

© 2019 Abdel Karim Baareh. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

Journal of Computer Science

Original Research Paper

Optimizing Software Effort Estimation Models Using Back-

Propagation Versus Radial Base Function Networks

Abdel Karim Baareh

Computer Science Department, Ajloun University College, Al-Balqa Applied University, Ajloun, Jordan

Article history
Received: 21-11-2018
Revised: 11-01-2019
Accepted: 09-03-2019

Email: baareh@bau.edu.jo

Abstract: Software development effort estimation becomes a very
important and vital tool for many researchers in different fields. Software
estimation used in controlling, organizing and achieving projects in the
required time and cost to avoid the financial punishments due to the time
delay and other different circumstances that may happen. Good project cost
estimation will lead to project success and reduce the risk of project failure.
In this paper, two neural network models are used, the Back-propagation
algorithm versus the redial base algorithm. A comparison is done between
the suggested models to find the best model that can reduce the project risks
related to time and increase the profit by achieving the demands of the
required project in time. The two models are implemented on a 60 of
NASA public dataset, divided into 45 data samples for training and 15 data
samples for testing. From the result obtained we can clearly say that the
performance of the back-propagation neural network in training and testing
cases is actually better than the radial base function, so the back-
propagation algorithm can be recommended as a useful tool in the software
effort and cost estimation.

Keywords: Effort Estimation, NASA Software, Artificial Neural Network,
Back-Propagation, Radial Base Function

Introduction

Building and estimating successful software is an
important task that attracted many software developers
(Boraso et al., 1996; Dolado, 2011). Bidding, budgeting
and planning are very important factors that affect
project success. Accurate defining of these factors will
reflect on the project size, time, efforts, complexity and
the different required tools to avoid the sudden and
unexpected events that may happen during the project
duration, that cause a project loss. Good software
estimation gives exact feedback about the project
progress that allows better resource utilization, allocation
and use (Boehm, 1981).
In Software Technology Conference held in 1998,

Dr. Patricia Sanders, Director of Test Systems
Engineering and Evaluation at OUSD, stated that 40% of
the DoD’s software development costs are wasted and
paid on reworking the software, that caused an annual
loss of $18 billion on the year of 2000. Dr. Patricia
added that only 16% of the developed software could
finish in the accurate time and budget.
Effort estimation was mainly affected by the

Developed Line of Code (DLOC), where the instructions
of the program and statements were included. This

model worked on 63 software projects and its core
function based on finding and determining the
arithmetical relationship between three important
variables; the time of software development, human
efforts during the work months and effort of
maintenance (Kemere, 1987).
The Constructive Cost Model (COCOMO) is

considered as one of the most important, popular and
famous models used to estimate the software effort which
is developed by Boehm (1981; Boehm et al., 1995).
Numerous techniques were used by different

researchers for building an efficient estimation models
structure to process the software cost estimation
problem. Artificial neural network with different
architecture was one of these models that proved its
solidity and efficiency in this field (Shepper and
Schoeld, 1997) moreover, the fuzzy logic used by
(Kumar et al., 1994; Kaushik et al., 2012) and
evolutionary algorithms such as genetic algorithm and
genetic programming was also strongly used to deal with
such types of problems.
Artificial neural network algorithm with back-

propagation algorithm versus the radial base function is
used in this paper. The comparison between the two
models is presented. This comparison will contribute in

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

322

selecting the best neural network model for solving the
software effort estimation problem. Artificial Neural
Networks (ANN) works in a similar way as the human
biological neural system acts, exactly comparable to the
way how the brain operates and process information
(Negnevitsky, 2005). The brain consists of large
numbers of small cells that are fully interconnected to
process the data. Also, the Artificial Neural Networks
(ANN) consists of a great amount of fully and strongly
interconnected cells called neurons, all working to gather
in a systematic manner to solve specific problems, which
also learn by example similar to the way the human
biological systems do. Learning in Neural networks
means readjusting the synaptic relations that existed
between the variously connected neurons until we reach
the optimal solution. In 1943 the first artificial neuron
was introduced by the neurophysiologist Warren
McCulloch and the logician Walter Pits. This research
paper is formulated according to the following. Section 2
describes the related work. Section 3 represents the back-
propagation learning algorithm. Section 4 presents the
redial base function. Section 5 describes the constructive
models. Section 6 discusses the experimental results.
Finally, Section 7 discusses the conclusion and future work.

Literature Review

The Soft Computing technique is recently used in
many research fields. These techniques are developed by
(Zadeh, 1994) which contain different algorithms
architecture such as the Fuzzy Logic, neurocomputing
like neural networks and probabilistic reasoning. Later,
the field is extended to include other new techniques such
as genetic algorithms, genetic programming, swarm
intelligence…etc. All these techniques played a vital role
in developing and improving the research area (Kaushik et
al., 2012; Huang et al., 2003). Soft Computing techniques
were also used in processing and treating software cost
estimation problems. The authors (Feng et al., 2010)
implemented the genetic programming algorithm to
optimize and improve the performance of back-
propagation neural network to reduce the construction
cost for software estimation. The authors (Shepper and
Schofield, 1997) also used neural network in optimizing
and treating the cost estimation models. A fuzzy logic
using different techniques was also used to process the
famous COCOMO model (Kaushik et al., 2012). The
Fuzzy Logic technique using Takagi Sugeno model was
used to find out how the rules can contribute in solving
the software effort estimation problem as presented by
the authors (Sheta and Aljahdali, 2013). Moreover, the
author (Sheta, 2006) used the genetic programming to
estimate the COCOMO model parameters for the NASA
software project. The authors (Ghatasheh et al., 2015)
used the firefly algorithm for optimizing the software
effort estimation models. A neural network was also
strongly presented in solving the software cost
estimation problem as presented by (Singh et al., 2011).

The authors (Oliveira et al., 2010) used the Hybrid
method for selecting parameters and optimizing the
model in order to clarify the impact of using GA in
feature selection and effort estimation. The authors
(Sehra et al., 2011) used the soft computing techniques
for software project effort estimation where the NN, FL
and GP were used for estimating the project efforts. In
this paper, the interest and motivation of processing
such type of problem comes from the real and historical
importance in processing the software cost estimation
problem as presented in the above - related works.

Back-Propagation Learning Algorithm

ANN with back-propagation algorithm considered as
one of the most important learning algorithms used tell
now. Back-propagation (BP) was introduced by David
Rumelhart, Geoffrey Hinton and Ronald Williams 1986.
It is considered as the fastest and the workhorse of
learning in a neural network. The working mechanism of
the back-propagation neural network is based on the
concept of learning by example. This means that the user
should give the neural network the examples of what he
wants (desired output) and the network change the
weights of the network’s related to that, when training is
completed, the output will be estimated according to the
desired one which is called the (target output) for a
particular input. The Back-propagation Artificial
Network still proves its efficiency in a variety of
application solving numerous serious real-life problems
in finance sectors, cancer disease recognition (Braik and
Sheta, 2011), science, forecasting (Baareh et al., 2006;
Sheta et al., 2015; 2018), feature extraction (Al-Batah et

al., 2010), classifications (Seethe et al., 2007; Hongjun
et al., 1996; El-Sayyad et al., 2015), face recognition
(Radha and Nallammal, 2011), Fingerprint recognition
(Al-Najjar and Sheta, 2008) etc. The back-propagation
artificial neural is used in this paper to solve the software
cost estimation problem. ANN mostly, formulated from
three layers, i.e. the input, hidden and the output. The
weighted sum of the input neurons specifies the
nonlinear activation (i.e. sigmoid) function argument
(Baareh et al., 2006). Let x1(p), x2(p)....xn(p) be the
inputs of the network and let y1(p), y2(p),…,yn(p) be the
required output. The iteration number is defined by P.
The function of the back-propagation neural network is
illustrated as in (El-Sayyad et al., 2015):

1. Equation 1 represents the output calculated from the

hidden layer:

1

() [() ()]
n

j i ij j
i

y p sigmoid x p w p θ
=

= −∑ (1)

The number of input neurons is represented by n, j
which represents the hidden layer number, wij
represent the calculated mapped weights between

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

323

the inputs layer to the hidden layer and from the
hidden to the output layer, θ is a threshold value:

2. Equation 2 represents the implemented sigmoid
function:

()

1
()

1 j
j x p

y p

e
−

=

+

 (2)

3. Equation 3 represents the calculated output of the

output layer:

1

() [() ()]
m

k jk jk j
j

y p sigmoid x p w p θ
=

= −∑ (3)

where, m is the number of inputs of neuron k in the
output layer

4. Equation 4 represents the Error Gradient calculated
from the output layer:

() ()[1 ()] ()k k k kp y p y p e pδ = − (4)

where ek(p) is the output layer error:

,

() () ()
d k

k ke p y p y p= − (5)

5. Equation 6 represents the ANN calculated weights:

() () ()jk j kw p y p pα δ∆ = + (6)

6. Readjust the ANN weights using Eq. 7.

(1) () ()jk jk jkw p w p w p+ = + ∆ (7)

7. Equation 8 represent the calculated gradient error of
the hidden layer:

1

() ()[1 ()] () ()

i

j j j k jk

k

p y p y p p w pδ δ

=

= − ∑ (8)

8. The weights are recalculated further using Eq. 9.

() () ()ij i jw p x p pα δ∆ = + (9)

9. Equation 10 represents the readjusted weights:

(1) () ()ij ij ijw p w p w p+ = + ∆ (10)

The structure of the back-propagation neural network

is shown in Fig. 1.

Radial Basis Function (RBF) Networks

Radial Basis Function (RBF) Networks derives from
the theory of function approximation, it is a way of
learning, very fast and very good in interpolation
(Harikumar and Vijayakumar, 2013). The constructed
Radial Basis Function (RBF) consists of two feed-forward
networks layers, input, hidden and output layers. The input
layers used to read the inputs into the network for a process,
a series of radial basis functions (e.g. Gaussian functions)
were executed by the hidden nodes and the linear
summation functions were also executed by the output
nodes. When the network process started, the weights from
both layers (input-hidden) and (hidden-output) were
calculated. Moreover, if we have N data set of points in a
space of multi-dimensional, this requires that every input
vectors of the D dimension { }: 1,...,

p p
ix x i D= = to be

related to its corresponding target output p
t .

Fig. 1: Back-propagation neural network

x1

x2

x3

x4

W1

W2

W3

W4

X1

X2

X3

X4

Activation

Function f

 Σ

Input Output

y

θ

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

324

The purpose is to get a function f (x) such that

() 1,...,p pf x t p N= ∀ = . The weights between the input-

hidden layers and the hidden-output layers were
determined using Equation 11:

w

tΦ = (11)

where, this can be written in a matrix form by defining

the vectors { }, { }p

pt t w w= = and the matrix as:

{ (|| ||)}q p

pq
x xφΦ = Φ = − (12)

where, this can finally be written as:

() ()
1

|| ||
N

q q p p
p

p
f x w x x tφ

=

= − =∑ (13)

This operation can be clearly shown in Fig. 2.

Constructive Models

Two neural network algorithms were used in this
paper, back-propagation algorithm compared to radial
bases function. The constructed back-propagation
network consists of three layers as shown in Fig. 3, an
input layer, two hidden layers and one output layer. The
input layer consists of three inputs that are product of
complexity (CPLX), programmer capability (PCAP) and
the thousand of source lines code (KSLOC), the first
hidden layer consists of twenty fully interconnected
neurons, the second hidden layer consists of ten fully
interconnected neurons also and the output layer consists
of one output that is the measured efforts.
The radial base function consists of three layers, the

input layer, one hidden layer and, one output layer. The
input layer consists of three inputs as mentioned above
that is CPLX, PCAP and the KSLOC, the hidden layer
constituted from four fully interconnected neurons and
finally, one output layer is produced i.e., the estimated
efforts as shown in Fig. 4.

Fig. 2: Radial base function neural network

Fig. 3: Implemented back-propagation neural network

1

1

P

D

N

y

Inputs

Outputs

Weights Xp

CPLX

PCAP

KSLOC

Input Layer Hidden Layer1 Hidden Layer2 Output Layer

1

2

1

2

10

17

20

EFFORT

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

325

Fig. 4: Implemented radial base function neural network

Experimental Results

Data Collection

In this paper, NASA public dataset is used. The
dataset consists of 60 projects data (Singh and Sahoo,
2011). The dataset consists of 17 attributes, but in this
paper only four attributes are considered, three for the
input, product complexity (CPLX), programmer
capability (PCAP) and thousand of source lines of code
(KLOC) and one for the output, that is efforts as shown in
Table 1. The 60 datasets are actually divided into 45 for
training and 15 for testing. This experiment is
implemented using NN-Matlab toolbox.

Evaluation Criteria

In this paper, different evaluation criteria are used to
measure and compare the actual and estimated efforts
error as seen below:

Correlation coefficient (R):

1

2 2

1 1

ˆ()()

ˆ ˆ() ()

n

i i
i

n n

i i
i i

y y y
R

y

y

yy y

=

= =

=

−

− −

−∑

∑ ∑

⌢

 (14)

Mean Absolute Error (MAE):

1

1
ˆ

n

i

MAE y y
n =

= −∑ (15)

Root Mean Square Error (RMSE):

()
2

1

1
ˆ

n

i

RMSE y y
n =

= −∑ (16)

• Relative Absolute Error (RAE):

 1

1

ˆ

RAE

ˆ

n

i

n

i

y y

y y

=

=

−

=

−

∑

∑
 (17)

Table 1: Data set with the actual and estimated efforts

Project No CPLX PCAP KSLOC Efforts

1 1 1 70.0 278.0

2 2 1 227.0 1181.0

3 2 2 177.9 1248.0

4 2 3 115.8 480.0

5 2 3 29.5 120.0

6 2 3 19.7 60.0

7 2 3 66.6 300.0

8 2 3 5.5 18.0

9 2 3 10.4 50.0

10 2 3 14.0 60.0

11 2 3 16.0 114.0

12 2 3 6.5 42.0

13 2 3 13.0 60.0

14 2 3 8.0 42.0

15 2 2 90.0 450.0

16 2 3 15.0 90.0

17 2 2 38.0 210.0

18 2 2 10.0 48.0

19 2 3 161.1 815.0

20 2 3 48.5 239.0

21 2 3 32.6 170.0

22 2 3 12.8 62.0

23 2 3 15.4 70.0

24 2 3 16.3 82.0

25 2 3 35.5 192.0

26 2 3 25.9 117.6

27 2 3 24.6 117.6

28 2 3 7.7 31.2

29 2 3 9.7 25.2

30 2 3 2.2 8.4

31 2 3 3.5 10.8

32 2 3 8.2 36.0

33 2 3 66.6 352.8

34 2 1 150.0 324.0

35 2 3 100.0 360.0

36 2 2 100.0 215.0

37 2 1 100.0 360.0

38 2 2 15.0 48.0

39 2 3 32.5 60.0

CPLX

PCAP

KSLOC

Input Layer Hidden Layer1 Output Layer

EFFORT

1

4

2

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

326

Table 1: Continue

40 2 2 31.5 60.0

41 2 2 6.0 24.0

42 2 3 11.3 36.0

43 2 1 20.0 72.0

44 2 2 20.0 48.0

45 2 2 7.5 72.0

46 2 2 302.0 2400.0

47 2 3 370.0 3240.0

48 2 3 219.0 2120.0

49 2 3 50.0 370.0

50 2 2 101.0 750.0

51 3 1 190.0 420.0

52 2 3 47.5 252.0

53 4 3 21.0 107.0

54 3 1 42.3 2300.0

55 3 2 79.0 400.0

56 5 3 284.7 973.0

57 5 3 282.1 1368.0

58 2 2 78.0 571.4

59 2 2 11.4 98.8

60 2 2 19.3 155.0

• Root relative Squared Error (RRSE):

()

()

2

1

2

1

ˆ

RRSE

ˆ

n

i

n

i

y y

y y

=

=

−

=

−

∑

∑
 (18)

where, y and ŷ are the actual and the estimated efforts and

n is the number of measurements used in the experiment.
Back-propagation performance: In this paper, the

constructed back-propagation neural network consists
of three layers as mentioned before three inputs that are
the Product of Complexity (CPLX), Programmer
Capability (PCAP) and thousand of source lines of
code (KLOC), we have also two hidden layers the first
one consists of 20 neurons and the second one consists
of 10 neurons, in addition to one output layer. The
correlation coefficient graph can be also shown in Fig. 5.
The training and testing performance of the actual and
estimated back-propagation neural network can be
shown in Fig. 6 and 7. The different statistical results of
error estimation functions for the back-propagation
neural network at training and testing cases can be
shown in Table 2 and 3.

Fig. 5: Correlation Coefficient of the proposed NN

R for Training data: 0.97847 R for Training data: 0.82336

1200

1000

800

600

400

200

3000

2500

2000

1500

1000

500

E
s
ti
m
a
te
d

E
s
ti
m
a
te
d

200 400 600 800 1000 1200 1000 2000 3000

Observed Observed

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

327

Fig. 6: BPNN Actual and estimated software effort-training

Fig. 7: BPNN Actual and estimated software effort-testing case

Observed

Estimated

1500

1000

500

0

Observed and Estimated Software Effort-Training Case

0 5 10 15 20 25 30 35 40 45

Days

Error Difference
400

200

0

-200

-400
0 5 10 15 20 25 30 35 40 45

Days

Observed and Estimated Software Effort-Training Case

Observed

Estimated

4000

3000

2000

1000

0
0 5 10 15 Days

Error Difference
3000

2000

1000

0

-1000
 0 5 10 15

Days

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

328

According to the results obtained from the plotted
figures and the different error evaluation criteria, it’s
obvious that the performance of the back-propagation
neural network in both training and testing cases is better
than the redial base function.
Redial Base Function performance: The constructed

radial base function consists of two layers, the input layer
that contains three inputs; the hidden layer contains four
interconnected neurons and the output layer. The RBF
correlation coefficient diagram can be shown in Fig. 8.

Table 2: BPNN statistical measurements - training case

Evaluation Criteria Results

R_Coff 0.978470

MAE 48.756835

RMSE 69.731815

RAE 27.043861

RRSE 25.752251

Table 3: BPNN statistical measurements- testing case

Evaluation Criteria Results

R_Coff 0.823361

MAE 498.703556

RMSE 755.400655

RAE 59.816353

RRSE 77.468770

The training and testing performance of the actual
and estimated radial base function network can be shown
in Fig. 9. and 10. The different error estimation statistical
functions results for the training and testing cases of the
radial base function neural network can be shown in
Table 4 and 5.
The performance of the radial base function was

satisfactory but not as the back-propagation neural
network according to the results obtained from the
plotted graphs and the error evaluation criteria.

Table 4: RBF statistical measurements - training case

Evaluation Criteria Results

R_Coff 0.932815

MAE 50.218568

RMSE 97.577038

RAE 27.854637

RRSE 36.035609

Table 5: RBF statistical measurements - testing case

Evaluation Criteria Results

R_Coff 0.715623

MAE 502.337178

RMSE 793.533455

RAE 60.252183

RRSE 81.379411

Fig. 8: Correlation Coefficient of the proposed RBF

R for Training data: 0.93281 R for Training data: 0.71562

1200

1000

800

600

400

200

3000

2500

2000

1500

1000

500

E
s
ti
m
a
te
d

E
s
ti
m
a
te
d

0 500 1000 0 1000 2000 3000

Observed Observed

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

329

Fig. 9: Actual and estimated software effort-training case RBF

Fig. 10: RBF Actual and estimated software effort-testing case

Observed

Estimated

1500

1000

500

0

-500

Observed and Estimated Software Effort-Training Case

0 5 10 15 20 25 30 35 40 45
Days

Error Difference
400

200

0

-200

-400
0 5 10 15 20 25 30 35 40 45

Days

Observed and Estimated Software Effort-Testing Case

Observed

Estimated

4000

2000

0

-2000

0 5 10 15
Days

Error Difference
3000

2000

1000

0

-1000
0 5 10 15

Days

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

330

Conclusion

This paper is introduced to contribute in solving the

problem of software effort and cost estimation by

comparing two well known neural networks models.

These proposed models used to help the project

managers in planning, managing and avoiding the risks

resulted from the unexpected problems and the delay that

may happen during the project period. Actually, a

comparison between the both models, back-propagation

algorithm (BP) and Redial Base Function (RBF) was

presented. In both models, training and testing cases are

developed and the Figures that show the actual and

estimated efforts are plotted, furthermore, the errors

measurements are calculated. According to the results

obtained we can say that the performs of the back-

propagation neural network in both cases training and

testing are better than the radial base function, so the

back-propagation algorithm proves, again and again, its

efficiency in dealing with such types of problems. My

future plan is to extend this work to cover other

applications in soft computing techniques.

Acknowledgment

This work has been carried out during sabbatical

leave granted to the author Abdel Karim Mohamed Ali

Baareh from Ajloun College - Al-Balqa Applied

University (BAU) during the first semester of the

academic year 2018/2019 and the second semester of the

academic year 2018/2019.

Ethics

The author testifies that this article is original and has
not been published elsewhere and that ethics were
considered for this research.

References

Al-Batah, M.S., N.A. Mat Isa, K.Z. Zamli and K.A.
Azizli, 2010. Modified Recursive Least Squares
algorithm to train the Hybrid Multilayered
Perceptron (HMLP) network. Applied Soft
Computing, 10: 236-244.

 DOI: 10.1016/j.asoc.2009.06.018

Al-Najjar, Y. and A.F. Sheta, 2008. Minutiae Extraction

for Fingerprint Recognition. Proceedings of the 5th

IEEE International Multi-Conference on System,

Signal and Devices (SSD'08), Amman, Jordan.

 DOI: 10.1109/SSD.2008.4632892

Baareh, A.K.M., A.F. Sheta and K.A. Khnaifes, 2006.

Forecasting River Flow in the USA: A Comparison

between Auto-Regression and Neural Network Non-

Parametric Models. J. Computer Sci., 2: 775-780.

Boehm, B., B. Clark, E. Horowitz and C. Westland,
1995. Cost models for future software life cycle
process: COCOMO2. To appear in Annals of
Software Engineering Special Volume on Software
Process and Product Measurement, Science
Publishers, Amsterdam, The Netherlands.

Boehm, W.B., 1981. Software Engineering Economics.
Englewood Cliffs, NJ. Prentice-Hall, Australia.
ISBN-10: 0138221227.

Boraso, M. and C. Montangero and H. Sedehi, 1996.
Software Cost Estimation: An experimental study
of model performances. Technical Report del
Dipartimento di Informatica. Università di Pisa,
Pisa, IT.

Braik, M. and A.F. Sheta, 2011. A new approach for
potentially breast cancer detection using extracted
features and artificial neural networks. J. Intelligent
Computing, 2: 54-71.

Dolado, J.J., 2001. On the problem of the software cost
function. Information Software Technol., 43: 61-72.

El-Sayyad, A., A.M. Nassef and A.K. Baareh, 2015.
Cardiac arrhythmia classification using boosted
decision trees. International Review Computers
Software, 10: 280-289.

 DOI: 10.15866/irecos.v10i3.5359
Feng, W., W. Zhu and Y. Zhou, 2010. The application of

genetic algorithm and neural network in
construction cost estimate. Proceedings of the 3rd
International Symposium on Electronic Commerce
and Security Workshops (ISECS’10), July. 29-31,
Guangzhou, P.R. China, pp: 151-155.

Ghatasheh, N., H. Faris, I. Aljarah and R.M.H. Al-
Sayyed, 2015. Optimizing software estimation models
using firefly algorithm. J. Software Eng. Applications,
8: 133-142.

Harikumar, R. and T. Vijayakumar, 2013. A comparison
of Elman and Radial Basis Function (RBF) neural
networks in optimization of fuzzy outputs for
epilepsy risk levels classification from EEG signals.
Int. J. Soft Computing Engineering, 2: 295-303.

Hongjun, L., R. Setiono and H. Liu, 1996. Effective data
mining using neural networks. IEEE Trans.
Knowledge Data Eng., 8: 957-961.

 DOI: 10.1109/69.553163
Huang, X., L.F. Capretz, J. Ren and D. Ho, 2003. A

neuro-fuzzy model for software cost estimation.
Proceedings of the 3rd Conference on Quality
Software, Nov. 7-7, IEEE Xplore Press, USA.

 DOI: 10.1109/QSIC.2003.1319094.

Kaushik, A., A.K. Soni and R. Soni, 2012. A

comparative study on fuzzy approaches for

COCOMO‟s effort estimation. Int. J. Computer

Theory Engineering, 4: 990-993.

 DOI: 10.7763/IJCTE

Kemere, C.F., 1987. An empirical validation of Software

cost estimation models. Communication ACM, 30:

416-429. DOI: 10.1145/22899.22906

Abdel Karim Baareh / Journal of Computer Science 2019, 15 (3): 321.331

DOI: 10.3844/jcssp.2019.321.331

331

Kumar, S., B.A. Krishna and P.S. Satsangi, 1994. Fuzzy
systems and neural networks in software
engineering project management. Applied
Intelligent, 4: 31-52. DOI: 10.1007/BF00872054

Negnevitsky, M., 2005. Artificial Intelligence: A Guide
to Intelligent Systems, 2nd Edn., Addison-Wesley,
Boston. ISBN-10: 0-321-20466-2, pp: 435.

Oliveira, A.L.I, P.L. Braga, R.M.F. Lima and M.L.
Cornélio, 2010. GA-based method for feature
selection and parameters optimization for machine
learning regression applied to software effort
estimation. Information Software Technol., 52:
1155-1166. DOI: 10.1016/j.infsof.2010.05.009

Radha, V. and N. Nallammal, 2011. Neural network based
face recognition using RBFN classifier. Proceedings of
the World Congress on Engineering and Computer
Science, Oct. 19-21, San Francisco, USA.

Seethe, M., I.V. Muralikrisha and B.L. Deekshatulu,
2007. Artificial neural networks and other methods
of image classification. J. Theoretical Applied
Information Technol.

Sehra, S.K., S. Brar and N. Kaur, 2011. Soft computing
techniques for software project effort estimation.
Advanced Computer Mathematical Sci., 2: 160-167.

Shepper, M. and C. Schoeld, 1997. Estimating software

project effort using analogies. IEEE Trans. Software

Eng., 23: 736-743.

Sheta, A., H. Faris and A.K. Baareh, 2015. Predicting

stock market exchange prices for the reserve Bank

of Australia using auto-regressive feed-forward

neural network model. Int. Rev. Computers

Software. DOI: 10.15866/irecos.v10i7.6222

Sheta, A.F. and S. Aljahdali, 2013. Software effort

estimation inspired by COCOMO and FP models:

A fuzzy logic approach. Int. J. Advanced

Computer Applications, 4: 192-197.

 DOI: 10.14569/issn.2156-5570
Sheta, F., 2006. Estimation of the COCOMO model

parameters using genetic algorithms for NASA
software projects. J. Computer Sci., 2: 118-123.

Sheta, F., A. Katangur and A.K. Baareh, 2018.
Temperature forecasting: A comparison between
parametric and non-parametric models. Appl. Math.
Inf. Sci., 12: 1099-1108.

 DOI: 10.18576/amis/120604

Singh, J. and B. Sahoo, 2011. Software effort estimation

with different artificial neural network. Proceedings

of the IJCA Special Issue on 2nd National

Conference- Computing, Communication and

Sensor Network CCSN, Foundation of Computer

Science, New York, USA, pp: 13-17.

Zadeh, L.A., 1994. Soft computing and fuzzy logic. J.

IEEE Software, 11: 48-56. DOI: 10.1109/52.329401

