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Abstract: Software development effort estimation becomes a very 
important and vital tool for many researchers in different fields. Software 
estimation used in controlling, organizing and achieving projects in the 
required time and cost to avoid the financial punishments due to the time 
delay and other different circumstances that may happen. Good project cost 
estimation will lead to project success and reduce the risk of project failure. 
In this paper, two neural network models are used, the Back-propagation 
algorithm versus the redial base algorithm. A comparison is done between 
the suggested models to find the best model that can reduce the project risks 
related to time and increase the profit by achieving the demands of the 
required project in time. The two models are implemented on a 60 of 
NASA public dataset, divided into 45 data samples for training and 15 data 
samples for testing. From the result obtained we can clearly say that the 
performance of the back-propagation neural network in training and testing 
cases is actually better than the radial base function, so the back-
propagation algorithm can be recommended as a useful tool in the software 
effort and cost estimation. 
 
Keywords: Effort Estimation, NASA Software, Artificial Neural Network, 
Back-Propagation, Radial Base Function 

 

Introduction 

Building and estimating successful software is an 
important task that attracted many software developers 
(Boraso et al., 1996; Dolado, 2011). Bidding, budgeting 
and planning are very important factors that affect 
project success. Accurate defining of these factors will 
reflect on the project size, time, efforts, complexity and 
the different required tools to avoid the sudden and 
unexpected events that may happen during the project 
duration, that cause a project loss. Good software 
estimation gives exact feedback about the project 
progress that allows better resource utilization, allocation 
and use (Boehm, 1981).  
In Software Technology Conference held in 1998, 

Dr. Patricia Sanders, Director of Test Systems 
Engineering and Evaluation at OUSD, stated that 40% of 
the DoD’s software development costs are wasted and 
paid on reworking the software, that caused an annual 
loss of $18 billion on the year of 2000. Dr. Patricia 
added that only 16% of the developed software could 
finish in the accurate time and budget. 
Effort estimation was mainly affected by the 

Developed Line of Code (DLOC), where the instructions 
of the program and statements were included. This 

model worked on 63 software projects and its core 
function based on finding and determining the 
arithmetical relationship between three important 
variables; the time of software development, human 
efforts during the work months and effort of 
maintenance (Kemere, 1987). 
The Constructive Cost Model (COCOMO) is 

considered as one of the most important, popular and 
famous models used to estimate the software effort which 
is developed by Boehm (1981; Boehm et al., 1995).  
Numerous techniques were used by different 

researchers for building an efficient estimation models 
structure to process the software cost estimation 
problem. Artificial neural network with different 
architecture was one of these models that proved its 
solidity and efficiency in this field (Shepper and 
Schoeld, 1997) moreover, the fuzzy logic used by 
(Kumar et al., 1994; Kaushik et al., 2012) and 
evolutionary algorithms such as genetic algorithm and 
genetic programming was also strongly used to deal with 
such types of problems.  
Artificial neural network algorithm with back-

propagation algorithm versus the radial base function is 
used in this paper. The comparison between the two 
models is presented. This comparison will contribute in 



Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331 

DOI: 10.3844/jcssp.2019.321.331 

 

322 

selecting the best neural network model for solving the 
software effort estimation problem. Artificial Neural 
Networks (ANN) works in a similar way as the human 
biological neural system acts, exactly comparable to the 
way how the brain operates and process information 
(Negnevitsky, 2005). The brain consists of large 
numbers of small cells that are fully interconnected to 
process the data. Also, the Artificial Neural Networks 
(ANN) consists of a great amount of fully and strongly 
interconnected cells called neurons, all working to gather 
in a systematic manner to solve specific problems, which 
also learn by example similar to the way the human 
biological systems do. Learning in Neural networks 
means readjusting the synaptic relations that existed 
between the variously connected neurons until we reach 
the optimal solution. In 1943 the first artificial neuron 
was introduced by the neurophysiologist Warren 
McCulloch and the logician Walter Pits. This research 
paper is formulated according to the following. Section 2 
describes the related work. Section 3 represents the back-
propagation learning algorithm. Section 4 presents the 
redial base function. Section 5 describes the constructive 
models. Section 6 discusses the experimental results. 
Finally, Section 7 discusses the conclusion and future work. 

Literature Review 

The Soft Computing technique is recently used in 
many research fields. These techniques are developed by 
(Zadeh, 1994) which contain different algorithms 
architecture such as the Fuzzy Logic, neurocomputing 
like neural networks and probabilistic reasoning. Later, 
the field is extended to include other new techniques such 
as genetic algorithms, genetic programming, swarm 
intelligence…etc. All these techniques played a vital role 
in developing and improving the research area (Kaushik et 
al., 2012; Huang et al., 2003). Soft Computing techniques 
were also used in processing and treating software cost 
estimation problems. The authors (Feng et al., 2010) 
implemented the genetic programming algorithm to 
optimize and improve the performance of back-
propagation neural network to reduce the construction 
cost for software estimation. The authors (Shepper and 
Schofield, 1997) also used neural network in optimizing 
and treating the cost estimation models. A fuzzy logic 
using different techniques was also used to process the 
famous COCOMO model (Kaushik et al., 2012). The 
Fuzzy Logic technique using Takagi Sugeno model was 
used to find out how the rules can contribute in solving 
the software effort estimation problem as presented by 
the authors (Sheta and Aljahdali, 2013). Moreover, the 
author (Sheta, 2006) used the genetic programming to 
estimate the COCOMO model parameters for the NASA 
software project. The authors (Ghatasheh et al., 2015) 
used the firefly algorithm for optimizing the software 
effort estimation models. A neural network was also 
strongly presented in solving the software cost 
estimation problem as presented by (Singh et al., 2011). 

The authors (Oliveira et al., 2010) used the Hybrid 
method for selecting parameters and optimizing the 
model in order to clarify the impact of using GA in 
feature selection and effort estimation. The authors 
(Sehra et al., 2011) used the soft computing techniques 
for software project effort estimation where the NN, FL 
and GP were used for estimating the project efforts. In 
this paper, the interest and motivation of processing 
such type of problem comes from the real and historical 
importance in processing the software cost estimation 
problem as presented in the above - related works.  

Back-Propagation Learning Algorithm 

ANN with back-propagation algorithm considered as 
one of the most important learning algorithms used tell 
now. Back-propagation (BP) was introduced by David 
Rumelhart, Geoffrey Hinton and Ronald Williams 1986. 
It is considered as the fastest and the workhorse of 
learning in a neural network. The working mechanism of 
the back-propagation neural network is based on the 
concept of learning by example. This means that the user 
should give the neural network the examples of what he 
wants (desired output) and the network change the 
weights of the network’s related to that, when training is 
completed, the output will be estimated according to the 
desired one which is called the (target output) for a 
particular input. The Back-propagation Artificial 
Network still proves its efficiency in a variety of 
application solving numerous serious real-life problems 
in finance sectors, cancer disease recognition (Braik and 
Sheta, 2011), science, forecasting (Baareh et al., 2006; 
Sheta et al., 2015; 2018), feature extraction (Al-Batah et 

al., 2010), classifications (Seethe et al., 2007; Hongjun 
et al., 1996; El-Sayyad et al., 2015), face recognition 
(Radha and Nallammal, 2011), Fingerprint recognition 
(Al-Najjar and Sheta, 2008) etc. The back-propagation 
artificial neural is used in this paper to solve the software 
cost estimation problem. ANN mostly, formulated from 
three layers, i.e. the input, hidden and the output. The 
weighted sum of the input neurons specifies the 
nonlinear activation (i.e. sigmoid) function argument 
(Baareh et al., 2006). Let x1(p), x2(p)....xn(p) be the 
inputs of the network and let y1(p), y2(p),…,yn(p) be the 
required output. The iteration number is defined by P. 
The function of the back-propagation neural network is 
illustrated as in (El-Sayyad et al., 2015): 
 
1. Equation 1 represents the output calculated from the 

hidden layer:  
 

1

( ) [ ( ) ( ) ]
n

j i ij j
i

y p sigmoid x p w p θ
=

= −∑  (1) 

 
The number of input neurons is represented by n, j 
which represents the hidden layer number, wij 
represent the calculated mapped weights between 



Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331 

DOI: 10.3844/jcssp.2019.321.331 

 

323 

the inputs layer to the hidden layer and from the 
hidden to the output layer, θ is a threshold value: 
 

2. Equation 2 represents the implemented sigmoid 
function: 

 

( )

1
( )

1 j
j x p

y p

e
−

=

+

 (2) 

 
3. Equation 3 represents the calculated output of the 

output layer: 
 

1

( ) [ ( ) ( ) ]
m

k jk jk j
j

y p sigmoid x p w p θ
=

= −∑  (3) 

 
where, m is the number of inputs of neuron k in the 
output layer 

4. Equation 4 represents the Error Gradient calculated 
from the output layer: 

 

( ) ( )[1 ( )] ( )k k k kp y p y p e pδ = −  (4) 

 
where ek(p) is the output layer error: 

 

,

( ) ( ) ( )
d k

k ke p y p y p= −  (5) 

 
5. Equation 6 represents the ANN calculated weights:  

 
( ) ( ) ( )jk j kw p y p pα δ∆ = +  (6) 

 
6. Readjust the ANN weights using Eq. 7. 

 
( 1) ( ) ( )jk jk jkw p w p w p+ = + ∆  (7) 

 

7. Equation 8 represent the calculated gradient error of 
the hidden layer: 

 

1

( ) ( )[1 ( )] ( ) ( )

i

j j j k jk

k

p y p y p p w pδ δ

=

= − ∑  (8) 

 
8. The weights are recalculated further using Eq. 9. 

 
( ) ( ) ( )ij i jw p x p pα δ∆ = +  (9) 

 
9. Equation 10 represents the readjusted weights: 

 
( 1) ( ) ( )ij ij ijw p w p w p+ = + ∆  (10) 

 
The structure of the back-propagation neural network 

is shown in Fig. 1.  

Radial Basis Function (RBF) Networks 

Radial Basis Function (RBF) Networks derives from 
the theory of function approximation, it is a way of 
learning, very fast and very good in interpolation 
(Harikumar and Vijayakumar, 2013). The constructed 
Radial Basis Function (RBF) consists of two feed-forward 
networks layers, input, hidden and output layers. The input 
layers used to read the inputs into the network for a process, 
a series of radial basis functions (e.g. Gaussian functions) 
were executed by the hidden nodes and the linear 
summation functions were also executed by the output 
nodes. When the network process started, the weights from 
both layers (input-hidden) and (hidden-output) were 
calculated. Moreover, if we have N data set of points in a 
space of multi-dimensional, this requires that every input 
vectors of the D dimension { }:   1,...,

p p
ix x i D= =  to be 

related     to    its     corresponding    target    output    p
t . 

 
 

Fig. 1: Back-propagation neural network 
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The purpose is to get a function f (x) such that 

( ) 1,...,p pf x t p N= ∀ = . The weights between the input-

hidden layers and the hidden-output layers were 
determined using Equation 11:  
 

 
w

tΦ =  (11) 

 
where, this can be written in a matrix form by defining 

the vectors { }, { }p

pt t w w= = and the matrix as:  

 

{ (|| ||)}q p

pq
x xφΦ = Φ = −  (12) 

 
where, this can finally be written as:  

 

( ) ( )
1

|| ||
N

q q p p
p

p
f x w x x tφ

=

= − =∑  (13) 

 
This operation can be clearly shown in Fig. 2. 

Constructive Models  

Two neural network algorithms were used in this 
paper, back-propagation algorithm compared to radial 
bases function. The constructed back-propagation 
network consists of three layers as shown in Fig. 3, an 
input layer, two hidden layers and one output layer. The 
input layer consists of three inputs that are product of 
complexity (CPLX), programmer capability (PCAP) and 
the thousand of source lines code (KSLOC), the first 
hidden layer consists of twenty fully interconnected 
neurons, the second hidden layer consists of ten fully 
interconnected neurons also and the output layer consists 
of one output that is the measured efforts. 
The radial base function consists of three layers, the 

input layer, one hidden layer and, one output layer. The 
input layer consists of three inputs as mentioned above 
that is CPLX, PCAP and the KSLOC, the hidden layer 
constituted from four fully interconnected neurons and 
finally, one output layer is produced i.e., the estimated 
efforts as shown in Fig. 4. 

 

 
 

Fig. 2: Radial base function neural network 

 

 
 

Fig. 3: Implemented back-propagation neural network 

1 

 

1 

 

P 

 
D 

 

N 

 

y 

 

Inputs 
 

Outputs 
 

Weights Xp 
 

CPLX 

 
PCAP 

 

KSLOC 

Input Layer   Hidden Layer1    Hidden Layer2     Output Layer 

 

1 

2 

1 

2 

10 

17 

20 

EFFORT 



Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331 

DOI: 10.3844/jcssp.2019.321.331 

 

325 

 
 

Fig. 4: Implemented radial base function neural network 
 

Experimental Results 

Data Collection 

In this paper, NASA public dataset is used. The 
dataset consists of 60 projects data (Singh and Sahoo, 
2011). The dataset consists of 17 attributes, but in this 
paper only four attributes are considered, three for the 
input, product complexity (CPLX), programmer 
capability (PCAP) and thousand of source lines of code 
(KLOC) and one for the output, that is efforts as shown in 
Table 1. The 60 datasets are actually divided into 45 for 
training and 15 for testing. This experiment is 
implemented using NN-Matlab toolbox. 

Evaluation Criteria 

In this paper, different evaluation criteria are used to 
measure and compare the actual and estimated efforts 
error as seen below: 
 
Correlation coefficient (R): 

 

1

2 2

1 1

ˆ( )( )

ˆ ˆ( ) ( )

n

i i
i

n n

i i
i i

y y y
R

y

y

yy y

=

= =

=

−

− −

−∑

∑ ∑

⌢

 (14) 

 
Mean Absolute Error (MAE): 

 

 
1

1
ˆ

n

i

MAE y y
n =

= −∑  (15) 

 
Root Mean Square Error (RMSE): 

 

( )
2

1

1
ˆ

n

i

RMSE y y
n =

= −∑   (16) 

 
• Relative Absolute Error (RAE): 
 

 1

1

ˆ

RAE

ˆ

n

i

n

i

y y

y y

=

=

−

=

−

∑

∑
  (17) 

Table 1: Data set with the actual and estimated efforts 

Project No CPLX PCAP KSLOC Efforts 

1 1 1 70.0 278.0 

2 2 1 227.0 1181.0 

3 2 2 177.9 1248.0 

4 2 3 115.8 480.0 

5 2 3 29.5 120.0 

6 2 3 19.7 60.0 

7 2 3 66.6 300.0 

8 2 3 5.5 18.0 

9 2 3 10.4 50.0 

10 2 3 14.0 60.0 

11 2 3 16.0 114.0 

12 2 3 6.5 42.0 

13 2 3 13.0 60.0 

14 2 3 8.0 42.0 

15 2 2 90.0 450.0 

16 2 3 15.0 90.0 

17 2 2 38.0 210.0 

18 2 2 10.0 48.0 

19 2 3 161.1 815.0 

20 2 3 48.5 239.0 

21 2 3 32.6 170.0 

22 2 3 12.8 62.0 

23 2 3 15.4 70.0 

24 2 3 16.3 82.0 

25 2 3 35.5 192.0 

26 2 3 25.9 117.6 

27 2 3 24.6 117.6 

28 2 3 7.7 31.2 

29 2 3 9.7 25.2 

30 2 3 2.2 8.4 

31 2 3 3.5 10.8 

32 2 3 8.2 36.0 

33 2 3 66.6 352.8 

34 2 1 150.0 324.0 

35 2 3 100.0 360.0 

36 2 2 100.0 215.0 

37 2 1 100.0 360.0 

38 2 2 15.0 48.0 

39 2 3 32.5 60.0 
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Table 1: Continue 

40 2 2 31.5 60.0 

41 2 2 6.0 24.0 

42 2 3 11.3 36.0 

43 2 1 20.0 72.0 

44 2 2 20.0 48.0 

45 2 2 7.5 72.0 

46 2 2 302.0 2400.0 

47 2 3 370.0 3240.0 

48 2 3 219.0 2120.0 

49 2 3 50.0 370.0 

50 2 2 101.0 750.0 

51 3 1 190.0 420.0 

52 2 3 47.5 252.0 

53 4 3 21.0 107.0 

54 3 1 42.3 2300.0 

55 3 2 79.0 400.0 

56 5 3 284.7 973.0 

57 5 3 282.1 1368.0 

58 2 2 78.0 571.4 

59 2 2 11.4 98.8 

60 2 2 19.3 155.0 

 

• Root relative Squared Error (RRSE): 
 

( )

( )

2

1

2

1

ˆ

RRSE

ˆ

n

i

n

i

y y

y y

=

=

−

=

−

∑

∑
 (18) 

 
where, y and ŷ are the actual and the estimated efforts and 

n is the number of measurements used in the experiment. 
Back-propagation performance: In this paper, the 

constructed back-propagation neural network consists 
of three layers as mentioned before three inputs that are 
the Product of Complexity (CPLX), Programmer 
Capability (PCAP) and thousand of source lines of 
code (KLOC), we have also two hidden layers the first 
one consists of 20 neurons and the second one consists 
of 10 neurons, in addition to one output layer. The 
correlation coefficient graph can be also shown in Fig. 5. 
The training and testing performance of the actual and 
estimated back-propagation neural network can be 
shown in Fig. 6 and 7. The different statistical results of 
error estimation functions for the back-propagation 
neural network at training and testing cases can be 
shown in Table 2 and 3.  

 

 
 

Fig. 5: Correlation Coefficient of the proposed NN 
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Fig. 6: BPNN Actual and estimated software effort-training 
 

 
 

Fig. 7: BPNN Actual and estimated software effort-testing case 
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According to the results obtained from the plotted 
figures and the different error evaluation criteria, it’s 
obvious that the performance of the back-propagation 
neural network in both training and testing cases is better 
than the redial base function. 
Redial Base Function performance: The constructed 

radial base function consists of two layers, the input layer 
that contains three inputs; the hidden layer contains four 
interconnected neurons and the output layer. The RBF 
correlation coefficient diagram can be shown in Fig. 8. 
 

Table 2: BPNN statistical measurements - training case 

Evaluation Criteria Results 

R_Coff 0.978470 

MAE 48.756835 

RMSE 69.731815 

RAE 27.043861 

RRSE 25.752251 

 

Table 3: BPNN statistical measurements- testing case 

Evaluation Criteria Results 

R_Coff 0.823361 

MAE 498.703556 

RMSE 755.400655 

RAE 59.816353 

RRSE 77.468770 

 

The training and testing performance of the actual 
and estimated radial base function network can be shown 
in Fig. 9. and 10. The different error estimation statistical 
functions results for the training and testing cases of the 
radial base function neural network can be shown in 
Table 4 and 5.  
The performance of the radial base function was 

satisfactory but not as the back-propagation neural 
network according to the results obtained from the 
plotted graphs and the error evaluation criteria. 
 
Table 4: RBF statistical measurements - training case 

Evaluation Criteria Results 

R_Coff 0.932815 

MAE 50.218568 

RMSE 97.577038 

RAE 27.854637 

RRSE 36.035609 

 

Table 5: RBF statistical measurements - testing case 

Evaluation Criteria Results 

R_Coff 0.715623 

MAE 502.337178 

RMSE 793.533455 

RAE 60.252183 

RRSE 81.379411 

 
 

Fig. 8: Correlation Coefficient of the proposed RBF 
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Fig. 9: Actual and estimated software effort-training case RBF 
 

 
 

Fig. 10: RBF Actual and estimated software effort-testing case
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Conclusion 

This paper is introduced to contribute in solving the 

problem of software effort and cost estimation by 

comparing two well known neural networks models. 

These proposed models used to help the project 

managers in planning, managing and avoiding the risks 

resulted from the unexpected problems and the delay that 

may happen during the project period. Actually, a 

comparison between the both models, back-propagation 

algorithm (BP) and Redial Base Function (RBF) was 

presented. In both models, training and testing cases are 

developed and the Figures that show the actual and 

estimated efforts are plotted, furthermore, the errors 

measurements are calculated. According to the results 

obtained we can say that the performs of the back-

propagation neural network in both cases training and 

testing are better than the radial base function, so the 

back-propagation algorithm proves, again and again, its 

efficiency in dealing with such types of problems. My 

future plan is to extend this work to cover other 

applications in soft computing techniques.  
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