
 

 
 © 2019 Christophe Ishimwe Ngabo and Omar El Beqqali. This open access article is distributed under a Creative Commons 

Attribution (CC-BY) 3.0 license. 

 Journal of Computer Science 

 

 

Original Research Paper 

Implementation of Homomorphic Encryption for Wireless 

Sensor Networks Integrated with Cloud Infrastructure 
 

Christophe Ishimwe Ngabo and Omar El Beqqali
 

 
Department of Computer Science, Faculty of Sciences - Sidi Mohamed Ben Abdellah University, Fez, Morocco 

 
Article history 

Received: 08-07-2018 

Revised: 10-09-2018 

Accepted: 7-02-2019 

 

Corresponding Author:  

Christophe Ishimwe Ngabo 

Department of Computer 

Science, Faculty of Sciences - 

Sidi Mohamed Ben Abdellah 

University, Fez, Morocco 
Email: christophe.ngabo@usmba.ac.ma 

Abstract: With the current explosion of cloud services, it is easy for 

everyone to store the prodigious amount of data on remote servers. On the 

other hand, service providers are given full access to our information, or in 

the worst case, can be intercepted by malicious people. The solution is to 

encrypt the data to make it completely secret. But then, we can no longer 

manipulate these data remotely (retouching the photos, looking for words in 

a text, performing calculations ...). A new form of cryptography, which is 

just beginning, promises precisely to offer this security while allowing the 

encrypted data to be manipulated by the authorized users, it named 

“Homomorphic Encryption”. This paper presents the implementation of a 

homomorphic encryption to ensure the confidentiality of aggregated data 

from wireless sensor networks and also demonstrates how to use it through 

the cloud infrastructure in order to perform arithmetic operations directly 

on the encrypted data without decrypting them. After a theoretical 

comparative study on homomorphic encryption algorithms, we picked out 

the Domingo-Ferrer’s cryptosystem on the basis of criteria mentioned 

during the survey. This cryptosystem requires to split the message into 

several fragments (at least two fragments) before the encryption process. 

For each implementation case performed with two, three and four 

fragments of the message, 10,000 messages were sent so that the battery 

levels of the sensor nodes dropped by 6%, 7% and 8% respectively, which 

led us to conclude that as long as the number of fragments increases, the 

power consumption in the network is increasingly significant because of 

excessive processing and a large amount of data to be transmitted over the 

wireless network, generated by the Domingo-Ferrer’s cryptosystem. 

 

Keywords: Cloud Computing, Data Aggregation, Wireless Sensor 

Networks, Homomorphic Encryption 

 

Introduction 

Since their inception, wireless communication networks 

have been increasingly successful in the scientific and 

industrial communities. Thanks to its various advantages, 

this technology has been able to establish itself as a key 

player in the current network architectures. 

Nowadays, with the advanced research in the new 

information and communication technologies, it is very 

easy to develop small embedded systems of 

communication, not expensive, comprising at least a 

power unit, a data collection unit (sensing unit), a 

processing unit and a transmission unit for mainly 

surveillance, discovery and detection purposes (Zheng and 

Jamalipour, 2009). These microsystems (sensor nodes or 

motes) can integrate a wide range of sensors collecting 

information from the physical environment for various 

applications such as military, medical, industrial, natural 

disasters, etc. (Sohraby et al., 2007). 

Thanks to these transmission units, these nodes 

communicate with each other to build a network, often 

wireless, which can generate thousands of nodes 

transforming the state of an observed physical quantity 

(temperature, pressures, humidity, vibration, etc.) into 

signals that can be converted into codes in order to be 

processed by computers. This information is routed over 

the network from one node to another to a collection 

point called the "Base Station" or the "Sink" that serves 

as a gateway to devices located on other external 

networks such as the internet. 

The collected data from the Wireless Sensor Network 

(WSN) can be exploited in real-time by users on the 
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external networks but they also need to be stored for later 

use, however it is not a simple matter to find enough 

processing power and storage for this multitude of data. 

The Cloud infrastructure provides several benefits such as 

mass storage, the demand for self-service access to the 

network wide resource consolidation, measurement 

service, mass scalability, consistency, virtualization, 

software low-cost, distribution, service orientation and 

advanced security (Buyya et al., 2011). All these qualities 

are essential to fill the gaps found in the WSN. 

Consider a simple example of weather, a city where 

each neighbourhood has its own weather station, data on 

rainfall, temperature, humidity, wind, etc., will be stored 

in the cloud’s database to serve statistics for example. 

Suppose each weather station has a multitude of redundant 

sensors, in fact we will not use a single temperature sensor 

for a single station but several and make an arithmetic 

average to be sent to the cloud. In this example, the sent 

values are plaintexts, an attacker can intrude into the 

network and tries to visualize the information that transit, 

but the big concern is the falsification or unauthorized 

modification that can occur in the cloud. An effective 

way of ensuring the confidentiality of data from the 

sensor network to the system administrator via the cloud 

is required. Such a system must be composed of four 

major actors, namely the sensor network, the cloud 

infrastructure, an administration subsystem and a web 

service for end users (citizens). 

Imagine we decide to encrypt the data from the 

sensor network with the symmetric algorithms such as 

AES, whenever the administration wants to perform the 

calculations (statistics) on the stored data, it must either 

send a secret key to the cloud for decryption (a 

potentially dangerous solution because the sending of 

the key on the network is likely to be intercepted but 

the administration can benefit the computing power of 

the cloud) or downloading the encrypted data and 

performing the statistics locally (solution without risk 

but the administration machine will have a huge data 

capacity to process, which requires a powerful 

machine). In both cases, we do not have the best 

solution to remedy this problem. 

Imagine a solution that does not require a decryption 

key to perform these operations (statistics, forecasting, 

etc.) on encrypted data, i.e., the administration will not 

have to take the risk of sending that decryption key over 

the network and in addition, he/she will benefit the 

computing power of the cloud. The administrator's 

workstation only has to decrypt the results of the 

statistics using its key that it keeps locally, such solution 

can be the use of Homomorphic Encryption algorithm. 

A homomorphic encryption scheme makes possible 

to perform the arithmetic operations on the encrypted 

data without decrypting them. Homomorphic encryption 

also reduces the processing time of initially encrypted 

data. Homomorphic encryption in the cloud computing 

ensures data confidentiality and minimizes the risk of 

attacks (Tebaa et al., 2012). 

By applying a homomorphic encryption scheme in a 

system, it can avoid the risk that can occur when 

exchanging the secret keys. In short, this paper focuses 

on the use of homomorphic encryption algorithm applied 

to the distributed system combining together the sensor 

network, cloud infrastructure and end users. 

The homomorphic encryption implemented in this 

paper has been the subject of a theoretical study on the 

different symmetric and asymmetric algorithms. The 

choice of the implemented algorithm was based on the 

criteria concerning computational difficulties such as 

exponentiations that are not adequate in the WSNs due 

to the congestion of the computational resources. The 

implementation was carried out with the Domingo-Ferrer 

(2002) encryption scheme on the sensor nodes 

embedding 16-bit microprocessors, which are 

moderately sufficient for cryptography calculations. This 

encryption algorithm requires that the message must be 

split into several fragments before proceeding to 

encryption that is why we have performed several 

experiments with the variable number of the fragments 

(2, 3 and 4) in order to understand the impact of this 

message splitting on the state of the battery of each 

sensor node. The results obtained showed that after 

sending 10,000 messages the battery levels decreased 

respectively by 6%, 7% and 8%, which shows that the 

more the message is fragmented the more the energy of 

the WSN is slightly diminished but the level of data 

security (confidentiality) is increasing. 

In this paper we started with the introduction on the 

wireless sensor network, the importance of integrating it 

with Cloud Computing as well as the security using 

homomorphic encryption. Then we made a summary 

about literature and related works to our research topic. 

The next section focuses on the importance of 

homomorphic encryption on aggregated data in the 

WSNs. The fourth section is the security modeling 

required for aggregated data in the WSN. The fifth 

section is the implementation of the Domingo-Ferrer 

algorithm in the WSNs. It is in the sixth section that we 

presented the results aforementioned and finally we 

concluded in the seventh section. 

Literature Review and Related Works 

Cloud Computing permits companies to increase 

capacity quickly without the need for new infrastructure 

investment and similarly companies can decrease 

capacity quickly and efficiently. Cloud Computing is 

principally designed and promoted to be data centre 

centric and efficient interaction with the outside world is 

an area where improved solutions are being sought 

(Ahmed and Gregory, 2011).  
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In fact, Cloud Computing offers several advantages 

such as mass storage, the demand for self-service 

access to the wide network, resource consolidation, the 

measurement service, massive scalability, consistency, 

virtualization, low cost software, distribution, 

orientation of service and advanced security. All these 

qualities are essential to fill the gaps found in the WSN 

(Ngabo and Beqqali, 2016). 

As we know, the WSN is designed to collect data in 

the real world, but the question is what to do with this 

data when the organisations no longer need it. There 

are many reasons for the data to be kept including 

historical, future research and re-analysis at some 

future point in time. There is a possible linkage 

between WSN and Cloud Computing and the eventual 

shift of data into the cloud and over time into the public 

domain (Ahmed and Gregory, 2011).  

By definition (Tebaa et al., 2012), we have an 

homomorphic encryption if from Enc(m1) and Enc(m2) it 

is possible to compute Enc(f(m1,m2)), where f can be +, x 

or ⊕ and without using the secret key. According to the 

operations that allow to access on raw data, we 

distinguish three types of homomorphic encryption:  
 

• Additive homomorphic encryption: A homomorphic 

encryption is called additive, if Enc(m1 + m2) = 

Enc(m1) · Enc(m2) 

 e.g.: Pailler cryptosystem 

 Enc(m1) = g
m

1·r1
N
 mod N

2
 = c1

 

 Enc(m2) = g
m

2·r2
N
 mod N

2 
= c2

 

 ⇒ Enc(m1+m2) = g
m

1
+m

2·(r1·r2)
N
 mod N

2  

   
= Enc(m1)·Enc(m2) = c1·c2

 

• Multiplicative homomorphic encryption: A 

homomorphic encryption is called multiplicative, if
 

Enc(m1 · m2) = Enc(m1)·Enc(m2)
 

 e.g.: RSA cryptosystem 

 Enc(m1) = m1
e 
mod n = c1

 

 Enc(m2) = m2
e 
mod n = c2

 

 ⇒Enc(m1·m2) = (m1·m2) 
e 
mod n = c1·c2

 

• Fully homomorphic encryption: homomorphic 

encryption is called fully, if it is at time additively 

and multiplicatively homomorphic.  

E.g.: In 2010, a completely homomorphic 

encryption scheme (Dijk et al., 2010) named 

DGHV was presented which is an application of 

Gentry encryption (Gentry, 2009) on integers 

and whose security is based on the problem of 

the approximate common divisor.  

Keys generations: r, p and q. Where r ∼ 2
n
, 

2

2
n

p ∼ , 
2

2
n

q ∼ , p and q are the prime numbers. 

Enc(m) = pq +2r +m = c 

Dec(c) = (pq +2r + m mod p) mod 2 = m 

For two messages m1 and m2, let c1 and c2 be their 

ciphertexts respectively: 

� c1 + c2 = (q1 + q2)p + 2(r1 + r2) + m1 + m2 

� So if 2(r1 + r2) + m1+ m2 ≪ p, then ((c1 + 

c2) mod p) mod 2 = [2(r1 + r2) + m1 + m2] 

mod 2 = m1 + m2. Thus, DGHV realizes the 

property of additive homomorphic 

encryption 

� c1 ×c2 = [q1q2p + (2r1 + m1) + (2r2 + m2)]p 

+ 2(2r1r2 + r1m1 + r2m1) + m1m2 

 

So if 2(2r1r2 + r1m1 + r2m1) + m1m2 ≪ p, then 

((c1 ×c2) mod p) mod 2 = [2(2r1r2 + r1m1 + r2m1) 

+ m1m2] mod 2 = m1m2. As a result, DGHV also 

performs the multiplicative homomorphic 

encryption. 

 

A faster variant of Pailler's additive homomorphic 

encryption protocol was derived in 2011 focusing on the 

security of aggregated data in the WSNs (Wang et al., 

2011). The idea was to speed up exponentiation in the 

decryption process. Performance evaluation of the obtained 

results indicates that the protocol they proposed can 

accelerate about 49% in encryption and 50% in decryption. 

An optimized implementation of the elliptic curve EL 

Gamal based on additive homomorphic encryption has 

been presented in order to offer a fast multiplication 

point by creating a small code beneficial to the memory 

of the sensor nodes (Ugus et al., 2009). The results they 

obtained show that their implementation is 44% faster 

compared to the previous best results. 

Another homomorphic encryption scheme based on 

elliptic curves has been proposed to avoid eavesdropping 

to wireless channels and to ensure energy savings in 

cluster-based WSNs (Elhoseny et al., 2016). Based on 

the obtained experimental results, the authors promise 

that their method improve network performance 

compared to other methods in terms of energy 

consumption, memory requirement, network overhead 

and network lifetime. 

A homomorphic encryption scheme with a low 

computation and communication overhead has been 

proposed to secure compressive data gathering in the 

WSNs (Xie et al., 2017). The authors had the main goal 

of protecting against traffic analysis and flow tracing in 

WSNs. By using homomorphic encryption, data can be 

aggregated to reduce network traffic, but homomorphic 

encryption functions also increase the size of packets to 

be sent over the network while increasing power 

consumption because the consumed power is directly 

proportional to the amount of transmitted data.  

A study was conducted in 2012 (Roy et al., 2012) to 

investigate the effect of increasing packet size for 

Domingo-Ferrer homomorphic encryption scheme in 

comparison to a symmetric cryptosystem. The results 

approved that symmetric encryption outperforms 

homomorphic encryption for small WSNs, but as the 
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network grows the homomorphic encryption 

outperforms symmetric encryption. 

Another implementation of the Domingo-Ferrer‘s 

homomorphic cryptosystem has been simulated on the 

Mica2 nodes in OMNet ++ (Ertaul and Yang, 2008). 

During the implementation, the authors considered three 

different scenarios (different key sizes and fixed message 

size, different message sizes and fixed key size, different 

message splits and fixed key size). The obtained results 

allowed them to conclude that splitting the message into 

several small messages makes it possible to increase the 

level of security but by penalizing the long-term 

network, which must be split at least the message. 

Recently, a secure data collection scheme based on 
compression sensing has been proposed firstly in order 

to improve the data privacy by the use of the asymmetric 
semi-homomorphic encryption and secondly to reduce 
the computational cost by using the sparse compression 
matrix (Zhang et al. 2018b). The asymmetric encryption 
mechanism reduces the difficulties of encryption secret 
keys management and distribution, while homomorphic 

encryption allows the aggregation of encrypted data in 
the network as well as improving security and load 
balancing on the network. The sparse compressive 
matrix reduces the computation and the communication 
cost by compensating the increasing cost caused by 
homomorphic encryption. The results that the authors 

obtained are satisfactory or even better compared with 
the most related research works. 

Almost the same authors (Zhang et al., 2018a) as in 

previous research work have proposed what they called 

Multi-functiOnal secure Data Aggregation (MODA), 

which encodes raw data into well-defined vectors to 

provide value preservation, order preservation and 

context preservation and thus by building blocks for 

multifunctional aggregation. The main purpose of this 

project was to compute efficiently in distributed mode 

even without worrying about security issues. To do this, 

they also used homomorphic encryption to enable in-

ciphertext aggregation and end-to-end security. 

All these related works to this subject concerns only the 

security inside the WSN, that means once the encrypted 

data arrived at the base station are decrypted to be 

processed or visualized but in this paper we want this data 

to continue to the cloud by being encrypted for storage. In 

this paper we show how it is possible that a user could 

perform through the cloud the arithmetic operations on this 

kind of data (homomorphically encrypted data) without 

being decrypted in order to increase the privacy level. 

Homomorphic Encryption on Aggregated 

Data in WSN 

A sensor network generally consists of a large number 

of sensor nodes strongly deployed in a sensing region and 

one or more base stations located within the collection zone. 

The base stations send requests or commands to the sensor 

nodes in the sensing zone while the sensor nodes 

collaborate to accomplish the sensing task and send the 

collected data to the base station(s). Meanwhile, base 

stations also serve as gateways to external networks, for 

example the Internet (cloud infrastructure). The sink node 

gathers all data from sensor nodes, performs simple 

processing and sends the relevant information (or processed 

data) via the Internet to users who have requested it or who 

use the information (Zheng and Jamalipour, 2009). 

To send data to the base station, each sensor node can 

use a single-hop long distance transmission, which leads 

to the single-hop network architecture. However, long-

distance transmission is costly in terms of energy 

consumption. In sensor networks, the energy consumed 

for communication is much higher than the energy 

required for data collection and computation. Therefore, 

it is desirable to reduce the amount of traffic and the 

transmission distance in order to increase energy savings 

and extend the life of the network. 

In this case, short distance communication is highly 

preferred. In most sensor networks, the sensor nodes are 

highly deployed and the neighboring nodes are close to 

one another, which makes it possible to use short-

distance communication. In a multi-site communication, 

a sensor node transmits its sensed data to the base station 

via one or more intermediate nodes, which can reduce 

the power consumption for communication. 

In a multi-site network, sensor nodes can be 
clustered, where cluster members send their data to 
cluster heads, while cluster heads serve as relays to 
transmit data to the base station. A low energy node 
can be used to perform the sensing task and send the 
sensed data to its cluster header at a short distance 
while a higher energy node can be selected as a cluster 
head to process data from the cluster members and 
transmit them to the base station. This process can not 
only reduce the energy consumption for communication 
but also balance the traffic load and improve scalability 
as the network size increases. 

In addition, aggregation of data can be performed on 

cluster heads to reduce the amount of data transmitted to 

the base station and improve the energy efficiency of the 

network. For example, if a weather station picks up 

temperature values with various temperature sensors, it is 

obvious that the temperature is the same for a given 

locality, instead of sending each value to the cluster head, 

the cluster head could perform small calculations on the 

data as the average in order to reduce network traffic 

while saving energy and increasing network longevity. 

The objective of data aggregation is to combine and 

generalize the data coming from several sensor nodes in 

order to reduce the data to be transmitted. The majority 

of applications using the WSN require a certain level of 

security, the encryption of the data collected before 

transmission is preferable.  
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In the previous example of meteorology, sensor 
nodes collecting the values of the ambient temperature of 
the environment encrypt its data before their 
transmission to the cluster head, as its data come from 
the same neighborhood it is possible to prepare an 
aggregation by summing them at the cluster head and the 
result is sent to the base station as the same time as the 
number of the nodes sent these encrypted values. In fact, 
the average of the temperature of the environment is 
calculated by the base station by summing aggregated 
data from cluster headers and then it can decrypts this 
sum in order to be divided by the addition of numbers of 
all nodes that took these measurements. 

Suppose we have three clusters A, B and C 

(showed on the Fig. 1). Cluster A comprises five 

sensor nodes, three sensor nodes for cluster B and four 

sensors for cluster C. In this example, the cluster 

headers do not collect the temperature values, they 

serve only to aggregate data from children nodes. 

Suppose we use an additive homomorphic encryption 

algorithm, for example the Pailler cryptosystem. The 

cluster head A receives encrypted values A1, A2, A3 

and A4 from children nodes and calculate the output As 

as the result of aggregation on inputs. As is sent to the 

base station with the number 4 corresponding to the 

number of nodes took the corresponding values. For 

Pailler cryptosystem, in order to achieve the 

aggregation on cluster header, it necessary to perform 

multiplication on inputs: 
 
As = A1 · A2 · A3 · A4,  

As = g
(v

A1
+v

A2
+v

A3
+v

A4
)
 · (rA1 · rA2 · rA3 · rA4)

N
 mod N

2
, 

where: A1= Enc(vA1) = g
v
A1

 
· rA1

N
 mod N

2
,  

 A2= Enc(vA2) = g
v
A2

 
· rA2

N
 mod N

2
,  

 A3= Enc(vA3) = g
v
A3

 
· rA3

N
 mod N

2
,  

 A4= Enc(vA4) = g
v
A4

 
· rA4

N
 mod N

2 

 

By using the same algorithm, the cluster header B 

and C send to the base station respectively (Bs, 2) and 

(Cs, 3), where Bs = g
(v

B1
+v

B2
)
 · (rB1 · rB2)

N
 mod N

2
 and Cs 

= g
(v

C1
+v

C2
+v

C3
)
 · (rC1 · rC2 · rC3)

N
 mod N

2
. Then, the base 

station calculates the average by the following formula: 
 

( )· ·

4 3
 

2

Dec A
Averag

s Bs Cs
e

+

=

+

 

 

( )( )1 2 3 4 1 2 1 2 3
( v ) 2

1 2 3 4 1 2 1 2 3
· · · ·

 

· · · · · mod

9

A A A A B B C C C
Nv v v v v v v v v

A A A A B B C C C

Avera
Dec g r r r r r r r r r N

ge

+ + + + + + + +

=  

 

1 2 3 4 1 2 1 2 3)

9
 

v
A A A A B B C C C

Average
v v v v v v v v v+ + + + + + + +

=  

 

Internet

Base station

Cluster A

Cluster B

Cluster C
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A1

A2
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A4

Cs, 3

Bs, 2
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C1

C2
C3

B1

Average

 
 

Fig. 1: Homomorphic encryption on aggregated data in the WSN 
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Cloud

Base station

Cluster A

Cluster B

Cluster C
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A2
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A4

Cs, 3

Bs, 2

B2

C1

C2
C3

B1

User workstation

Database

As, 4Bs, 2Cs, 3

 
 

Fig. 2 Integration of cloud computing with WSN 

 

Assume that the clusters A, B and C represent the 

neighborhoods of a city, the calculated average will be 

the temperature of a city that can be sent over the 

Internet, for example on a weather website. Since the 

base station has already decrypted the aggregated 

values from each cluster, it seems obviously that the 

average sent over the Internet will be in plaintext and 

that the confidentiality of the data is not ensured on 

the Internet. 

Afterwards we will see how we can transmit these 

encrypted data on the Internet while ensuring its integrity 

and confidentiality. 

Back to our example of weather, we want to keep the 

data archive in the cloud for future use, from the 

previous paragraph we can extend the logical 

architecture by sending immediately encrypted data (As, 

4), (Bs, 2) and (Cs, 3) in the cloud instead of calculating 

the average at the base station, the base station will 

behave as a gateway without perform any processing on 

the data (check on the Fig. 2 for more clarification). 

It is assumed that there is a database in the cloud to 

accommodate data from WSN. This data is stored 

according to the date on which it was collected. When a 

user wants to perform arithmetic operations on the 

encrypted data, for example calculating the average 

temperature of the day, he/she just needs to send a 

request to the cloud, the cloud in turn retrieve the stored 

data on the indicated date in the query to apply the 

homomorphism property to the encrypted data. In our 

previous example, the data is encrypted by the Pailler’s 

algorithm, the cloud will only have to multiply all the 

entries of the day and the result is an encrypted 

representing the sum of these entries, in order to 

calculate the average, the result and the number n of the 

nodes that participated in the sensing are sent to the user. 

The workstation of the user decrypts this result and 

divides it by this number n to find the daily average. 

Security Model 

Previously, we discussed about aggregation of data 

in WSN and integration of WSN with cloud 

infrastructure using Pailler as homomorphic 

encryption algorithm but we can ask ourselves if this 

algorithm is the best for wireless sensor networks in 

terms of the resources needed to encrypt, like the 

sensor nodes’ CPUs and the memories containing the 

programs and the encrypted data. 

The majority of WSN platforms are not advanced like 

traditional computers that we are using in everyday life, 

the actual wireless sensor nodes embed few kilobits 

microprocessors ranging from 8 bits up to 32 bits 

(Johnson et al., 2009). So, let's take an example of an 8-

bit microprocessor whose temperature value of 22 

Celsius is to be encrypted with the Pailler algorithm 

using the following parameters: 
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 Private key: (p, q, r) = (5, 7, 12) 

 Public key: (N, g) = (35, 144) 

 Encryption: c = g
m 

· r
N
 mod N

2 

 c = 144
22

 · 12
35
 mod 35

2 

 
c = 144

22
 · 12

35
 mod 1225 

 c = 348 

 

At first glance, an 8-bit microprocessor cannot 

perform this kind of calculations because already the 

result of encryption is on 9 bits (348 in decimal is 

equivalent to 101011100 in binary), so there is an 

overflow what will lead to the bad results. Another 

remark is related to the power calculations, in spite of 

which the operands remain within the limit of 8 bits but 

this microprocessor cannot calculate 144 exponents 22 

or 12 exponents 35 because there would also be an 

overflow. As a result, algorithms using power operations 

to encrypt the data are not well suited for this kind of 

device with lower computing power. 

Apart from the computing power, another problem is 

related to energy consumption. To increase the level of 

security, we have obviously to increase the size of the 

encryption key. By increasing the size, the ciphertexts 

become huge and the sensor nodes will be forced to 

spend more energy for coding, modulation and radio 

transmissions. A long chain of data leads to more 

prolonged transmissions while consuming a lot of 

energy. As a result, the algorithms to be used for 

encryption must use the minimum possible key size for 

an acceptable level of security. 

Another challenge is the choice of a type of algorithm 

to implement, if we use a symmetric encryption 

algorithm we will be pleased to share the secret key with 

all the sensor nodes of the network. This presents a huge 

risk as we know that the network’s nodes are deployed in 

a hostile environment where the risk of being intercepted 

by malicious people is inevitable. If an attacker reaches 

physically a sensor node, he may search until he gets the 

secret key that this node shares with the other nodes in 

the network as well as the base station. The best solution 

is the use of an asymmetric encryption algorithm that has 

two keys, one public and the other private.  

In this proposed system, only the end user can access 

the data in plaintext, i.e. the end user must generate 

asymmetric encryption keys. The private key must be 

shared with the sensor nodes either when programming 

the nodes or using public key infrastructures (Holohan and 

Schukat, 2010). When a node needs to send its collected 

data, it encrypts them using the public key which it has 

previously obtained and sends them to the next node or 

cluster head which in turn applies the aggregation and 

sends them to the base station. The base station will send 

the data to the cloud where they will be stored or sent in 

real-time to the end users. As long as the data are stored 

in the cloud and encrypted, only the end user can 

manipulate them without having to decrypt them since 

they are homomorphically encrypted. The end user 

retrieves the encrypted results found from the encrypted 

data and decrypts them using his/her private key. 

Previously, we discussed some criteria necessary to 

pick out the suitable homomorphic encryption algorithm 

for connecting the WSN with the cloud, then we will 

later use a comparative Table 1 that will help us to 

identify a suitable homomorphic encryption algorithm to 

be implemented in the proposed architecture. 

This comparative table above makes it easy to 

determine the algorithm to be implemented under some 

criteria before mentioned. Elliptic curve cryptosystem 

seems to be the best suited for low power applications 

(such as sensor nodes). The EC-ElGamal offers the same 

level of security with a smaller bit size by reducing 

processing overhead as compared to RSA or other 

homomorphic algorithms. 

Smaller key sizes result in less power, bandwidth and 

computational requirements. This makes EC-ElGamal a 

good choice for low power environments. EC-ElGamal 

has got applications as a public key sharing scheme and 

as digital signature authentication scheme. 

Due to these factors, ECC is better suited for low 

bandwidth, computational power and memory situations 

especially in mobile and wireless environment (Malik, 

2011). So undoubtedly, we can make an ascertainment 

that EC-ElGamal is the strongest and the fastest 

(efficient) among the present techniques (Malik, 2011). 

 
Table 1: Comparison of homomorphic cryptosystems 

 Additive homomorphic Exponential based Asymmetric 

Homomorphic cryptosystems operation encryption encryption 

RSA (Rivest et al., 1978) No Yes Yes 

Pailler (1999) Yes Yes Yes 

CMT (Castelluccia et al., 2005) Yes No No 

EC-ElGamal (Koblitz, 1987) Yes No Yes 

Naccache and Stern (1998) Yes Yes Yes 

Domingo-Ferrer (2002) Yes Yes No 

Goldwasser and Micali (1984) No Yes Yes 

Okamoto and Uchiyama (1998) Yes Yes Yes 

Benaloh (1994) Yes Yes Yes 

DGHV (Dijk et al., 2010) Yes No No 
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Based on the criteria mentioned above, EC-ElGamal 

seems to be efficient compared to other cryptosystems 

but its implementation is not obvious by considering it as 

homomorphic cryptosystem. Take for example an 

elliptic curve E over prime integers defined on a finite 

field Fp is represented by a following equation: 

 

( ) 2 3
, :   

p
E a b y x ax b mod p= + +   (1) 

 

Since the coefficients a and b are integers chosen 

from the field Fp and the cubic x3 + ax +b must not have 

the repeated roots in Fp which is equivalent to the 

condition ∆ = 4a3 + 27b2 ≠ 0 (mod p). In addition to the 

points of the curve, we must define a point O that we 

affectionately name "point at infinity". If P1(x1, y1) and 

P2(x2, y2) are points on Ep(a, b) with P1, P2 ≠ O, let 

define P3 = (x3, y3) = P1 + P2 by: 

 

1. if x1 ≠ x2, then x3 = λ
2
 – x1 – x2 and y3 = λ(x1 - x3) - y1, 

where 2 1

2 1

y y

x x
λ

−

=

−

. 

2. if x1 = x2, but y1 ≠ y2, then P1 + P2 = O. 

3. if P1 = P2 and y1 ≠ 0 then x3 = λ
2
 – 2x1 and y3 = λ(x1 - 

x3) - y1, where 
2

1

1

3

2

x a

y
λ

−

= . 

4. if P1 = P2 and y1 = 0 then P1 + P2 = O. 

 

Elliptic curve cryptography can be used to encrypt 

the plaintext message m into ciphertext. The plaintext 

message m is encoded at a point Pm from the finite set of 

points in the elliptic group, Ep(a, b). The first step 

consists in choosing a generating point G ∈ Ep(a, b) such 

that the smallest value of n for which nG = O is a very 

large prime number. The number n (called order of G) 

must verify the condition 1 ≤ n < N, where N is the 

number of all points of Ep(a, b) (Rabah, 2005). 

Assume that Bob and Alice intends to communicate. 

Each user selects a private key and uses it to compute 

their public-key. For example, Alice (A) selects a 

private-key nA<n and computes the public-key PA = 

nAG. To encrypt the message Pm for Bob (B), Alice 

chooses a random integer k and computes the ciphertext 

pair of points PC using Bob’s public-key PB = nBG: PC 

= [(kG), (Pm + k PB)]. 

After receiving the ciphertext pair of points, PC, 

Bob multiplies the first point, (kG) with his private-

key, nB and then subtracts the result to the second 

point in the ciphertext pair of points, (PM + k PB): (Pm 

+ k PB) - [nB(kG)] = (Pm + k nBG) - [nB(kG)] = Pm 

which is the plaintext point, corresponding to the 

plaintext message m. Only Bob, knowing the private-

key nB, can remove nB(kG) from the second point of 

the ciphertext pair of point, i.e., (Pm + k PB) and hence 

retrieve the plaintext information Pm. 

The problem with elliptic curves as an additive 

homomorphic cryptosystem is that the addition on an 

elliptic curve must involve only the points on that curve 

and the result must be a point on that curve, so if we 

have to encrypt the messages (data from WSN such as 

temperature for example) in the form of integers we 

must first map them to the corresponding points on the 

elliptic curve Ep(a, b). There are several ways of 

mapping (Potey et al., 2018; Ugus et al., 2009) to 

convert the message m to the point Pm of the curve. 

Using a method where Pm is a multiple of the generator 

point G i.e. Pm = mG requires the reverse function to 

extract the original message m from the given encoded 

message on the point mG. The mapping function obeys 

the property of homomorphism because: 
 

( )

( )

1 2 3 1 2 3

1 2 3

1 2 3

m m m
P P P map m m m

m m m G

mG m G m G

+ + +…= + + +…

= + + +…

= + + +…

 

 
where, m1, m2, m3 … are integer messages ∈ Fp. To 

perform homomorphic encryption the reverse mapping 

function is needed, such function is required to resolve 

the discrete logarithm problem over an elliptic curve. For 

this reason, the sensor nodes (cluster header of the WSN) 

cannot execute the reverse mapping function because of 

lack of computation power (Ugus et al., 2009). Since it 

seems impossible for us to implement elliptic curves as 

homomorphic ciphers in WSNs, we must think of the 

other algorithms that best meet the criteria. The DGHV 

and the CMT cryptosystem are better candidates 

approaching the criteria but these two algorithms also 

have weaknesses against the proposed architecture.  

First of all, DGVH is applicable to the binary number 

which implies that each time it is necessary to send the 

messages (the data in the case of WSN) that it is also 

necessary first to convert them in binary then to apply 

the encryption what includes a costly step in energy 

consumption and time. The second disadvantage is the 

imposing size of the encryption key, the DGVH 

generates a large cryptogram that requires more 

bandwidth, transmit power and sufficient energy to 

perform encryption. For these reasons, DGVH is not the 

proper cryptosystem for WSNs. Without going into the 

details of the CMT cryptosystem, it is not adequate for a 

network using a thousand wireless sensors because the 

base station shares a unique secret key with each node in 

the network which makes the aggregation process of 

ciphertexts more complicated to implement. 

In Domingo-Ferrer’s cryptosystem, the size of 

parameter d affects the size of ciphertext (Newman, 

2018). Domingo-Ferrer’s encryption algorithm is a 

symmetric-key based cryptosystem uses two secret 

parameters rp and rq for encryption and computes rp
-1
 and 

rq
-1
 for corresponding decryption. Drastically reducing 
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the size of the parameter d could attenuate the effect of 

exponentiation for not having very wide cryptogram. 

Although the cryptosystem is symmetrical, we could use 

an asymmetric algorithm (EC-ElGamal for example) to 

exchange the secret key globally throughout the WSN: 

 

• This encryption algorithm begins with the choice of 

two prime numbers p and q and from them we could 

easily calculate n = p * q. These parameters (p, q 

and n) are only available on sensor nodes and end 

users. The parameter d must be greater or equal to 2. 

• Then choose randomly rp and rq belonging to the 

multiplicative subgroup Zp* and Zq* respectively. 

• Before the encryption process, it is necessary to split 

randomly the message m into different integers m1, 

m2, ..., md such that 
1

d

ii
m

=
∑  = m mod n and mi ∈ Zn. 

The ciphertext is obtained by computing: 

Ek(m) = ([m1*rp
1
 mod p, m1*rq

1
 mod q], [m2*rp

2
 mod 

p, m2*rq
2
 mod q], …, [md*rp

d
 mod p, md*rq

d
 mod q]) 

• To decrypt, compute the scalar product of the i
th

 

[mod p, mod q] pair by [rp
-i
 mod p, rq

-i
 mod q] to 

retrieve the [mi mod p, mi mod q]. Add up to get [m 

mod p, m mod q]. Use the Chinese remainder 

theorem (Ireland and Rosen, 1990) to obtain the 

unique m mod n 

 

The Fig. 3 shows an unrealistically small example of 

a Domingo-Ferrer cryptosystem over an integer. This 

cryptosystem supports homomorphic processing when 

the ciphertext is obtained using the same key. The size of 

the parameter d directly affects the size of the 

cryptogram and each plaintext is divided into d sub-

plaintexts so that each of them is encrypted using the 

secret parameters p, q, rp and rq. 

Domingo-Ferrer Implementation 

The implementation is performed on a 16-bit 

microprocessor-based sensor node (i.e. the highest digit 

can handle is 2
16 
-1= 65535) called Waspmote and 

manufactured by Libellium. For this implementation we 

take the values of the ambient temperature (in Celsius 

degrees) assuming they are positive numbers in the range 

[0, 55]. So the choice of encryption parameters will be 

based on this interval so that n is greater than 55. Every 

15 minutes, each sensor node wakes up and collects the 

temperature as a float number and converts (because this 

cryptosystem is applicable to the integer numbers but in 

order to produce accurate results, instead of converting 

the floats values of temperature to the integers, we could 

multiply each value by 100 for example but this would 

lead to excessive calculations) it to an integer to be 

encrypted using the previously programmed Domingo-

Ferrer algorithm. The programming of the Waspmote 

nodes uses C++ language and code is loaded on the 

sensor node via the USB cable.  

 

([34 * 4
1
 mod 11, 34 * 2

1
 mod 13],

[90 * 4
2
 mod 11, 90 * 2

2
 mod 13],

[49 * 4
3
 mod 11, 49 * 2

3
 mod 13])

= ([4, 3],[10, 9],[1, 2])

d = 3 p = 11  q = 13  n = 143  rp = 4  rq = 2

                   (rp
-1
 = 3)    (rq

-1
 = 7)

Parameters

Encryption

Decryption

The scalar product

([4 * 3
1
 mod 11, 3 * 7

1
 mod 13], [10 * 3

2
 mod 11, 9 * 7

2
 mod 13], [1 * 3

3
 mod 11, 2 * 7

3
 mod 13])

= ([12 mod 11, 21 mod 13], [90 mod 11, 441 mod 13], [27 mod 11, 686 mod 13])

= ([1, 8], [2, 12], [5, 10])

Additions to get [m mod p, m mod q]

[ (1 + 2 + 5) mod 11, (8 + 12 + 10) mod 13] = [8 mod 11, 30 mod 13] = [8, 4]

Chinese remainder theorem to retrieve m

[8 * 13 * (13
-1
 mod 11) + 4 * 11 * (11

-1
 mod 13)] mod 143 

= [104 * (6 mod 11) + 44 * (6 mod 13)] mod 143 = [104 * 6 + 44 * 6] mod 143 = 888 mod 143 = 30

(34 + 90 + 49) mod 143

= 173 mod 143 = 30

Random fragmentation

of the message

Plaintext message

m = 30

Fragmented message

(34, 90, 49)

Ciphertext message

([4, 3],[10, 9],[1, 2])

Plaintext message

m = 30

 
 

Fig. 3: Encryption and decryption using Domingo-Ferrer’s cryptosystem 
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Laptop/Gateway
Sink node

End user

Sensor node 1

Sensor node 2

Cloud

 
 

Fig. 4: Implementation configuration 

 
After encryption, the sensor node creates a ZigBee frame 

and sends the temperature as ciphertext to the MAC 

address of the base station. For this implementation we 

do not include clustering due to lack of sufficient sensor 

nodes and the data are sensed every 10 sec in order to 

accelerate the experiments. Through the sink node 

(connected to a laptop acting as a gateway toward the 

cloud), the received ciphertexts are parsed and then 

routed to the cloud for storage. The complete 

configuration is shown in Fig. 4. 

End users can access data stored in the cloud at any 

time, data operations must be performed in the cloud 

(Amazon EC2) and the user only gets results. Imagine we 

want to calculate the average annual temperature, as 

sensor nodes send data every 15 min, which is four values 

in one hour and 96 values each day. In a year, each sensor 

node collects 35040 temperature values. Suppose that the 

WSN is composed by 100 sensor nodes, we would have 

3504000 values and it would be difficult to manipulate 

them with end-user computers having not enough power 

to compute. In the next Table 2 are the sample of sensed 

data and we will prove the homomorphism on them (the 

parameters used for this sampling are: d = 2, p = 17, q = 

13, n = 221, rp = 6 and rq = 9). 

To demonstrate the homomorphism, just decrypt the 

sum as ciphertext ([11, 6],[7, 7]) to verify whether we 

get the value 198 or not. So, let's start finding rp
-1
 and rq

-1
 

in Zp and Zq respectively: 
 
 rp * rp

-1
 mod p = 1 and rq*rq

-1
 mod q = 1 

 6 * rp
-1

 mod 17 = 1 and 9 * rq
-1

 mod 13 = 1 

  → rp
-1

 = 3 and rq
-1

 = 3 
 

Let’s compute the scalar product of the i
th
 [mod p, 

mod q] pair by [rp
-i
 mod p, rq

-i
 mod q] to retrieve [mi mod 

p, mi mod q]: 
 

([11* rp
-1

 mod p,6 * rq
-1

 mod q],[7 * rp
-2

 mod p,7 * rq
-2

 

mod q]) = ([11 * 3 mod 17,6 * 3 mod 13],[7 * 3
2
 mod 

17,7 * 3
2
 mod 13]) = ([16 mod 17,5 mod 13],[12 mod 

17,11 mod 13]) 
 

Let’s add [mi mod p, mi mod q] to obtain [m mod p, m 

mod q] = [11 mod 17,3 mod 13]. 

Table 2: Sample of encrypted data received after Domingo-

Ferrer’s Implementation 

 Enrypted temperature Decrypted temperature 

 ([12,12],[9,1]) 32 

 ([9,6],[12,6]) 33 

 ([1,9],[11,8]) 34 

 ([9,5],[14,5]) 34 

 ([2,12],[3,4]) 33 

 ([12,1],[9,9]) 32 

Total ([11, 6],[7, 7]) 198 

 

Finally, we have to apply the Chinese Remainder 

Theorem to obtain the unique m mod n.  

Assume that z1 = n/p = q and z2 = n/q = p and let y1 

= z1
-1

 mod p = 4 mod 17 and y2 = z2
-2

 mod q = 10 mod 13 

Thus, m = (m1y1z1 + m2y2z2) mod n = (11* 4 * 13 + 

3* 10 * 17) mod 221 = 198. Hence, we proved the 

homomorphism on temperature values using the 

Domingo-Ferrer algorithm. 

To understand how data is protected with this 

encryption process, we must first know that the 

encryption keys are known only by the sensor nodes and 

the decryption by the end user. If an attacker gains 

access to the encrypted data from the Table 2 stored in 

the cloud, he/she will not be able to do anything with it 

because the decryption keys are only available to the end 

user. Even when the end user wants to perform some 

arithmetic operations on the data of Table 2 such as the 

temperature average for example, the cloud calculates 

their sum by being encrypted and he/she receives only the 

result ([11, 6],[7, 7]) and the number of lines participated 

into the addition. The end-user decrypts ([11, 6],[7, 7]) 

locally on his/her computer using his decryption keys to 

get 198 and divides it by the number of summed values to 

find 33. In no case does the user send the decryption keys 

over the network (cloud) and this is why the attacker 

cannot intercept the decryption keys. 

Domingo-Ferrer Performance Analysis 

With a 16-bit processor we have to carefully choose 

the parameters to encrypt the data from the WSN. First 

of all, the choice of p and q must be such that the 

maximum value to be encrypted must be strictly less 
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than n because by splitting the message m into m1, m2, 

…, md, all these short messages must be less than n also. 

During the implementation we used n = 221 with the 

temperature values included in the interval [0, 55], this 

assures us that this condition is sufficiently verified. 

Second condition is related to the randomly chosen 

parameters rp and rq, these two belong respectively in Zp 

and Zq that is why they can take any value but 

realistically small so that the rp
d
 and rq

d
 (also rp

-d
 and rq

-d
) 

are not very big to saturate the maximum bits capacity of 

the processor. The third criterion is the choice of the 

parameter d, the more it is bigger the more we have 

several splits of message, so the rp
d
 and rq

d
 (also rp

-d
 and 

rq
-d
) becomes relatively large which can lead to the bad 

results if during the encryption the calculations include 

the intermediate results exceeding the 16 bits (the 

maximum bits for the sensor node’s microprocessor).  

To evaluate the effects of Domingo-Ferrer encryption 

on the life state of the sensor node’s battery, we carried 

out four experiments: the first is about to send 10,000 

messages (temperature and battery level) in plaintext 

(Fig. 5a), the second experiment (Fig. 5b) is about to 

send the same number of messages but being encrypted 

(whose encryption parameters are: p = 17, q = 13, n = 

221, rp = 3 and rq = 2) with the parameter d equal to 2, 

the third experiment (Fig. 5c) repeats experiment 2 but 

changing d = 3 and the fourth (Fig. 5d) is identical to the 

last three but with 4 fragments of plaintext (d = 4). The 

experiment configurations and parameters are 

summarized in the following Table 3. 

 
Table 3: Experiment configuration and range of varying parameter values 

Implementation Sent messages p q n rp rq d 

(a) No cryptography 10,000 - - - - - - 

(b) Encryption with 2 fragments 10,000 17 13 221 3 2 2 

(c) Encryption with 3 fragments 10,000 17 13 221 3 2 3 

(d) Encryption with 4 fragments 10,000 17 13 221 3 2 4 

 
Table 4: Summary of the experiment results 

Implementation Sent messages Battery before experiment Battery after experiment Dropped % 

(a) No cryptography 10,000 39% 38% 1% 

(b) Encryption with 2 fragments 10,000 68% 62% 6% 

(c) Encryption with 3 fragments 10,000 82% 75% 7% 

(d) Encryption with 4 fragments 10,000 90% 82% 8% 

 

 
 

Fig. 5: Impact of domingo-ferrer homomorphic encryption on the state of the battery life 
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Note in Fig. 5a when the 10,000 messages are sent as 
plaintext the battery level of 39% drops to 38%, so the 
sensor node loses one percent which is relatively 
convincing for autonomous sensor nodes. When applying 
the encryption to the data collected with the parameter d = 
2 we notice that at the end of the sending of 10,000 
messages the level of the battery has dropped 6% (from 
68% to 62% by referring to the Fig. 5b). By modifying the 
parameter d = 3, we notice a slight difference with the 
result obtained with d = 2 because in Fig. 5c we had the 
battery level which varied from 82% to 75%, i.e., 7% in 
this case and 1% more using d = 2. In Fig. 5d, the battery 
has dropped from 90% to 82% with d = 4, so undoubtedly 
we can comment that when increasing the number of 
fragments of the plaintext is slightly decreasing the whole 
energy of the wireless sensor network (Find the summary 
of the obtained results in the Table 4). 

Comparing with the results obtained by some of the 
other related works (Ertaul and Yang, 2008), we can 
validate our methodology because we come with the 
same ascertainment that even if several message splits 
offer better security they have a detrimental impact on 
the whole network’s energy, thus the number of 
fragments of the message should be kept at minimum. 

Conclusion 

Homomorphic encryption is useful in some 

applications of wireless sensor networks, its use has a 

positive impact firstly by promoting the confidentiality of 

the aggregated data and then allowing it to be stored safely 

into the cloud while performing arithmetic operations on 

the encrypted data. The use of a symmetric encryption 

algorithm such as the Domingo-Ferrer cryptographic 

system is implementable in the WSNs but it is first 

necessary to know the specifications of the sensor nodes 

in order to choose the best encryption parameters in order 

to avoid depletion of the network energy or exceeding the 

value limits that processors of the sensor nodes can 

support. Mutual encryption for WSN and cloud computing 

seems to be an essential solution for two types of 

networks, which one is WSN and the other is the Internet. 

Despite the advantages of these homomorphic encryption 

algorithms, they also have disadvantages to wireless 

sensor networks, the encryption process requires power 

calculations that consume a lot of energy, which makes 

the network vulnerable to longevity. The use of these 

algorithms lies between the importance of the project to be 

protected and the profitability of the network.  

In this paper we have proposed a solution to secure the 

aggregated data by using Domingo-Ferrer’s homomorphic 

encryption scheme with the objective of understanding its 

impact on the life of the WSN. From the obtained results 

we find that although more message splits offer a higher 

level of security, generally in terms of performance the 

energy of the wireless sensor network is penalized. 

Therefore, message splitting should be kept to minimum. 

To maintain the balance between the expected services and 

the security level, it would be better to choose the 

encryption parameters on the basis of the desired 

performances and the energy state of the sensor nodes. 

Thereafter, we will work on the arithmetic operations that 

Domingo-Ferrer homomorphic encryption is able to ensure. 
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