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Abstract: The term ‘multi-temporal’ refers to data recorded by sensors 

scanning the same scene at different dates and times. In this research, 

Sentinel-2A images were selected for the analyses. Sentinel-2 is a very new 

program of the European Space Agency (ESA) designed for fine spatial 

resolution global monitoring. Land Cover–Land Use (LCLU) classification 

tasks can take advantage of the fusion of radar and optical remote sensing 

data, generally leading to increased mapping accuracy. Here we propose a 

methodological approach to fuse information from the new European Space 

Agency Sentinel-1 and Sentinel-2 imagery for accurate land cover mapping 

of a portion of the South Solok region, West Sumatra. Data pre-processing 

used the European Space Agency’s Sentinel Application Platform and the 

SEN2COR toolboxes. The two main objectives of this study are to evaluate 

the potential use and synergetic effects of ESA Sentinel-1A C-band SAR 

and Sentinel-2A Optical data for classification and mapping of LCLU. 

First, the pre-processing chain supported by sensor-specific toolboxes 

developed by ESA represents a reliable and fast approach for the 

preparation of ready-to-process imagery. Second, an investigation to derive 

a methodological framework to integrate Sentinel-1 and Sentinel-2 imagery 

for land cover mapping by integrating radar and optical imagery has been 

set up and tested. The results of object-based classification produced higher 

accuracy than pixel-based classifications if the same type of classifier is 

used. The classifier algorithms using k-Nearest Neighbors (k-NN) function 

performed slightly better, with an overall accuracy of 91.30%. 
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Introduction 

South Solok is in the Bukit Barisan mountains and in 

the Watermelon fault area of Indonesia. The region is 

located at 01°17'13"-01°46'45" South Latitude and 

100°53'24"-101°26'27" East Longitude. It covers an area 

of around 3,590 Km
2
 and occupies the southern part of 

West Sumatra. Administratively, the Government of 

South Solok consists of seven sub-districts and 32 

Nagari. The district has a lot of natural resources that 

provide development through mining, plantations and 

agriculture. Gaining an accurate picture of Land Use and 

Land Cover (LULC) is an important part of the planning 

or implementation of development projects. The demand 

for LULC mapping has led the government to monitor 

natural resources potential regularly. For example, 

agricultural areas change significantly during a growing 

season because of phenology. Remote Sensing (RS), 

specifically Synthetic Aperture Radar (SAR) image 

radar, is more effective at land cover mapping in 

comparison with ground surveying methods. This is 

because radar is more sensitive to physical structures like 

crops and the water content of biomass/vegetation. 

Innovations in remote sensing allow testing to be carried 

out using active Synthetic Aperture Radar (SAR) or passive 

(optical and thermal range, multispectral and hyper-

spectral). SAR can penetrate clouds and can perform land 

cover mapping with or without sunlight. Remote sensors 

are regularly used in landslides, subsidence, or to identify 

types of vegetation and to observe changes to land cover. 

Satellite data and high-resolution imagery (Landsat, 

Sentinel, Spot, QuickBird) help to overcome certain 

limitations of RS by improving processes like image 

sharpening, classification of land, detection of changes 

and object identification. Recently, high-resolution RS 

data are considered indispensable for monitoring 

essential aspects of the Earth’s surfaces (Li et al., 2011; 

Yuhendra, 2017; Yuhendra et al., 2012). For the high-

resolution image, an optical image from Sentinel-2 is 

used along with the SAR image from Sentinel 1A. 
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Table 1: Detail of information spectral bands of sentinel-2 images 

Sentinel- 2A (Optical Data) 
---------------------------------------------------------------------------------------------------------------------------------------------------------------- 
Band No Wavelength (µm) Spatial Resolution (m) Band No Wavelength (µm) Spatial Resolution (m) 

1 0.43-0.453 60 7 0.765-0.785 20 
2 0.458-0.523 10 8 0.785-0.900 10 
3 0.543-0.578 10 8a 0.855-0.875 20 
4 0.650-0.680 10 9 0.930-0.950 60 
5 0.698-0.713 20 10 1.365-1.385 60 
6 0.7330.748 20 11 1.565-1.655 20 

 
Sentinel-2 was introduced by the ESA to perform 

global spatial resolution monitoring as part of the EUs 

Copernicus program (Manaf et al., 2016; Hagolle et al., 
2015; Segl et al., 2015). Sentinel-2 images cover 13 
wavelengths in the visible, Near Infrared (NIR) and 
Shortwave Infrared (SWIR). The bands are at 10, 20 and 
60 m spatial resolutions (Table 1) and the sensor has a 
field of view of 290 km. This field of view is much larger 

than the established Landsat sensor, which only has a 
view of 185 km

4
. The data produced by the Sentinel-2 

data is used to support various activities like crop 
monitoring and land classification. Due to the limitations 
of optical SAR image processing, scientists are increasing 
efforts to refine and improve remote sensing (Segl et al., 

2015; Wang et al., 2016; Fernández-Manso et al., 2016; 
Immitzer et al., 2016; Novelli et al., 2016; Storey et al., 
2016; Van der Werff and Van der Meer, 2016). In image 
fusion applications, the fusion of sensor data can help RS 
perform better at classifying land, detecting changes, 
identifying objects, segmenting images, updating maps 

and monitoring hazards (Li et al., 2011; Yuhendra, 2017; 
Yuhendra et al., 2012). This research examines multi-
temporal Sentinel-1 (SAR) and Sentinel-2 (Optical) 
satellite data, for land cover mapping and classification. 
Some publications focus on the multi-temporal image 
fusion and application (Gao et al., 2017; Ghassemian, 

2016; Zhuang et al., 2018; Patrick et al., 2018; Kandrika 
and Ravinsankar, 2011). Multi-temporal data fusion is 
essential for detecting changes and helps to provide more 
accurate classifications. Land cover mapping of built-up 
environments is not straightforward because it is 
sometimes hard to differentiate between natural and non-

natural features. Urban land cover mapping is usually 
carried out using medium-resolution multispectral data 
(Wurm et al., 2011). This study uses a combination of 
data from Sentinel-1 and Sentinel-2 to map South Solok 
accurately. By combining the benefits of radar and 
optical imaging and through the use of object-based and 

spectral classification, this study proposes an 
inexpensive and accurate method to map land cover. 

Research Methods 

Study of Specific Area 

The region that was studied for this research is 

situated in South Solok, in West Sumatra, Indonesia 

(Fig. 1). The total area is 3.346,20 km
2
. It is near Bukit 

Kunyieng, Siruek and Bukit Gadang. Solok Selatan has a 

population of approximately 144,000. It is situated at 
1°14' (1.2333°) south and longitude 101°25'1.2" 
(101.417°) east. 

Satellite Dataset 

Sentinel-1 consists of two satellites that were 
developed by the ESA and financed by the European 
Commission. It orbits the poles and provides round the 
clock SAR imaging from an altitude of 700 km. 
Sentinel-2 was launched in April of 2014 and 2016 and 
is used for land-cover and land-use mapping and change 
detection). Both Sentinel- 2a and 2b use an MSI 
(Multispectral Imagery) instrument (He et al., 2017) to 
produce imagery with 13 spectral bands.  

For this study, Sentinel-2 data is taken using a 
temporal resolution of ten days for the first satellite and 
five days with the two other satellites. These time 
frames provide sufficient observation data with varying 
spatial resolutions of between 10 m to 60 m. The data 
used in this study is comprised of three elements. They 
are one SAR image taken from Sentinel-1 and two 
optical images produced by Sentinel-2. The images 
cover the principal areas of South Solok and are 
provided in Table 2. 

SAR Satellite Data (Sentinel-1A) 

Sentinel-1A launched in April of 2014 and Sentinel-

1B two years later in 2016. Sentinel-1A data (level 1 

product) carries a C-band SAR instrument and has four 

operational modes: Interferometrics wide-swath (IW), 

with a swath width of 250 km and 5×20 m
2
 pixel 

resolution; wave-mode (WV), at 20×20 km
2
 and 5×5 m

2
 

pixel resolution; strip map (SM) mode, at 80 km swath 

width and 5×5 m
2
 pixel resolution; and Extra Wide-

swath (EW), at 400 km swath width and 20×40 m
2
 pixel 

resolution. The satellite supports operations in a single 

(HH or VV) or dual polarisation (VV + VH or HH + 

HV). Each Sentinel-1 product acquired in SM, IW and 

EW can be distributed at three processing levels: (i) 

Level-0 products are compressed, unfocused SAR data 

in its raw form and is vital in the production of higher-

level products. (ii) Level-1 products are focused on data 

and are designated for most data users. Processing from 

level-0 to level-1 includes Doppler centroid estimation, 
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single look complex focusing and image and post-

processing for the Single Look Complex (SLC) and 

Ground Range Detected (GRD) products. The SLC and 

GRD are two different level-1 sub-products. (iii) Level-2 

consists of geo-located geophysical products derived 

from Level-1 (Navarro et al., 2016; Zhou et al., 2018). 

For this research, one Sentinel 1A image (Level 1 

product) that covered the desired area was acquired from 

the ESA’s Sentinel Scientific Hub, (Fig. 3a). 

Optical Satellite Data (Sentinel 2-A) 

The Sentinel-2 mission consists of two satellites and 

produces imaging using 13 spectral bands at an altitude 

of 786 km. Sentinel-2A was launched June 23, 2015. All 

data acquired by the satellite sensor is processed at 

various levels. Sentinel-2A images were selected for this 

study because they are the best of what is available from 

the ESA. The first one, level-0, includes telemetry 

analysis, of low-resolution image extraction and 

ancillary telemetry analysis, among others. The second 

one, level-1, is produced by using level-0 output and has 

three different sub-products: (i) Level-1A, which 

decompresses relevant mission source packets; (ii) level-

1B, which applies radiometric corrections to level-1A 

output; and (iii) level-1C, where radiometric and 

geometric corrections (including ortho-rectification and 

spatial registration) are performed and Top of the 

Atmosphere (TOA) are calculated. The third one, Level-

2, includes a scene classification and an atmospheric 

correction applied to TOA values among others. Sentinel 

2-A can be processed on the user side through specific 

software (Sentinel-2 Toolbox). In this research, two 

scene data Sentinel-2A (optical) were acquired on June 

13, 2017 (scene 1) and October 18, 2017 (scene 2), 

downloaded from the ESA’s Sentinel Scientific Hub 

products (https://schub.copernicus.eu/) (Fig. 3b and 

3c). Sentinel-2A consists of 13 spectral bands with four 

bands at 10 m: the classical blue (490 nm), green (560 

nm), red (665 nm) and NIR (842 nm) bands dedicated 

to land applications; six bands at 20 m: Four narrow 

bands in the vegetation red edge spectral domain (705 

nm, 740 nm, 775 nm and 865 nm); two SWIR large 

bands (1610 nm and 2190 nm) dedicated to 

snow/ice/cloud detection; to vegetation moisture stress 

assessment; three bands at 60 m dedicated to 

atmospheric correction (443 nm for aerosols and 940 

for water vapour); and to cirrus detection (1380 nm). 

Details of Information Spectral Bands of Sentinel-2 

Images are given in Table 1 and Fig. 2. 

 
Table 2: Detail of Acquisition Information on experimental 

Sentinel-2 data sets 

Satellite data Acquisition time 

SAR image (Sentinel 1A) 28 February 2018 
Optical image (Sentinel 2A) 13 June 2017 
 18 October 2017 

 

 

 
 

Fig. 1: Multi Spectral band of Sentinel-2A 
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Fig. 2: Map of location research area in South Solok, West Sumatra 

 

     
 

 
 

Fig. 3: (a) Sentinel-1A image (b-c) Sentinel-2A images 

(a) (b) 

(c) 
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Satellite Data Pre-Processing 

This research was conducted in several steps 
designed to show a framework of Sentinel-2 images 
fusion. Stages in this research are shown in Fig. 4. 

Pre-Processing Sentinel-1A 

• Radiometric and Topographic correction: Radiometric 
correction and terrain correction/topography using 
Sen2Cor toolbox with the Sentinel Application 
Platform (SNAP) 

• Image calibration, Thermal Noise Removal and 
TOPSAR Deburst: The system must be calibrated 
since the image contains many invalid pixel 
values. It needs to get real object pixel value on 
the surface of the Earth and will produce 
Sentinel-1A Level-1 satellite image with 
Sigma0_VH and Sigma0_VV polarisation 

• Terrain Correction: Using Doppler Range, this 
method uses vector information of satellite orbit 
state, imaging time, satellite angle conversion 
parameters to the surface of the earth and Digital 
Elevation Model (DEM) data to obtain an exact 
location on the surface of the Earth. DEM using 
with 30 m spatial resolution with the re-projection 
image was performed using UTM Zone 47S and 
using WGS 1984 

• Re-sampling: In which each data point (pixel) in the 
high-resolution base map is assigned a value 
depending on the MS image pixels. For optimum 
results, Sentinel-2 images need to be re-sampled 
with spatial resolution 10×10 m

2
. Bilinear 

Interpolation re-sampling is a popular method, but it 
can affect the precision of the image 

• Speckle (Image filtering): A scattering phenomenon 
and not noise. The discrimination of different natural 

media by comparing intensity to a fixed threshold 
leads, in general, to numerous errors due to the high 
variability of SAR speckled response. The analysis of 
the image used Lee filter with kernel 5×5 

Pre-Processing Sentinel-2A 

Below the stages of Sentinel-2A satellite images 

processing are described: 
 

• Atmospheric Correction: Used to remove the 

influence of atmospheres (molecules and particles) 

participating in scattering the signal before a remote 

sensing sensor records. The software processing 

uses SEN2COR toolbox. A result of image 

correction is shown in Fig. 5 

• Re-sampling: Sentinel-1A images should be re-

sampled with spatial resolution 10×10 m
2
 with 

bilinear interpolation 

• Layer stacking and Cropping: Layer stacking is the 

process of making a multi-band image by combining 

images from separate bands into one file. Sentinel-

1A Level-1 has been calibrated with Sigma0_VH 

and Sigma0_VV polarisation 

 

Object-Based Classification and Segmentation 

In this research, object-based classification 

(segmentation) was performed using Trimble’s 

eCognition® v.9.01 software with a user-supervised 

parameterisation. This software segments the images into 

homogeneous objects and uses information derived from 

each object in the classification (Zhou and Zheng, 2017). 

The eCognition software is the first commercially available 

product for object-oriented and multi-scale image analysis.  

 

 
 

Fig. 4: Result of the image with radiometric and terrain corrected 
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Fig. 5: Atmospheric correction of (a) scene 1, (b) Scene 2 of sentinel-2A image 

(a) 

(b) 
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It is designed to work on high spatial resolution or 

hyper-spectral imagery and includes several useful 

parameters to develop a knowledge base for elaborate 

land use classification. The principal procedure of 

recognition is focused on multi-resolution segmentation 

and a patented image object extraction. Each level in this 

hierarchical network is produced by a single 

segmentation processing. The whole image analysis 

process can be divided into the two principal workflow 

steps: Segmentation and classification (Chhetri et al., 

2017). Segmentation means the process of grouping like 

elements by homogeneity and merging them into distinct 

regions. To obtain segments suited for the desired 

classification, the segmentation process can be 

manipulated by defining which of the loaded channels are 

to be used by what weight and by the following three 

parameters: Scale, colour and form. Smoothness describes 

the similarity between the image object borders and a 

perfect square while compactness describes the closeness 

of pixels clustered in an object. Sample selection is the 

final key process for performing a successful classification 

in eCognition. Choosing representative samples is 

critically important as they define the range of spectral 

signatures and image object properties that group other 

objects into the classification categories. Classification 

algorithms were tested using k-Nearest Neighbours (k-

NN) function. The function is applied to the samples and 

image objects are sorted into the appropriate category 

based upon best fit to the selected samples. 

Accuracy Assessment 

In this research, nine different urban land cover types 
were identified: Forest, Vegetation, Plantation, 
Agriculture Mixed, Agriculture, Urban, Bare Soil, Rice 
Field, Water Body. In RS application, accuracy 

assessment is an important part in the classification 
process. Classification accuracy assessment is commonly 
expressed using a metric computed from the error or 
confusion matrix using the testing set (Li et al., 2011). 
The phase of classification accuracy testing was done 
by an accuracy testing method using the Kappa 

coefficient. This accuracy uses all elements in the 
confusion matrix. The Kappa coefficient is based on the 
consistency of the assessment by considering all 
aspects. There are several accuracy assessment 
percentages that can be calculated, including accuracy 
(omission error), user accuracy (commission error) and 

overall accuracy obtained from the error matrix or 
confusion matrix (Yuhendra, 2017; Baumann et al., 
2012; Bargiel, 2017). Through matrix error (confusion 
matrix), user accuracy, the producer’s accuracy, overall 
accuracy, the Kappa coefficient (Kappa coefficient) can 
be obtained mathematically in the following ways. 

User Accuracy is a measurement indicating the 

probability that a pixel is a class A, given that the 

classifier has labelled the pixel into Class A: 

100%
Number of curect classifications

User accuracy
Total number of classification

= ×  (1) 

 

Error Commission: 

 
( )% 100ErrorComission User Accuracy= −   (2)  

 

Procedure Accuracy is a measure of how much of the 

land in each category was classified correctly: 

 

100%

Procedureaccuracy

Number of correct classification

Total numver of classification
= ×

 (3) 

 

Error Omission: 

 

( )% 100%Eror omission Producer accuracy= =   (4) 

 

Overall Accuracy (OA) is calculated by summing 

the number of pixels classified correctly and dividing by 

the total number of pixels. The ground truth image or 

ground truth ROIs define the true class of the pixels.  

The pixels classified correctly are found along the 

diagonal of the confusion matrix table, which lists the 

number of pixels classified into the correct ground truth 

class. The total number of pixels is the sum of all the 

pixels in all the ground truth classes: 

 

100%

Overal accuracy

Number of pixel classified correctly

Total number of pixel
= ×

  (5) 

 

Coefisien Kappa (κ) is another measurement of the 

classification accuracy. It is calculated by multiplying 

the total number of pixels in all the ground truth 

classes (N) by the sum of the confusion matrix 

diagonals ( )x

kk
k x∑ ∑ , subtracting the sum of the 

ground truth pixels in a class times the sum of the 

classified pixels in that class summed over all classes 

() and dividing by the total number of pixels squared 

minus the sum of the ground truth pixels in that class 

times the sum of the classified pixels in that class 

summed over all classes: 

 

2

x

kk kk k

x

kk

N x x k

N x k

κ

−

=

−

∑ ∑ ∑ ∑

∑ ∑ ∑
  (6)  

 

The research proposed has tested and validated 115 

land cover land use class sample spreads on the location. 

The sample of accuracy test is shown in Table 3. 
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Table 3: Distribution of training and validation data for each class 

Class NTP* NPV**  NTT*** NE**** NV***** 

Forest 13 13 115 10 105 

Vegetation 10 9 

Plantation 12 11 

Agriculture 10 9 

Mixed Agriculture 12 10 

Urban 16 15 

Bare Soil 12 11 

Rice Field 19 17 

Water Body 11 10 
*NTP: Number of Training Pixel, **NPV: Number of Pixel Validation 
***NTT: Number of Total Training, ****NE: Number of Error 
*****NV: Number of Valid 

 

Result and Analysis 

Segmentation 

 A set of land cover classes of interest were defined, 
namely: Forests, secondary vegetation/shrubs, 
cropland/plantation, agriculture, mix agriculture, urban, 
bare soil, rice fields and water bodies. The land use-
land cover categories were selected using common 
categories described in many studies and functional to 
the project mapping task; that is, the identification of 
LCLU. Due to the high heterogeneity present within 
some land cover classes, especially cropland, this study 
opted for a classification approach exploiting textural 
land properties. An object-based classification 
(segmentation) was performed using eCognition® v.9.01 
by a user-supervised parameterisation. Three steps 
represent the main operations performed: (i) Image 

segmentation, (ii) generation of an image object 
hierarchy and (iii) classification. In this approach, 
‘objects’ are defined as exploiting topologic 
(neighbourhood, context) and geometric (form, size) 
information. The identification of homogeneous land 
patches was conducted through a supervised iterative 
process by tuning the parameters of scale, shape and 
compactness. A scale in an abstract value to determine the 
maximum possible change of heterogeneity was caused by 
fusing several objects. This means that shapes denote 
compactness (pixels clustered on objects closely) and 
smoothness (similarity of two images). In the multi-
resolution segmentation test, this study developed an 
optimum segmentation value that was identified with scale 
= 10, shape = 0.8 and compactness 0.2,and the result was 
shown in Fig. 6 . This study then trained the object-based 
classifier by assigning a land cover class (labelling). 

 

 
 

Fig. 6: Segmentation image 
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Table 4: Confusion matrix for classification accuracy from Sentinel-2 images 

Sample class PA (%) UA (%) EC (%) EO (%) OA (%) KC 

Water Body 100.00 90,91 9.09 9,09 91.30 0.89 
Forest 100.00 100 0.00 0 
Mixed Agriculture 100.00 83.33 16.67 16,67 
Urban  93.75 100 0.00 0 
Bare Soil 91.66 91.66 8.34 8,34 
Agriculture 91.66 91.66 8.34 8,34 
Plantation 89.47 77.27 22.73 22,73 
Vegetation 90.00 81.81 18.19 18,19 
Rice Field 90.00 90 10.00 10 

PA: Producer’s Accuracy; UA: User’s Accuracy 

EC: Error Commission; EO: Error Omission 

OA: Overall Accuracy; KC: Kappa Coefficient 

 
Table 5: Wide of LULC areas in South Solok 

No Class Wide Area (Ha) 

1 Forest 144.775.21 
2 Vegetation 837.421 
3 Plantation 245.530 
4 Agriculture 143.306 
5 Mixed Agriculture 191.115 
6 Urban 377.045 
7 Bare Soil 472.871 
8 Rice field 138.683 
9 Water Body 183.139 
10 Cloud 432.626 
11 Shadow Cloud 186.563 

 Total 35901487 

 

Classification algorithms were tested using k-Nearest 

Neighbours (k-NN) assigning the same weight to each 

layer of the 20 bands layer stack image. 

Accuracy Assessment and Classification  

Table 5 shows the final classification training 

result based on overall accuracy, kappa coefficients, 

producer’s and user’s accuracies for LULC. Table 4 

shows the overall accuracy of 91.30% and a high kappa 

coefficient of 0.89. The wide range of LULC areas in 

South Solok is 35901487 hectares. The dominant land 

cover in the study area is followed by forest (144.775.21 

hectares), secondary vegetation/shrubs (837.421 hectares) 

and plantation (245.530 hectares), respectively. A detail 

wide view of LULC area is shown in Table 5. 

Conclusion 

The results of this study highlight two significant 
benefits of this type of testing. First, the ESA pre-
processing with sensor-specific toolboxes is a quick 
and reliable method of preparing ready-to-process 
images. Second, by integrating Sentinel-1A (SAR) 
and Sentinel-2 (optical) imagery, the benefits of both 
radar and optical imaging can be exploited. The 
object-based classification produced accurate and 
satisfactory results for the LCLU mapping. Sentinel-2 
bands are of excellent quality for the applications area 

in LULC observation, with more satisfying results. 
However, one of the limitations depends on user skill 
experiences in pre-processing and processing the 
image. For improving the classification accuracy of 
built-up areas, the study recommends the use of very 
high-resolution images. 

Based on the classification from two satellite images 

(Sentinel-1A and Sentinel-2A) for LULC identification 

by object-based classification with the set of 

segmentation parameter and tested, the values were 

given for Scale 10, shape 0.8 and compactness 0.2 used 

the k-Nearest Neighbourhood algorithm of clustering.  
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