented inside

the key onPause(), onStop() and onDestroy() callback
methods. We decided that the nature of this code
includes three categories - releasing, database or
threading actions. According to the Android
documentation site the database and threading actions
are considered as long running code (Activity android

developers, n.d.). Accordingly, this question will give us
some statistics about how the developer uses these
callback methods and, if they implemented a long
running code approach or not:

RQ3: What is the nature of the code implemented inside

onPause(), onStop() and onDestroy() callback

methods? In order to answer these questions, we

divided our work into four phases. Firstly, we built a

statistical analysis tool which is able to read and

analyze Android source code. Secondly, we

generated usage statistics about the override

callback methods. In the third part, we generated

statistics about system resource management. In the

last phase, we collected information about the nature

of code inside important callback methods namely

onPause(), onStop() and onDestroy(). We present

our research results in section 5.

Data Collection

We collected URLs of all apps stored on the F-Droid

repository and selected apps that are hosted on GitHub.

F-Droid is a popular platform and online software

repository which contains open source code for a very

diverse range of Android apps. Each app in F-Droid is

also available on Google play (FDroid, n.d.). F-Droid

was selected because it provides useful categorizing and

classification of the Android apps. This classification

will be used to help us when analyzing Android apps

according the category type of the app. As of Dec 8,

2016, there were 2001 apps in the F-Droid repository

(and 1420 also on Google Play) organized into 17

categories (FDroid, n.d.). The apps were downloaded

manually from their individual pages. In total, we

have 842 apps in our data set from 17 categories. We

manually checked the manifest XML file for each app

and collected all activity files. In total, we have 5577

activities extracted from 842 Android apps as shown

in Table 1.

The data shown in Table 1 indicates that the

system category has the largest number of apps

(Apps) which is equal to 265 in the F-droid data set;

followed by multimedia (242) and Internet category

(221). The largest number of activities (Activity) is

found in the internet category (952) then Science and

Education (624) category. Figure 2 shows a Pareto

chart that shows our data set with a graphical

distribution using a combination of a line and bar

chart. The bar chart represents the cumulative total

#Activity across each category while the line graph

shows the cumulative percentage of apps. The Pareto

chart reveals that 57% of activities in the data set

belong to 29% of the categories inside the first five

categories which are internet, science and education,

multimedia, games and navigation.

SAALC Architecture and Implementation

To assist us with our static analysis work we
developed a new tool called Static Analysis of
Android Lifecycle (SAALC). SAALC is able to read a
data set of Android activities that is written in the
Java programming language. SAALC is the first tool
that analyzes a dataset of Android source code to
extract information related to activity lifecycle
callback methods. Figure 3 shows a block diagram of
the main components of SAALC as well as the
approach of the analysis process.

SAALC includes the following key components:

• Java Parser component: This is an open source and

free parser available at GitHub. It is used to parse

and convert Android source code into AST object

model (Abstract Syntax Tree). The AST object

model contains a list of imported packages, methods

and fields declarations for each class of a source

code to mention a few. We used these declarations in

the analysis of Android activities. Using an import

package declaration, we can get a name of the

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

97

package that declared in the class. Additionally, using

a field declaration, we can get the field name and its

type. Additionally, using the method declaration, we

can get a method name and its body contents

• Android Source Codes Reader component: This

component reads a data set of Android’s activities.

• Output Report component: Produces output reports

in CSV (Comma Separated Values) file format.

• Resource List component: Produces a list of resources

• Resource DB component: Resources information in

an XML file

• Analyzer component: The main that applies two

handling algorithms. State Analyzer: Inspects data

set source code to collect statistics about callbacks

methods and the natures of code inside them.

Resource Analyzer: Inspects data set source code to

collect statistical information about managing

system’s resources

Fig. 2: Distribution of activities on data set across the 17 categories

Fig. 3: Structure diagram of SAALC

17% C
u
m

u
la

ti
v
e

#
ac

ti
v
it

y

1000

900

800

700

600

500

400

300

200

100

0

120

100

80

60

40

20

0

C
u
m

u
la

ti
v
e

p
er

ce
n
ta

g
e

28%
38%

45%
52%

58%
64%

70%
75% 79%

83%
88% 92% 95% 98% 99% 100%

In
te

rn
et

S

ci
en

ce
 a

n
d
 e

d
u
ca

ti
o
n

M
u
lt

im
ed

ia

G
am

es

N
av

ig
at

io
n

R
ea

d
in

g

T
im

e

S
y
st

em

M
o
n
ey

S

p
o
rt

s
an

d
 h

ea
lt

h
y

W
ri

ti
n
g

C
o
n
n
ec

ti
v
it

y

S
ec

u
ri

ty

D
ev

el
o
p
m

en
t

P
h
o
n
e

an
d
 S

M
S

T

h
em

in
g

G
ra

p
h
ic

s

Categories #Activity Cumulative percentage

Resource

DB

Resource reader Read

Resource list

Analyze

Use

Read

Produce

Java parser Analyzer

Android source

codes reader

Output report

State analyzer Resource analyzer

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

98

Table 1: Distribution of the data set over the app categories

 #App

Category #APP Downloaded #Activity

System 265 78 325

Multimedia 242 104 532

Games 221 93 422

Internet 217 122 952

Navigation 135 58 370

Science and Education 118 45 624

Theming 108 26 94

Reading 104 40 347

Time 104 55 328

Writing 94 37 242

Development 92 28 182

Connectivity 84 51 236

Security 68 32 215

Phone and SMS 53 15 159

Money 40 26 266

Sports and Health 35 23 247

Graphics 21 9 36

Total 2001 842 5577

The key processing steps of our approach are as

follows:

• First, SAALC reads the system resources

information from the repository using Read

Resource component, then produces a list of

resources using Resource List component

• Secondly, The Java Parser component parses

Android source code and produces the detailed AST

object model

• Then, using the resulting object model produced by

Java Parser, SAALC applies two analysis

algorithms. The State Analyzer is responsible for

collecting information about each callback method

such as the count of each callback method and the

nature of code inside them. The Resource Analyzer

inspects the source code against the system

resources list

• Finally SAALC produces a results report in CSV

file format using the Output Report component

We stored the system resources using the Resource

DB component in an XML repository. We chose 9

system resources to track and analyze including Camera,

USB, Sensor, Network, Input, GPS, Database, Bluetooth

and Audio. For each of these system resources, we

stored the resource name, package name, the name of

acquiring and releasing methods and the name of

callback methods which used to acquire and release the

resource. All the above information is taken from the

official Google Android site (Activity android

developers, n.d.). Table 2 shows a sample repository

information for Camera resource.

The analysis algorithms are able to analyze the

common coding patterns applied by developers. Below

are the common coding patterns is used by developers

according to the study by (Zein et al., 2017):

• Developer calls the acquired or release method

directly inside callback method block

• Developer calls another method or nested methods

inside a callback method which in turn calls the

acquired or release method

• Developer calls the acquired or release method

inside if, while, for, switch, try catch, threads or

object block statements which are inside the

callback method or other nested methods

Additionally, during our study, we found that in

some cases the developers did not acquire or release

system’s resource inside callback methods. Instead,

they manage system resources inside the event

handlers. Accordingly, we analyzed Android source

code against these events.

These events include methods which were overridden

in the activity source code and did not a callback

method. We refer to these event methods in the Results

Section using the ”OTHER” keyword.

The outline of our two analysis algorithms are

described as follows:

State Analyzer Algorithm:

The proposed algorithm for State Analyzer can be

described in pseudo-code as shown in as follows:

• Algorithm Input: List of all activities source code

in our dataset

• Algorithm Output: A report result in CSV.

Algorithm basic steps:

1. Load a list of activities source code

2. For each activity in the list of activities, parse and

traverse the activity source code into AST. Then,

analyze the source code to find and count the

occurrences of the callback methods which were used

3. If onPause(), onDestroy() or onStop() callback

methods were founded in the source code, then

analyze the nature of code inside each of them

related to releasing, database or threading actions

Resource Analyzer Algorithm

The proposed algorithm for Resource Analyzer can

be described in pseudo-code as shown in as follows:

• Algorithm Input: List of all activities source code,

List of system’s resources information

• Algorithm Output: Reports result in CSV

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

99

Table 2: Camera resource information

 Name of acquiring Name of releasing Name of acquire Name of release

Resource name Package name method method callback method callback method

Camera Camera open(), release(), onResume() onPause()

 startPreivew() stopPreview()

 Camera2 open(), release(),

 startPreivew() stopPreview()

 CameraManager openCamera() release()

 CameraDevice openCamera(), release(),

 onOpened() onClosed()

Algorithm basic steps:

1. Load a list of activities source code and list of

resource information. This includes all resource

names, package names, names of acquiring and

releasing methods

2. For each activity in the list of activities, parse and

traverse the activity source code into AST

3. For each system resources such as Camera, GPS

etc, analyze the source code of each activity to

find in any methods (callback or OTHER

methods) where this resource has been acquired

and released

Results

In this section, we present the results of our study

after analyzing the data set. The results are divided

into three parts as shown in subsections below. The

first part is for callback methods usage counts; the

second part is for system resource management; and

the third for the nature of code inside some of the

most important callback methods; namely, onPause(),

onStop() and onDestroy().

Part I: Usage of Callback Methods

In the first stage of analysis, we counted the totals

of each callback method for the 5577 activities. We

present the result set in Fig. 4, which shows the

number of each callback method found in the data set.

Figure 4 shows the results of as a Bubble Chart. The

Bubble Chart is based on three dimensions: (i) The

horizontal axis represents the callback methods

names;(ii) the vertical axis represents the counts of

occurrence of each callback method; (iii) the bubble

size indicates the third dimension which represents the

cumulative percentage of callback methods. The

Bubble Chart also shows that the most occurrences

callback method are onCreate() (92%) followed by

onResume() (23%) then onPause() (16%), onDestroy()

(14%), onStart() (6%), onStop() (6%) and the last is

onDestroy() (1%).

Additionally, we show the counts and percentages of

callback methods in relation to the categories of the

Android apps in Table 3. The highest value is (888) 16%

for onCreate() callback method and category Internet

followed by value (550) 10% for onCreate() and

category Science Education and then the value of (514)

9% for onCreate() with category Multimedia. Moreover,

The lowest values are for onRestart() callback method

across all the categories. Finally, the map shows that the

Internet category is the most frequently used for all

callback methods.

Acquiring and Releasing of System Resources

In the second part of our analysis, we present the

occurrence of each system recourse in the 5577 activities

extracted from the selected apps. In order to decide on

the correct/incorrect management of the system

resources, we referred to the Google Android official

documentation (Activity android developers, n.d.).

Google Android documentation provides guidelines

about system resource usage and any callback method

that is responsible for acquiring or releasing the

resources (Activity android developers, n.d.).

The distribution of callback methods is shown in

Fig. 5 as a Column Chart. It shows the number of

occurrence of each system’s resource founds in the

data set. We implement the analyzer over nine

resources which are Camera, Audio, Bluetooth,

SQLite Database, GPS, Input, Network, Sensor and

USB. The results show that the total number of the

resource used is (178) 3% over 5577 activities. Also,

it shows that the Database occurrence equals to 52

(0.93%), so it is the most popular system’s resource

used by developer followed by Sensor (0.46%) then

Camera (0.37%), USB (0.34%), Input (0.32%), Audio

(0.26%), Network (0.23%), GPS (0.16%) And,

Bluetooth (0.08%) is the lowest popular resource.

Additionally, we present the occurrences for system

resources in relation to the categories of the Android

apps at Table 4 the highest value is 17 for SQLite

Database resource and category Multimedia followed by

value 14 for USB and category Multimedia and then

value 11 for Sensor, 8 for GPS and category Navigation.

Moreover, the lowest values for Bluetooth resource

across all versions categories. The Table shows that

Multimedia category is the most frequent use of

Database resources.

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

100

Fig. 4: Distribution of callback methods: Bubble chart showing the most popular callback methods over the data set

Fig. 5: Distribution of System Resources: showing the most popular System Resources over the data set

Table 3: Distribution of callback methods in terms of presence of activities

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart()

Connectivity (224) 4% (28) 1% (59) 1% (46) 1% (21) 0% (77) 1% (4) 0%

Development (167) 3% (14) 0% (38) 1% (22) 0% (9) 0% (18) 0% (0) 0%

Games (392) 7% (22) 0% (107) 2% (93) 2% (21) 0% (49) 1% (1) 0%
Graphics (35) 1% (0) 0% (11) 0% (3) 0% (3) 0% (7) 0% (2) 0%

Internet (888) 16% (77) 1% (261) 5% (181) 3% (80) 1% (138) 2% (4) 0%
Money (227) 4% (8) 0% (79) 1% (44) 1% (10) 0% (44) 1% (0) 0%

Multimedia (514) 9% (49) 1% (133) 2% (108) 2% (35) 1% (100) 2% (8) 0%
Navigation (309) 6% (26) 0% (95) 2% (68) 1% (24) 0% (35) 1% (1) 0%

Phone and SMS (150) 3% (10) 0% (46) 1% (26) 0% (6) 0% (19) 0% (0) 0%
Reading (331) 6% (16) 0% (55) 1% (48) 1% (15) 0% (46) 1% (2) 0%

Science and Education (550) 10% (11) 0% (115) 2% (46) 1% (22) 0% (35) 1% (0) 0%
Security (196) 4% (10) 0% (50) 1% (38) 1% (11) 0% (26) 0% (2) 0%
Sports and Health (215) 4% (12) 0% (28) 1% (19) 0% (13) 0% (30) 1% (0) 0%

System (295) 5% (26) 0% (74) 1% (42) 1% (28) 1% (59) 1% (4) 0%
Theming (70) 1% (4) 0% (14) 0% (4) 0% (3) 0% (14) 0% (0) 0%

Time (317) 6% (20) 0% (68) 1% (51) 1% (32) 1% (54) 1% (2) 0%
Writing (235) 4% (13) 0% (66) 1% (49) 1% (8) 0% (29) 1% (1) 0%

N
u
m
b
er
 o
f
o
cc
u
rr
en
ce
s

C
am

er
a

A
u
d
io

B
lu
et
o
o
th

D
at
aB

as
e

G
P
S

In
p
u
t

N
et
w
o
rk

S
en
so
r

U
S
B

System resource

6000

5000

4000

3000

2000

1000

0

onCreate

#
 o
f
in
v
o
ca
ti
o
n

onResume

onStart

onPause

onStop

onDestroy

onRestart

0 1 2 3 4 5 6 7

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

101

Table 4: Distribution of the system resources in terms of presence of activities

Category Database Sensor Camera USB Input Audio Network GPS Bluetooth

Connectivity (0) 0% (1) 0.02% (1) 0.02% (1) 0.02% (0) 0% (2) 0.04% (5) 0.09% (0) 0% (2) 0.04%
Development (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%
Games (4) 0.07% (4) 0.07% (0) 0% (0) 0% (0) 0% (3) 0.05% (0) 0% (0) 0% (1) 0.02%
Graphics (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%
Internet (3) 0.05% (1) 0.02% (2) 0.04% (1) 0.02% (5) 0.09% (1) 0.02% (2) 0.04% (0) 0% (0) 0%
Money (8) 0.14% (0) 0% (9) 0.16% (1) 0.02% (2) 0.04% (0) 0% (0) 0% (0) 0% (0) 0%
Multimedia (17) 0.30% (3) 0.05% (4) 0.07% (14) 0.25% (2) 0.04% (6) 0.10% (0) 0% (0) 0% (0) 0%
Navigation (1) 0.02% (11) 0.20% (0) 0% (0) 0% (1) 0.02% (0) 0% (3) 0.05% (8) 0.14% (0) 0%
Phone and SMS (0) 0%% (2) 0.04% (2) 0.04% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%
Reading (1) 0.02% (2) 0.04% (0) 0% (0) 0% (2) 0.04% (0) 0% (2) 0.04% (0) 0% (0) 0%
Science and Education (8) 0.14% (1) 0.02% (1) 0.02% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (1) 0.02%
Security (4) 0.07% (0) 0% (0) 0% (0) 0% (3) 0.05% (0) 0% (1) 0.02% (0) 0% (0) 0%
Sports and Health (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (2) 0.04% (0) 0% (1) 0.02% (1) 0.02%
System (2) 0.04% (0) 0% (2) 0.04% (2) 0.04% (2) 0.04% (0) 0% (0) 0% (0) 0% (0) 0%
Theming (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%
Time (0) 0% (1) 0.02% (0) 0% (0) 0% (0) 0% (1) 0.02% (0) 0% (0) 0% (0) 0%
Writing (4) 0.07% (0) 0% (0) 0% (0) 0% (1) 0.02% (0) 0% (0) 0% (0) 0% (0) 0%

Table 5: Distribution of acquired API for each system resource

Category onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

DataBase (44) 85% (0) 0% (4) 8% (4) 8% (0) 0% (8) 15% (0) 0% (35) 67%

Sensor (26) 100% (0) 0% (2) 8% (0) 0% (0) 0% (0) 0% (0) 0% (1) 4%
Camera (4) 19% (1) 5% (7) 33% (0) 0% (0) 0% (0) 0% (0) 0% (17) 81%

USB (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%
Input (6) 33% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Audio (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%
Network (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

GPS (1) 11% (0) 0% (1) 11% (0) 0% (0) 0% (0) 0% (0) 0% (1) 11%
Bluetooth (2) 40% (1) 20% (1) 20% (0) 0% (0) 0% (1) 20% (0) 0% (2) 40%

Table 6: Distribution of released API for each system resource

Resource onCreate() onStart() onResume() onPause() onStop() onDestroy() onRestart() OTHER

Database (0) 0% (0) 0% (0) 0% (2) 4% (0) 0% (8) 15% (0) 0% (0) 0%

Sensor (1) 4% (0) 0% (0) 0% (1) 4% (0) 0% (0) 0% (0) 0% (1) 4%

Camera (1) 5% (0) 0% (2) 10% (12) 57% (1) 5% (3) 14% (0) 0% (12) 57%
USB (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Input (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%
Audio (7) 47% (0) 0% (0) 0% (3) 20% (0) 0% (1) 7% (0) 0% (2) 13%

Network (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%
GPS (1) 11% (0) 0% (0) 0% (1) 11% (0) 0% (1) 11% (0) 0% (1) 11%

Bluetooth (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0%

Moreover, The Resource Analyzer was run In order

to find the most popular acquired/released resources. The
results of this analysis is shown in Table 5 and 6. Table 5
shows the most popular callback methods that used by
developers to acquire each system’s resources. The
results show that:

• Database was acquired mostly on the onCreate()

callback method with the percentage of occurrence
equal to 85% over 52 activities which used Database
resource. Also, 8% used the onPause(), 8% the
onResume() and 15% used the onDestroy().
Whereas, around 67% of activities acquired
Database on OTHER methods

• Sensor was acquired on the onCreate() method with
the percentage of occurrence equal to 100% over 26
activities which used Sensor resource. Also, 8%
used by the onResume(). Whereas, around 4% of
activities acquired Sensor on OTHER methods

• Camera was acquired mostly on OTHER methods
with the percentage of occurrence equal to 81% over
29 activities which used Camera resource. Also,
33% used the onResume(), 19% used the onCreate()
and 5% used the onStart()

• Input was acquired mostly on the onCreate() with

the percentage of occurrence equal to 33% over 18

activities which used Input resource

• GPS used 11%s of activities over 9 activities which

acquired GPS resource in the onCreate(),

onResume() and OTHER methods

• Bluetooth was acquired mostly on the onCreate() and

OTHER methods callback methods with percentage

of occurrence equal to 40% over 5 activities which

used Bluetooth resource. Also, 20%s used the

onStart(), onResume() and onDestroy()

• USB, Audio and Network resources had nothing of

the percentages of acquired

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

102

However, Table 6 shows the results of the most

popular callback method used to release resources. The

results show that:

• Database was released mostly on the onDestroy()

callback method with the percentage of occurrence

equal to 15% over 52 activities which used Database

resource. Also, 4% used the onPause()

• Sensor used 4%s of activities over 26 activities

which released the onCreate(), onPause() and

OTHER methods

• Camera was released mostly on the onPause()

method with the percentage of occurrence equal to

57% over 29 activities which used Camera resource.

Also, 5% used the onCreate(), 10% used the

onResume(), 5% used the onStart(), 14% used the

onDestroy(). whereas, around 57% of activities

released Camera on OTHER methods

• Audio was released mostly on the onCreate() with

the percentage of occurrence equal to 47% over 18

activities which used Audio resource. Also, 20%

used the onPause() and 7% used the onDestroy().

Whereas, around 13% of activities released Audio

on OTHER methods

• GPS used 11%s of activities over 9 activities which

released GPS resource in the onCreate(), onPause(),

onDestroy() and OTHER methods

• USB, Input, Network and Bluetooth resources had

nothing of the percentages of released

In order to obtain more supportive results, the correctly

acquired and released percentages was decided depending

on Android documentation information. For each system’s

resources, the callback methods which is responsible to

acquired and released resource were decided. Then, the

value of percentages for these callback methods were

decided as the correctly percentages of acquired and

released the resource. On the other hand, the average of

wrongly acquired and released percentages was

computed by finding the averages of the callback

methods percentages that were registered to acquire and

to release but did not have a responsibility to do that.

Figure 6 and 7 show these comparisons of

correctly/wrongly acquired and released percentages for

the system’s resources. These results show that:

• Database resource should be acquired at onCreate()

and released at onPause() methods (Activity android

developers, n.d.). Our result shows that about 85%

activities used onCreate() to acquire Database resource

and 4% of activities used onPause() to release

Database resource correctly. However, the average of

wrongly acquired is equal to 25%. It includes 67% of

activities used OTHER method, 15% used onDestroy()

and 8% used onResume() or onPause() to acquire

Database resource. Additionally, the average of

wrongly released is equal to 15% of activities used

onDestroy() to release Database resource
• Sensor resource should be acquired at onResume() and

released at onPause() (Activity android developers,
n.d.). Our result shows that about 4% of activities used
onResume() to acquire Sensor resource and 4% of
activities used onPause() to release Sensor resource
correctly. However, the average of wrongly acquired is
equal to 52%. It includes 100% of activities used
onCreate() method and 4% used OTHER to acquire
Sensor resource. Additionally, the average of wrongly
released is equal to 4%. It includes 4% of activities
used onCreate() method and also 4% used OTHER to
release Sensor resource

• Camera resource should be acquired at onResume()

and released at onPause() (Activity android

developers, n.d.). Our result shows that about 33% of

activities used onResume() to acquire Camera

resource and 57% of activities used onPause () to

release Camera resource correctly. However, the

average of wrongly acquired is equal to 35%. It

includes 81% of activities used OTHER method, 19%

used onCreate() and 5% used onStart() to acquire

Camera resource. Additionally, the average of

wrongly released is equal to 13%. It includes 14% of

activities used onDestroy() and 57% used OTHER

method to release Camera resource

• USB should be acquired at onResume() and released

at onPause() (Activity android developers, n.d.). Our

result showed that there are no occurrences of

acquired or released USB resource in our data set
• Input resource should be acquired at onCreate() and

released at onPause() (Activity android developers,
n.d.). Our result showed that about 33% of activities
used onResume() to acquire Input resource.
However, there are no occurrences of released Input
resource in our dataset

• Audio resource should be acquired at onCreate() and
released at onPause() (Activity android developers,
n.d.). Our result showed that there are no occurrences
of acquired Audio resource at onCreate() in our dataset
and 20% of activities used onPause() to release Audio
resource correctly. However, the average of wrongly
released is equal to 30%. It includes 47% of activities
used onCreate() method, 7% used onDestroy() and
13% used OTHER to release Audio resource

• Network resource should be acquired at onCreate()
and released at onPause() (Activity android
developers, n.d.). Our result showed that there are
no occurrences of the acquired or released Network
resource in our dataset

• GPS resource should be acquired at onCreate() and

released at onPause() (Activity android developers,
n.d.). Our result showed that about 11% of activities
used onCreate() to acquired and also11% of
activities used onPause() released GPS resource

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

103

correctly. However, the average of wrongly acquired
is equal to 11%. It includes 11% of activities used
onResume() method and 11% used OTHER to
acquire GPS resource. Additionally, the average of
wrongly released is equal to 11%. It includes 11% of
activities used onCreate()method and 11% used

OTHER to release GPS resource.

• Bluetooth resource should be acquired at onCreate()

and released at onPause() (Activity android

developers, n.d.). Our result showed that about 40%

of activities used onCreate() to acquire Bluetooth

resource correctly and there are no occurrences of

released Bluetooth resource at onPause() method.

However, the average of wrong acquired is equal to

25%. It includes 40% of activities 40% used OTHER

method, 20% used onPause() and onResume() to

acquire Bluetooth resource

Part III: The Nature of the Code Implemented

Inside Callback Methods

The third part of our analysis focuses on the nature of

code inside the most important callback methods

onPause(), onStop() and onDestroy(). We divided the

nature of code into three categories. The first group is

that code used for releasing actions; the second is

associated with the code used for database actions; and

the third code is related to managing threading actions.

We also considered the second and third categories

(database and threading actions) as a long running and

heavy code actions doc.

Fig. 6: The average of correctly and wrongly acquired of system’s resources

Fig. 7: The average of correctly and wrongly released of system’s resources

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

D
at

aB
as

e
S

en
so

r
C

am
er

a
U

S
B

In

p
u

t
A

u
d

io

N
et

w
o
rk

G

P
S

B

lu
et

o
o

th

Correctly acquired

Average of wrongly acquired

60%

50%

40%

30%

20%

10%

0%

D
at

aB
as

e
S

en
so

r
C

am
er

a
U

S
B

In

p
u

t
A

u
d

io

N
et

w
o
rk

G

P
S

B

lu
et

o
o

th

Correctly released

Average of wrongly released

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

104

Table 7: Long Running code analysis on OnPause(), OnStop() and OnDestrory() methods

Category Name onPause() onStop() onDestroy()

I Releasing Resources actions - (50) 15% (214) 27%

II Database actions (104) 12% (35) 10% (41) 5%

III Threading actions (43) 5% (8) 2% (45) 6%

 Total (147) 17% (341) 27% (780) 38%

Using SAALC, we applied analysis using keywords

representing each of these code categories for on

onPause(), onStop() and onDestroy() methods. However,

due to the onPause() callback method used to release

system resources, we analyzed the data set for onPause()

callback method over the second and third categories

(long running code) only to avoid the conflict with the

main purpose of its usage which is releasing actions.

The results of this analysis are shown in Table 7. It

shows that the total percentages of all three categories

inside onPause() is (147)17%. This includes the

percentages of long running code (104) 12% for database

actions; and (43) 5% for threading actions. On the other

hand, the total percentage for the three categories at

onStop() is (341)27%. This includes (50)15% for

releasing actions; (35) 10% for database actions; and

(8)2% for threading actions. Further, the total of

percentages for the nature of code inside onDestroy() is

(780) 83%. this includes (214) 27% for releasing actions,

(41)5% and (45) 6% for long running code (database

and threading actions respectively). We discuss these

results in more detail in Section 4.

Discussion

In this section we provide a discussion of the

experimental results in terms of our research questions.

RQ1: To what extent Android developers utilize the

lifecycle callback methods in developing mobile

apps?

Answering RQ1 gives us the first indication about

Android lifecycle callback methods’ utilization in actual

real-world apps. The results in Result section show that

the onCreate() callback method is the one that is mostly

implemented (92%) in the activities of the selected apps.

This is not surprising since the onCreate() method is the

main method to start and setup Android activities

(Activity android developers, n.d.). Implementing the

onCreate() callback method is important to initialize the

user interface of the activity as well as its various data

binding operations. Moreover, app developers use the

onCreate() method to do all normal operations of

creating views and activity setup.

The onResume() callback method is implemented

by 23% of the total number of app activities extracted.

It is usually called when the activity is in the

foreground and about to start interacting with users’

interactions (Activity android developers, n.d.).

Additionally, it is used for acquiring system resources

among other services by developers. Thus, we can

assume that such percentage of utilizing the

onResume() method is reasonable.

The onPause() callback method usage percentage is

implemented by 16% of activities and is normally used

when an activity is about to go to the background

(Activity android developers, n.d.). More specifically, it

is used to commit unsaved changes, release system

resources, stop animations and other processes that can

consume the CPU. We can also conclude here that such

usage percentage is also reasonable. This is because not

all actives need to deal with releasing system resources

or to persist data.

On the other hand, the onRestart() callback method is

rarely implemented (1%) in the activities. The

onRestart() callback method is normally used after an

activity has stopped and before it is started back again

(Activity android developers, n.d.). Additionally, it is

used to acquire a row cursor objects if a developer has

already deactivated it at onStop() method (Activity

android developers, n.d.). Cursor objects provide random

read-write access to the result set returned by a database

query (Activity android developers, n.d.). Accordingly,

we can assume that the usage percentage of onRestart()

method (1%) can also be reasonable since it has limited

usage scenarios.
The onStart() and onStop() callback methods both

have usage percentage implementation in activities of
(6%. The onStart() callback method is normally called
when an activity is newly created and becoming visible
to the user (Activity android developers, n.d.).
However Google documentation do not provide clear
description of when to use this method.Whereas, The
onStop() callback method is normally used to save
app data to permanent storage and to execute long
running code (Activity android developers, n.d.).
According to (Activity android developers, n.d.)),
developers must execute long running code at
onStop() instead of onPause() method. This is due to
the fact that onPause() method must be executed
quickly so that other activities can start seamlessly.
Thus 6% implementation for onStart() and onStop()
are reasonable percentages as well.

The onDestroy() callback method has implementation
percentage of 14%. The onDestroy() callback methods
are normally called before an activity is destroyed
(Activity android developers, n.d.). It acts as the last

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

105

chance for developers to free resources and threads that
are associated with the activity before it is removed from
memory (Activity android developers, n.d.). However,
according to the study by (Franke et al., 2012), the
onStop() and onDestroy() methods may not be called by
the system in cases were the system is very low in
resources (battery and memory). In such a situation,
developers may face a dilemma. This is because both the
onStop() and onDestroy() methods are normally used to
execute long-running code such as data persistence. We
will have more on this in the discussion for RQ3.

RQ2: Did each Android developer correctly acquire and

release Android system resources?

The averages of correctly acquiring and releasing of

the nine system resources mentioned at Result section

are 23% and 11% respectively. However, the averages

of wrongly acquiring and releasing system resources

are 16% and 8% respectively. Such results show that a

relatively large percentage of system resources are not

correctly released by the developers in the activities for

the apps that we selected for analysis. According to the

study by (Franke et al., 2012), this will lead to incorrect

behavior of Android apps as well as memory leaks and

run-time errors. Furthermore, we argue that due to this

high number of misuses, the developers seem to be not

fully aware of the importance of correctly managing the

system resources.

RQ3: What is the nature of code implemented inside

onPause(), onStop and onDestroy() callback

methods?

Regarding the analysis of the nature of code

implemented inside onPause(),onStop and onDestroy()

callback methods, we found that the onStop() method

has a 12% of code that is considered to be long

running code such as database and threading actions.

Further the onDestroy() method has 11% of code is

considered to be long running code. This is acceptable

from the point of view of the Android official

documentation (Activity android developers, n.d.). It

is true that the study by (Franke et al., 2012) argue

that the onStop() and onDestroy() methods may not be

called, but this can only happen at very extreme cases

when the Android system is very low in resources.

And since the developers should not implement such

long running code at onPause(), we can conclude that

onStop() and onDestroy() are still the best place to

implement such code. Regarding the nature of code

inside onPause() callback method, we found this has

17% of code that we considered to be long running

code. This is a problematic issue as discussed above

since this will possibly block other activities from

running seamlessly.

Our results show that Android developers, in

general, appear to posses limited knowledge and

awareness of the importance of writing an app that

conforms to the lifecycle model. This will adversely

affect their apps’ reliability and performance. Further,

we argue that Android documentation needs to be more

useful, complete and clear in describing how

developers should apply activity callback method and

system resources. We also argue that Android

developers and more specifically the novice, should get

more help in terms of managing system resources from

the development environment, namely the Android

Studio. Having the Android Studio automatically

manage lifecycle conformance wherever feasible can be

beneficial, especially for less expert developers.

Android developers can use our findings to gain deep

insights about their Android apps development and pay

particular attention to their use of callback methods and

resource management. Moreover, software researchers

can use our findings to provide better support to

developers by providing analysis tools, in order to help

developers of building more robust apps. In the future,

we aim to expand our study by analyzing more apps

from different platforms such as iOS and by adding

further mining and analysis techniques to our approach.

Threat to Validity

Threats to internal validity include that we
automatically identified apps which contain system
resources using imported API packages in the .java files.
Sometimes developers insert unused resources that are
not called. Also, we used the fields’ names according to
the type of API to check where the resource acquired and
released inside the methods. Further, the limitation in our
tool is that it is currently unable to recognize the
inheritance mechanism and code hierarchy that may exist
in the app code. Threats to external validity are present
as the results may not generalize to other kinds of
applications, the applications selected may not be
representative and other app store repositories may
provide apps with different characteristics. It is
important to note that in our data set, some categories,
such as Graphics, were small and thus cannot be
representative sample. However, we have tried to
mitigate this by selecting a range of apps and
investigating 5577 Android activities from842 out of
2001 apps from F-Droid, which is one of the largest
repositories of open-source Android apps.

Conclusion

The Android mobile app activity lifecycle model is
very important to understand in order to develop robust
apps. With an ever-growing app community, activity
lifecycle holds more importance to ensure that apps are
adequately reliable and robust. Our study is the first
study to explore the activity’s lifecycle callback methods

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

106

usage in the Android development community. We built
a tool called SAALC to analyze 5577 activities residing in
842 Android apps from F-Droid repository. We analyzed
activities to collect statistics about the utilization of each
callback method; the averages of correct and wrong
acquired/released system resources; and the nature of long
running process inside onPause(), onStop() and
onDestroy() callback methods. Our findings can be
summarized as follows:

• The percentages of occurrences of callback methods

are about 1% of the activities used onRestart()

method, 6% used onStop(), 23%usedonResume(),

16% used onPause() and 14% used onDestroy(). The

most occurrences for onCreate() callback methods

for about 92% of activities

• Only about 3% of activities contain Camera,

Audio, Bluetooth, Database, GPS, Input, Network,

Sensor and USB system’s resources

• The average % of callback method code that

wrongly acquires a system’s resource is 16%,

whereas the average of wrongly released is 8%.

This will adversely influence the app reliability

• About 17% of activities used long running code

inside onPause() callback methods and this will

adversely influence the app performance

• 27% of activities used releasing and long running

code inside onStop() callback method, whereas

38% used inside onDestroy()

We propose that developers need further guidance

about correct use of lifecyle-related callback method

usage and code. We also propose that improved

development tool support for Android developers is

needed to provide improved automatic detection of

lifecycle resource management problems in apps.

Author’s Contributions

Noura Hoshieah: Contributed in theoretical aspect
of this study, downloaded the apps source code,
developed the tool, performed data collection and data
analysis.

Dr. Samer Zain: Advised research process,
research design, data collection and analysis, and
manuscript writing.

Dr. Norsaremah Salleh: Advised in research
design and manuscript writing.

Dr. John Grundy: Conceived of the presented idea.

Ethics

This research is original and not published elsewhere.

The authors confirm that they have read and approved the

manuscript and there is no conflict of interest. Further, the

authors confirm that there are no ethical issues involved.

References

Activity android developers, (n.d.).

https://developer.android.com/reference/android/app

/Activity.html

Bartel, A., J. Klein, M. Monperrus and Y.L. Traon,

2014. Static analysis for extracting permission

checks of a large scale framework: The challenges

and solutions for analyzing android. IEEE Trans.

Software Eng., 40: 617-632.

 DOI: 10.1109/TSE.2014.2322867

Batyuk, L., M. Herpich, S.A. Camtepe, K. Raddatz and

A.D. Schmidt et al., 2011. Using static analysis for

automatic assessment and mitigation of unwanted

and malicious activities within android applications.

Proceedings of the 6th International Conference on

Malicious and Unwanted Software, Oct. 18-19,

IEEE Xplore Press, Fajardo, Puerto Rico, pp: 66-72.

DOI: 10.1109/MALWARE.2011.6112328

Danphitsanuphan, P. and T. Suwantada, 2012. Code

smell detecting tool and code smell-structure bug

relationship. Proceedings of the Spring Congress on

Engineering and Technology, May 27-30, IEEE

Xplore Press, Xian, China, pp: 1-5.

 DOI: 10.1109/SCET.2012.6342082

Dehlinger, J. and J. Dixon, 2011. Mobile application

software engineering: Challenges and research

directions. Mobile Software Eng., 2: 29-32.
Desnos, A., 2012. Android: Static analysis using similarity

distance. Proceedings of the 45th Hawaii International
Conference on System Science, Jan. 4-7, IEEE Xplore
Press, Maui, HI, USA, pp: 5394-5403.

 DOI: 10.1109/HICSS.2012.114
F-Droid. Free and Open Source Android App

Repository, (n.d.). https://f-droid.org/
Feng, Y., S. Anand, I. Dillig and A. Aiken, 2014.

Apposcopy: Semantics-based detection of android

malware through static analysis. Proceedings of the

22nd ACM SIGSOFT International Symposium on

Foundations of Software Engineering, Nov. 16-21,

ACM, Hong Kong, China, pp: 576-587.

 DOI: 10.1145/2635868.2635869

Franke, D., C. Elsemann, S. Kowalewski and C. Weise,

2011. Reverse engineering of mobile application

lifecycles. Proceedings of the 18th Working

Conference on Reverse Engineering, Oct. 17-20,

IEEE Xplore Press, Limerick, Ireland, pp: 283-292.

DOI: 10.1109/WCRE.2011.42

Franke, D., S. Kowalewski, C. Weise and N.

Prakobkosol, 2012. Testing conformance of life

cycle dependent properties of mobile applications.

Proceedings of the IEEE 5th International

Conference on Software Testing, Verification and

Validation, Apr. 17-21, IEEE Xplore Press,

Montreal, QC, Canada, pp: 241-250.

 DOI: 10.1109/ICST.2012.104

Noura Hoshieah et al. / Journal of Computer Science 2019, 15 (1): 92.107

DOI: 10.3844/jcssp.2019.92.107

107

Haotian, Z. and L. Shu, 2013. Java source code static

check eclipse plug-in based on common design

pattern. Proceedings of the 4th World Congress on

Software Engineering, Dec. 3-4, IEEE Xplore Press,

Hong Kong, China, pp: 165-170.

 DOI: 10.1109/WCSE.2013.30

Joorabchi, M.E., A. Mesbah and P. Kruchten, 2013. Real

challenges in mobile app development. Proceedings

of the ACM/IEEE International Symposium on

Empirical Software Engineering and Measurement,

Oct. 10-11, IEEE Xplore Press, Baltimore, MD,

USA, pp: 15-24. DOI: 10.1109/ESEM.2013.9

Khatoon, S., A. Mahmood and G. Li, 2011. An

evaluation of source code mining techniques.

Proceedings of the 8th International Conference

on Fuzzy Systems and Knowledge Discovery, Jul.
26-28, IEEE Xplore Press, Shanghai, China, pp:

1929-1933. DOI: 10.1109/FSKD.2011.6019877

Lamba, Y., M. Khattar and A. Sureka, 2015. Pravaaha:

Mining android applications for discovering API

call usage patterns and trends. Proceedings of the

8th India Software Engineering Conference, Feb.

18-20, ACM, Bangalore, India, pp: 10-19.

 DOI: 10.1145/2723742.2723743

Number of apps, (n.d). Number of apps in leading app

stores. https:

//www.statista.com/statistics/276623/number-of-

apps-available-in-leading-app-stores

Panichella, S., V. Arnaoudova, M. Di Penta and G.

Antoniol, 2015. Would static analysis tools help

developers with code reviews? Proceedings of the

IEEE 22nd International Conference on Software

Analysis, Evolution and Reengineering, Mar. 2-6,

IEEE Xplore Press, Montreal, QC, Canada,

 pp: 161-170. DOI: 10.1109/SANER.2015.7081826

Payet, E. and F. Spoto, 2012. Static analysis of android

programs. Inform. Software Technol., 54: 1192-1201.

DOI: 10.1016/j.infsof.2012.05.003
Ramos, A., 2016. Evaluating the ability of static code

analysis tools to detect injection vulnerabilities.
http://www8.cs.umu.se/education/examina/Rapporte
r/AlexanderRamos.pdf

Schmidt, A.D., R. Bye, H.G. Schmidt, J. Clausen and O.
Kiraz et al., 2009. Static analysis of executables for
collaborative malware detection on android.
Proceedings of the IEEE International Conference
on Communications, Jun. 14-18, IEEE Xplore Press,
Dresden, Germany, pp: 1-5.

 DOI: 10.1109/ICC.2009.5199486
Wasserman, A.I., 2010. Software engineering issues for

mobile application development. Proceedings of the
FSE/SDP Workshop on Future of Software
Engineering Research, Nov. 07-08, ACM, Santa Fe,
New Mexico, USA, pp: 397-400.

 DOI: 10.1145/1882362.1882443
Zein, S., N. Salleh and J. Grundy, 2016. A systematic

mapping study of mobile application testing

techniques. J. Syst. Software, 117: 334-356.

 DOI: 10.1016/j.jss.2016.03.065

Zein, S., N. Salleh and J. Grundy, 2017. Static analysis

of android apps for lifecycle conformance.

Proceedings of the 8th International Conference on

Information Technology, May 17-18, IEEE Xplore

Press, Amman, Jordan, pp: 102-109.

 DOI: 10.1109/ICITECH.2017.8079982

Zhongyang, Y., Z. Xin, B. Mao and L. Xie, 2013.

DroidAlarm: An all-sided static analysis tool for

android privilege-escalation malware. Proceedings of

the 8th ACM SIGSAC Symposium on Information,

Computer and Communications Security, May 08-10,

ACM, Hangzhou, China, pp: 353-358.

 DOI: 10.1145/2484313.2484359

