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Abstract: Real time anomaly detection is very popular topic nowadays 
this because the number of data generated every day is larger and larger. 
Facing with the phenomena of Big Data is not an easy task. The main aim 
of this research is to fine appropriate architecture for real-time big data 
analytic and its main task is to detect anomalies in this real-time data. In 
this paper we show the implementation of anomaly detection algorithm in 
real time infrastructure in order to find anomalies as soon as possible. We 
have proposed architecture for real time anomaly detection by adding 
some new components and the main part of the infrastructure is Timelion 
which enable implementation of different algorithms for anomaly 
detection. The research is focused to develop infrastructure to monitor e-
dnevnik (education national system in Macedonia) application server and 
to detect errors in order to scale up the performance. 
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Introduction 

The usage of internet nowadays is constantly 
increasing the amount of data. As a result, the need for 
analyzing this data has recently emerged and we need to 
face a new phenomenon known as massive data streams. 
This paper shows the appropriate architecture for real-time 
massive data stream analytics and its main task is to detect 
anomalies in real-time data. In our previous work (Hasani, 
2014a; 2014b; 2015; 2017a; 2017b; Hasani and Fondaj, 
2018) we have analyzed various architectures and their 
suitability to enable real-time anomaly detection in data 
streams. In this paper, we present the visualization of 
an e-dnevnik log by using pipeline infrastructure 
consisting of Redis, Logstash, Elasticsearch, Kibana 
and Timelion. The first component is Redis which is 
used as buffer of log data. Logstash have large number 
of filters which are used to analyze the data, 
Elasticsearch is indexing component of this 
infrastructure and also is used for storing data. Other 
important components are Timelion and Kibana, the 
first one is used for visualization and the other one for 
anomaly detection (Hasani et al., 2015). 

On (Hasani et al., 2015) we have explored and 
implemented different Kibana filters in order to do post-
procesing of SQL queries. The focus of the post-
processing was to prepare the log information in 

adequate format and information extraction. The purpose 
of this analyze was to monitor the performance of the 
National system of Education in Macedonia and to alert or 
prevent possible unwanted activities (Hasani et al., 2015). 

Our research deals with developing infrastructure for 
monitoring e-dnevnik (education national system in 
Macedonia) application server and detecting errors in 
order to enable its smooth work and scale up the 
performance. Different existing algorithms are 
implemented in the proposed infrastructure, so our 
further work will be the implementation of our proposed 
real-time anomaly detection algorithm for streaming data 
in this planed infrastructure. 

Related Work  

Many advanced and highly effective anomaly 
detection methods exist that run-in batch mode, where 
the data is collected and processed after the occurrence. 
However, identifying anomalies long after they 
happened isn’t our main goal. On the contrary, real-time 
data processing, requests continual input, time-critical 
manner processing and instant output (e.g., alarm) if 
anomaly happened. We can model the normal behavior 
of the data stream instant of searching for unknown 
anomalies and then we can compare with the observed 
one (Hasani et al., 2018). Consequently, predicting the 
values of a stream one-time step ahead is used, the 
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deviation between the predicted values and the observed 
values are measured and a decision mechanism, if an 
observed value exceeds normal behavior, is established 
(Hasani et al., 2018). Yet other questions arise. The real-
time streams are infinite, can have a high rate of data's 
appearance in time unite (high volume, high velocity) 
and can evolve over time (Hasani et al., 2018). Thus, the 
development of the model of normal behavior must 
adapt to these challenges to maintain detection accuracy: 
be iterative, use only a part of the stream (even before it 
is permanently stored) and be implemented as a positive 
feedback in the learning process (e.g., detected 
anomalies labeling in the supervised process). Due to the 
need of the real-time detection process, detection 
algorithms have to be robust, with low processing time 
(low complexity), even at the cost of the accuracy. 
Currently, the most intensively developed anomaly 
detection methods that consider underlined challenges 
are based on machine learning, neural networks, 
predictive and statistical time series forecasting models 
(Hasani et al., 2018). 

These new features of data and processing requirements 
in real time, make it inappropriate or impossible to use 
traditional architectures (infrastructures, parts of the 
technology solutions and tools with a non-instantaneous 
processing paradigm) and processing-intensive algorithms 
to detect anomalies. Typically, according to Bailis et al., 
2015; Hasani et al., 2018), when we talk about systems 
that give processing in real-time or near real-time, we 
think for architectures that provide collection and 
analysis of data streams from several million data in 
milliseconds/sec, at the time of their arrival, eventually 
without their permanent storage and if necessary, in 
conjunction with the previously stored data. According to 
Joao Gama in 2015 users are looking for answers placed 
over massive data in real-time. Or, more specifically, it is 
not only the process of storing Exabyte data in the data 
warehouse, according to Michael Minelli, co-author of 
Big Data, Big Analytics, said in Mike Barlo, 2013: “It’s 
about the ability to make better decisions and take 

meaningful actions at the right time. It’s about detecting 
fraud while someone is swiping a credit card or 
triggering an offer while a shopper is standing on a 
checkout line or placing an ad on a website while 
someone is reading a specific article. It’s about 
combining and analyzing data so you can take the 
right action, at the right time and in the right place.” 

The processing of massive data streams in real-time 
includes multiple different stages, each for itself in terms 
of the requirements stated above. Also, the possible need 
for scaling, human intervention, privacy, automatic 
actions, etc., is a challenge. Consequently, inability to 
adapt classic architectures and technological solutions, 
such as Hadoop and similar platforms, which are more 
convenient for batch analyze (Hasani et al., 2018) arise. 
Requested architecture should provide flexibility in the 
implementation of the required sequence stages 
(pipelines): acceptance/write data stream, 
extraction/cleaning/annotation of data, 
integration/aggregation/representation, 
questionnaires/analysis/modeling and interpretation. 

The analysis besides its SQL analytic, according to 
Stonebraker et al. (2015; Hasani et al., 2018), typically 
includes machine learning, clustering, predictive 
modeling, regression estimation, detection of anomalies, 
etc., which, according to the author, matrix organizing of 
data compared to the organization in rows or columns 
gives better performance. Appropriate technology 
solutions need to give parallel processing flows, 
scalability, resistant to anomalies and very low latency 
when giving statements. 

Implementation of Infrastructure for 

Streaming Outlier Detection in Massive 

Data Streams with ELK Stack  

It this chapter the main components and their role in 
the infrastructure (Redis, Timelion, Logstash, 
Elasticsearch and Kibana) are explained and filters for 
pre-processing of SQL log data are shown. 

 

 
 

Fig. 1: Infrastructure for real-time anomaly detection in Massive data streams 
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Infrastructure for Outlier Detection in Real-Time 

Massive data streams 

To develop the infrastructure, we have done a broad 
research and based on them we start (Hasani and Fondaj, 
2018) with the solution proposed by Kiyoto (2018). The 
infrastructure is very flexible, it allows us to add and 
remove infrastructure components very easy. Our 
proposed architecture is shown in Fig. 1. This 
architectural design (Hasani et al., 2015) is composed 
from different phases: input (collects and manages 
events and logs), buffering, decode/pre-process (extract 
structured data into variables, parse), filter (modify, 
extract information) and output (ship the data for storage, 
index, search, visualize and anomaly detection). More 
details about this infrastructure you can find one our 
publication (Hasani et al., 2015). 

The proposed architecture is working in hierarchical 
form where we have two phases, in the first phase we 
make data cleaning, filtering and visualization of data 
and in the second phase is done anomaly detection with 
Timelion and result visualization from executed anomaly 
detection algorithms. 

The main aim of the infrastructure is to achieve 
flexibility (Hasani et al., 2015), which can be achieved 
by possibility of adding different new components as 
Hadoop, Graphite, Cassandra, etc. Generally, in most 
cases when we run the Logstash server there will be two 
broad classes of Logstash host (Hasani, 2015): 
 
• The first one is the host which runs the Logstash 

agent as an event "shipper" that sends application, 
service and host logs to a central Logstash server 

• The second one is central Logstash host which runs 
a combination of components of this architecture for 
pre-processing and filtering of events 

 
Broker (usually Redis (2018) is temporary buffer 

for logs. This is important to collect information when 
the number of requests is raising unexpected (Hasani 
et al., 2015). 

Main component of the infrastructure is Logstash which 
have three-phase pipeline: input, filtering and output, it has 
different plugins in every phase enabling extracting 
information from log data (Hasani et al., 2015). 

Elasticsearch/Kibana 

Elasticsearch enables efficient indexing and storing 
of the event logs enabling a full-text search on them 
(Hasani and Fondaj, 2018). It is an open-source 
distributed search engine library built on top of Apache 
Lucene (Timelion, 2018). Elasticsearch (Kiyoto, 2018) 
allows us to implement, store, index and search 

functionality, this way it helps us in easier and more 
efficient computation of various data analytics. 
Elasticsearch is a NoSQL data store (Hasani and Fondaj, 
2018) where data are stored as documents. Although it is 
mainly used by Java applications, the important thing is 
that applications need not be written in Java to work with 
Elasticsearch since it can send and receive data over 
HTTP in JSON to index, search and manage our 
Elasticsearch cluster (Hasani and Fondaj, 2018). 

The last part is Kibana (Kiyoto, 2018). This is an 
HTML/JS frontend web interface to Elasticsearch for 
viewing the log data. The beauty of Kibana is that we 
can easily search the data with different queries, produce 
charts, histograms and other visual products. 

Timelion 

The other main component of this infrastructure is 
Timelion. Timelion is a time series data visualize that 
enables us to combine totally independent data sources 
within a single visualization. The main task of Timelion 
is to find anomalies in real time. It’s driven by a simple 
expression language we use to retrieve time series data, 
perform calculations to tease out the answers to complex 
questions and visualize the results. In Timelion we 
describe queries, make a different transformation of data, 
implement statistical methods as well as visualized the 
data to learn from them (Timelion, 2018).  

Both Timelion and Kibana provide visualization of 
the data, but the difference between them is that 
Timelion provides us with the opportunity to implement 
the code of the various algorithms used for detection of 
anomalies and also the result obtained by the execution 
of these algorithms can be visualized to find out where 
the anomalies are. 

Processing of SQL Queries with Proposed 

Infrastructure 

We have done (Hasani et al., 2014a) processing of 
SQL queries in batch mode, in this paper we have 
advanced the processing by implementing it in real 
time environment. The main aim of SQL query 
analytic is to get information and detect anomalies in 
order to prevent system down. More details about 
filters used for SQL query analytic are given in our 
published paper (Hasani et al., 2014a). 

Real Time Analysis of e-Dnevnik Database Log File 

This part of the paper show how we have analyzed 
the log files generated from e-dnevnik (Hasani et al., 
2014a). This application has a large number of requests 
during the day, we like to check how many requests have 
the system for given period of time and to detect if there 
is an anomaly. In the Fig. 2 below we present two 
histograms produced by Kibana (Hasani et al., 2014a). 
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Fig. 2: e-Dnevnik number of hits and duration mean per 30 sec intervals, in selected 14:26-15:16 period of time (Hasani et al., 2014a) 
 
The first chart displays the distribution of the number 
of events in the system, calculated per 30 seconds 
intervals in the time period from 14:26 untill 15:16, 
having 2207880 hits all. The second chart shows the 
calculated mean duration of SQL queries execution 
time for the same period and intervals. This shows that 
the mean of the query duration is higher at the specific 
period of time. The higher mean duration time of SQL 
queries in this example is the consequence of the 
Postgres server restart and warming up of Postgres 
shared buffers (Hasani et al., 2014a). 

Kibana Visualization of CSV Logs 

The infrastructure presented in the paper (Hasani 
and Fondaj, 2018) can be used for anomaly detection 
in real-time Massive data streams. After configuring 

Logstash, the data can be visualized in Kibana. With 
Elasticsearch and Kibana we have the possibility to 
visualize the log data (Kiyoto, 2018) from our e-
dnevnik application servers. In the next figure, we 
show how the result is visualized by Kibana where we 
have the possibility to draw our own charts, 
histograms etc. Kibana offers many functions for data 
analysis and visualization. Some of their main 
functions are shown in Fig. 3 and 4, comprising a 
period of three days. We can see here the different 
time periods for the number of requests in the chart. 
We can also see the content of the log file for every 
event that happens in our application server. The 
interesting thing about Kibana is that the data can be 
read and exported in JSON format. 

Kibana as a result of visualization produces different 
attributes which we can use to filter the result.
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Fig. 3: Visualization of csv e-dnevnik data in real time by Kibana 
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Fig. 4: CSV messages in Kibana 
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Anomaly Detection with Timelion 

An anomaly in our case is considered to happen 
when the number of requests is increased during a period of 
time from 19:00 pm to 06:00 am, as non-working hours, or 
in non-working days, Saturdays and Sundays. The 
infrastructure that is used receives the CSV log data as an 
input from the application servers of e-dnevnik. 

As part of this infrastructure, Timelion, enables 
programming and implementation of user defined 
anomaly detection algorithms, as example algorithms 

we analyzed in (Hasani, 2017). There are some 
algorithms used for anomaly detection and we explore 
some of them and implement in real time environment 
in our proposed infrastructure. 

The following figure shows the results of the 
implementation of Triple Exponential Smoothing, the 
Holt-Winters method (Kibana, 2018). Timelion have user 
interface where we can write the commands as is shown in 
Fig. 5 and by executing them in real time we can see the 
result in our case detection of anomalies. 

 

 
 

Fig. 5: Anomaly detection in timelion 
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Fig. 6: Moving average in timelion 

 

 
 

Fig. 7: Anomaly detection based on different conditions
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From these results, we can see the anomalies pointed 
with red circles. These anomalies are human annotated 
and in the above diagram we can prove that the 
algorithm works well. 

Moving Average in Timelion. One of the most 
used statistical methods for anomaly detection is 
Moving Average. In this example we have 
implemented this method in real time environment. 
There are defined upper and lower bound in order to 
check for anomalies. If a point of data is outside this 
bound is considered anomaly. 

Anomaly detection based on different conditions. 
This algorithm divides data with AVG multiply with 100 
and then give 4 conditions for anomalies which may 
be just warnings then, minor anomalies, major and 
critical. This mean this method categorize anomalies 
into four groups, the result is shown in Fig. 6. The 
Fig. 7 shows the result we get from this algorithm and 
the visualization of the result with Timelion. 

The idea is all this method which we use to compare 
them and to decide which is the best methods based on 
our needs and also to propose our algorithm. Based on 
the figure we get; we go further with the analysis and 
find the reason the anomalies happened at a specific time 
period. The number of anomalies depends on the 
threshold we define, in our case the smaller the threshold 
the larger the number of anomalies appears. 

Conclusion 

Big Data analytic is main topic nowadays and is not 
easy task because the challenge came from the fact that 
the data are analyzed in real time. In this paper, we 
propose infrastructure which enable real time Big Data 
analytic where e-dnevnik log data are analyzed.  

The infrastructure proposed is composed from 
different open source tools as: Redis, Logstash, 
Elasticsearch, Kibana and Timelion. The infrastructure 
design is based on the pipeline event processing, divided 
in phases: input (collects and manages events and logs), 
buffering, decode/pre-process (extract structured data 
into variables, parse), filter (modify, extract information) 
and output (ship the data for storage, index, search, 
visualize and anomaly detection). Proposed architecture is 
capable to scale up/out depending on the input stream size 
and rate, by running one or more of its components as 
separate threads/servers. Flexibility is achieved by 
possibility of adding various further components as 
Hadoop, Cassandra, statistical or graphical tools like 
Statsd, Graphite, or deploying extension of functionalities 
in each phase by using own plugins (Hasani et al., 2015).  

We illustrate the SQL queries database transaction 
logs analytics with implementation of the filters that 
produce various statistics enabling detections of 
anomalies in query performance on an operational level 
(Hasani et al., 2015). This means that we are able to 
detect performance degradation of SQL queries in real 
time and alert adequately in order to remove the possible 

causes. In the same time in real time we do the pre-
processing of the logs in order to reduce the amount 
of content of SQL queries that are necessary to be 
saved for further analyze. 

The testing is done in real-time data that comes from 
the e-dnevnik application. This tool enables us to 
implement our evaluated algorithms (Hasani, 2017) and 
visualize the results. Visualization of the real-time 
anomaly detected is an important part of the 
infrastructure as a powerful tool for online monitoring 
the work of the system. The main contribution of the 
paper is that propose real time infrastructure which 
enable implementation of different algorithms for 
anomaly detection in real time streaming data and also 
preprocessing of data is done. 
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