

 © 2019 Christophe Ishimwe Ngabo and Omar El Beqqali. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Implementation of Homomorphic Encryption for Wireless

Sensor Networks Integrated with Cloud Infrastructure

Christophe Ishimwe Ngabo and Omar El Beqqali

Department of Computer Science, Faculty of Sciences - Sidi Mohamed Ben Abdellah University, Fez, Morocco

Article history

Received: 08-07-2018

Revised: 10-09-2018

Accepted: 7-02-2019

Corresponding Author:

Christophe Ishimwe Ngabo

Department of Computer

Science, Faculty of Sciences -

Sidi Mohamed Ben Abdellah

University, Fez, Morocco
Email: christophe.ngabo@usmba.ac.ma

Abstract: With the current explosion of cloud services, it is easy for

everyone to store the prodigious amount of data on remote servers. On the

other hand, service providers are given full access to our information, or in

the worst case, can be intercepted by malicious people. The solution is to

encrypt the data to make it completely secret. But then, we can no longer

manipulate these data remotely (retouching the photos, looking for words in

a text, performing calculations ...). A new form of cryptography, which is

just beginning, promises precisely to offer this security while allowing the

encrypted data to be manipulated by the authorized users, it named

“Homomorphic Encryption”. This paper presents the implementation of a

homomorphic encryption to ensure the confidentiality of aggregated data

from wireless sensor networks and also demonstrates how to use it through

the cloud infrastructure in order to perform arithmetic operations directly

on the encrypted data without decrypting them. After a theoretical

comparative study on homomorphic encryption algorithms, we picked out

the Domingo-Ferrer’s cryptosystem on the basis of criteria mentioned

during the survey. This cryptosystem requires to split the message into

several fragments (at least two fragments) before the encryption process.

For each implementation case performed with two, three and four

fragments of the message, 10,000 messages were sent so that the battery

levels of the sensor nodes dropped by 6%, 7% and 8% respectively, which

led us to conclude that as long as the number of fragments increases, the

power consumption in the network is increasingly significant because of

excessive processing and a large amount of data to be transmitted over the

wireless network, generated by the Domingo-Ferrer’s cryptosystem.

Keywords: Cloud Computing, Data Aggregation, Wireless Sensor

Networks, Homomorphic Encryption

Introduction

Since their inception, wireless communication networks

have been increasingly successful in the scientific and

industrial communities. Thanks to its various advantages,

this technology has been able to establish itself as a key

player in the current network architectures.

Nowadays, with the advanced research in the new

information and communication technologies, it is very

easy to develop small embedded systems of

communication, not expensive, comprising at least a

power unit, a data collection unit (sensing unit), a

processing unit and a transmission unit for mainly

surveillance, discovery and detection purposes (Zheng and

Jamalipour, 2009). These microsystems (sensor nodes or

motes) can integrate a wide range of sensors collecting

information from the physical environment for various

applications such as military, medical, industrial, natural

disasters, etc. (Sohraby et al., 2007).

Thanks to these transmission units, these nodes

communicate with each other to build a network, often

wireless, which can generate thousands of nodes

transforming the state of an observed physical quantity

(temperature, pressures, humidity, vibration, etc.) into

signals that can be converted into codes in order to be

processed by computers. This information is routed over

the network from one node to another to a collection

point called the "Base Station" or the "Sink" that serves

as a gateway to devices located on other external

networks such as the internet.

The collected data from the Wireless Sensor Network

(WSN) can be exploited in real-time by users on the

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

236

external networks but they also need to be stored for later

use, however it is not a simple matter to find enough

processing power and storage for this multitude of data.

The Cloud infrastructure provides several benefits such as

mass storage, the demand for self-service access to the

network wide resource consolidation, measurement

service, mass scalability, consistency, virtualization,

software low-cost, distribution, service orientation and

advanced security (Buyya et al., 2011). All these qualities

are essential to fill the gaps found in the WSN.

Consider a simple example of weather, a city where

each neighbourhood has its own weather station, data on

rainfall, temperature, humidity, wind, etc., will be stored

in the cloud’s database to serve statistics for example.

Suppose each weather station has a multitude of redundant

sensors, in fact we will not use a single temperature sensor

for a single station but several and make an arithmetic

average to be sent to the cloud. In this example, the sent

values are plaintexts, an attacker can intrude into the

network and tries to visualize the information that transit,

but the big concern is the falsification or unauthorized

modification that can occur in the cloud. An effective

way of ensuring the confidentiality of data from the

sensor network to the system administrator via the cloud

is required. Such a system must be composed of four

major actors, namely the sensor network, the cloud

infrastructure, an administration subsystem and a web

service for end users (citizens).

Imagine we decide to encrypt the data from the

sensor network with the symmetric algorithms such as

AES, whenever the administration wants to perform the

calculations (statistics) on the stored data, it must either

send a secret key to the cloud for decryption (a

potentially dangerous solution because the sending of

the key on the network is likely to be intercepted but

the administration can benefit the computing power of

the cloud) or downloading the encrypted data and

performing the statistics locally (solution without risk

but the administration machine will have a huge data

capacity to process, which requires a powerful

machine). In both cases, we do not have the best

solution to remedy this problem.

Imagine a solution that does not require a decryption

key to perform these operations (statistics, forecasting,

etc.) on encrypted data, i.e., the administration will not

have to take the risk of sending that decryption key over

the network and in addition, he/she will benefit the

computing power of the cloud. The administrator's

workstation only has to decrypt the results of the

statistics using its key that it keeps locally, such solution

can be the use of Homomorphic Encryption algorithm.

A homomorphic encryption scheme makes possible

to perform the arithmetic operations on the encrypted

data without decrypting them. Homomorphic encryption

also reduces the processing time of initially encrypted

data. Homomorphic encryption in the cloud computing

ensures data confidentiality and minimizes the risk of

attacks (Tebaa et al., 2012).

By applying a homomorphic encryption scheme in a

system, it can avoid the risk that can occur when

exchanging the secret keys. In short, this paper focuses

on the use of homomorphic encryption algorithm applied

to the distributed system combining together the sensor

network, cloud infrastructure and end users.

The homomorphic encryption implemented in this

paper has been the subject of a theoretical study on the

different symmetric and asymmetric algorithms. The

choice of the implemented algorithm was based on the

criteria concerning computational difficulties such as

exponentiations that are not adequate in the WSNs due

to the congestion of the computational resources. The

implementation was carried out with the Domingo-Ferrer

(2002) encryption scheme on the sensor nodes

embedding 16-bit microprocessors, which are

moderately sufficient for cryptography calculations. This

encryption algorithm requires that the message must be

split into several fragments before proceeding to

encryption that is why we have performed several

experiments with the variable number of the fragments

(2, 3 and 4) in order to understand the impact of this

message splitting on the state of the battery of each

sensor node. The results obtained showed that after

sending 10,000 messages the battery levels decreased

respectively by 6%, 7% and 8%, which shows that the

more the message is fragmented the more the energy of

the WSN is slightly diminished but the level of data

security (confidentiality) is increasing.

In this paper we started with the introduction on the

wireless sensor network, the importance of integrating it

with Cloud Computing as well as the security using

homomorphic encryption. Then we made a summary

about literature and related works to our research topic.

The next section focuses on the importance of

homomorphic encryption on aggregated data in the

WSNs. The fourth section is the security modeling

required for aggregated data in the WSN. The fifth

section is the implementation of the Domingo-Ferrer

algorithm in the WSNs. It is in the sixth section that we

presented the results aforementioned and finally we

concluded in the seventh section.

Literature Review and Related Works

Cloud Computing permits companies to increase

capacity quickly without the need for new infrastructure

investment and similarly companies can decrease

capacity quickly and efficiently. Cloud Computing is

principally designed and promoted to be data centre

centric and efficient interaction with the outside world is

an area where improved solutions are being sought

(Ahmed and Gregory, 2011).

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

237

In fact, Cloud Computing offers several advantages

such as mass storage, the demand for self-service

access to the wide network, resource consolidation, the

measurement service, massive scalability, consistency,

virtualization, low cost software, distribution,

orientation of service and advanced security. All these

qualities are essential to fill the gaps found in the WSN

(Ngabo and Beqqali, 2016).

As we know, the WSN is designed to collect data in

the real world, but the question is what to do with this

data when the organisations no longer need it. There

are many reasons for the data to be kept including

historical, future research and re-analysis at some

future point in time. There is a possible linkage

between WSN and Cloud Computing and the eventual

shift of data into the cloud and over time into the public

domain (Ahmed and Gregory, 2011).

By definition (Tebaa et al., 2012), we have an

homomorphic encryption if from Enc(m1) and Enc(m2) it

is possible to compute Enc(f(m1,m2)), where f can be +, x

or ⊕ and without using the secret key. According to the

operations that allow to access on raw data, we

distinguish three types of homomorphic encryption:

• Additive homomorphic encryption: A homomorphic

encryption is called additive, if Enc(m1 + m2) =

Enc(m1) · Enc(m2)

 e.g.: Pailler cryptosystem

 Enc(m1) = g
m

1·r1
N
 mod N

2
 = c1

 Enc(m2) = g
m

2·r2
N
 mod N

2
= c2

 ⇒ Enc(m1+m2) = g
m

1
+m

2·(r1·r2)
N
 mod N

2

= Enc(m1)·Enc(m2) = c1·c2

• Multiplicative homomorphic encryption: A

homomorphic encryption is called multiplicative, if

Enc(m1 · m2) = Enc(m1)·Enc(m2)

 e.g.: RSA cryptosystem

 Enc(m1) = m1
e
mod n = c1

 Enc(m2) = m2
e
mod n = c2

 ⇒Enc(m1·m2) = (m1·m2)
e
mod n = c1·c2

• Fully homomorphic encryption: homomorphic

encryption is called fully, if it is at time additively

and multiplicatively homomorphic.

E.g.: In 2010, a completely homomorphic

encryption scheme (Dijk et al., 2010) named

DGHV was presented which is an application of

Gentry encryption (Gentry, 2009) on integers

and whose security is based on the problem of

the approximate common divisor.

Keys generations: r, p and q. Where r ∼ 2
n
,

2

2
n

p ∼ ,
2

2
n

q ∼ , p and q are the prime numbers.

Enc(m) = pq +2r +m = c

Dec(c) = (pq +2r + m mod p) mod 2 = m

For two messages m1 and m2, let c1 and c2 be their

ciphertexts respectively:

� c1 + c2 = (q1 + q2)p + 2(r1 + r2) + m1 + m2

� So if 2(r1 + r2) + m1+ m2 ≪ p, then ((c1 +

c2) mod p) mod 2 = [2(r1 + r2) + m1 + m2]

mod 2 = m1 + m2. Thus, DGHV realizes the

property of additive homomorphic

encryption

� c1 ×c2 = [q1q2p + (2r1 + m1) + (2r2 + m2)]p

+ 2(2r1r2 + r1m1 + r2m1) + m1m2

So if 2(2r1r2 + r1m1 + r2m1) + m1m2 ≪ p, then

((c1 ×c2) mod p) mod 2 = [2(2r1r2 + r1m1 + r2m1)

+ m1m2] mod 2 = m1m2. As a result, DGHV also

performs the multiplicative homomorphic

encryption.

A faster variant of Pailler's additive homomorphic

encryption protocol was derived in 2011 focusing on the

security of aggregated data in the WSNs (Wang et al.,

2011). The idea was to speed up exponentiation in the

decryption process. Performance evaluation of the obtained

results indicates that the protocol they proposed can

accelerate about 49% in encryption and 50% in decryption.

An optimized implementation of the elliptic curve EL

Gamal based on additive homomorphic encryption has

been presented in order to offer a fast multiplication

point by creating a small code beneficial to the memory

of the sensor nodes (Ugus et al., 2009). The results they

obtained show that their implementation is 44% faster

compared to the previous best results.

Another homomorphic encryption scheme based on

elliptic curves has been proposed to avoid eavesdropping

to wireless channels and to ensure energy savings in

cluster-based WSNs (Elhoseny et al., 2016). Based on

the obtained experimental results, the authors promise

that their method improve network performance

compared to other methods in terms of energy

consumption, memory requirement, network overhead

and network lifetime.

A homomorphic encryption scheme with a low

computation and communication overhead has been

proposed to secure compressive data gathering in the

WSNs (Xie et al., 2017). The authors had the main goal

of protecting against traffic analysis and flow tracing in

WSNs. By using homomorphic encryption, data can be

aggregated to reduce network traffic, but homomorphic

encryption functions also increase the size of packets to

be sent over the network while increasing power

consumption because the consumed power is directly

proportional to the amount of transmitted data.

A study was conducted in 2012 (Roy et al., 2012) to

investigate the effect of increasing packet size for

Domingo-Ferrer homomorphic encryption scheme in

comparison to a symmetric cryptosystem. The results

approved that symmetric encryption outperforms

homomorphic encryption for small WSNs, but as the

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

238

network grows the homomorphic encryption

outperforms symmetric encryption.

Another implementation of the Domingo-Ferrer‘s

homomorphic cryptosystem has been simulated on the

Mica2 nodes in OMNet ++ (Ertaul and Yang, 2008).

During the implementation, the authors considered three

different scenarios (different key sizes and fixed message

size, different message sizes and fixed key size, different

message splits and fixed key size). The obtained results

allowed them to conclude that splitting the message into

several small messages makes it possible to increase the

level of security but by penalizing the long-term

network, which must be split at least the message.

Recently, a secure data collection scheme based on
compression sensing has been proposed firstly in order

to improve the data privacy by the use of the asymmetric
semi-homomorphic encryption and secondly to reduce
the computational cost by using the sparse compression
matrix (Zhang et al. 2018b). The asymmetric encryption
mechanism reduces the difficulties of encryption secret
keys management and distribution, while homomorphic

encryption allows the aggregation of encrypted data in
the network as well as improving security and load
balancing on the network. The sparse compressive
matrix reduces the computation and the communication
cost by compensating the increasing cost caused by
homomorphic encryption. The results that the authors

obtained are satisfactory or even better compared with
the most related research works.

Almost the same authors (Zhang et al., 2018a) as in

previous research work have proposed what they called

Multi-functiOnal secure Data Aggregation (MODA),

which encodes raw data into well-defined vectors to

provide value preservation, order preservation and

context preservation and thus by building blocks for

multifunctional aggregation. The main purpose of this

project was to compute efficiently in distributed mode

even without worrying about security issues. To do this,

they also used homomorphic encryption to enable in-

ciphertext aggregation and end-to-end security.

All these related works to this subject concerns only the

security inside the WSN, that means once the encrypted

data arrived at the base station are decrypted to be

processed or visualized but in this paper we want this data

to continue to the cloud by being encrypted for storage. In

this paper we show how it is possible that a user could

perform through the cloud the arithmetic operations on this

kind of data (homomorphically encrypted data) without

being decrypted in order to increase the privacy level.

Homomorphic Encryption on Aggregated

Data in WSN

A sensor network generally consists of a large number

of sensor nodes strongly deployed in a sensing region and

one or more base stations located within the collection zone.

The base stations send requests or commands to the sensor

nodes in the sensing zone while the sensor nodes

collaborate to accomplish the sensing task and send the

collected data to the base station(s). Meanwhile, base

stations also serve as gateways to external networks, for

example the Internet (cloud infrastructure). The sink node

gathers all data from sensor nodes, performs simple

processing and sends the relevant information (or processed

data) via the Internet to users who have requested it or who

use the information (Zheng and Jamalipour, 2009).

To send data to the base station, each sensor node can

use a single-hop long distance transmission, which leads

to the single-hop network architecture. However, long-

distance transmission is costly in terms of energy

consumption. In sensor networks, the energy consumed

for communication is much higher than the energy

required for data collection and computation. Therefore,

it is desirable to reduce the amount of traffic and the

transmission distance in order to increase energy savings

and extend the life of the network.

In this case, short distance communication is highly

preferred. In most sensor networks, the sensor nodes are

highly deployed and the neighboring nodes are close to

one another, which makes it possible to use short-

distance communication. In a multi-site communication,

a sensor node transmits its sensed data to the base station

via one or more intermediate nodes, which can reduce

the power consumption for communication.

In a multi-site network, sensor nodes can be
clustered, where cluster members send their data to
cluster heads, while cluster heads serve as relays to
transmit data to the base station. A low energy node
can be used to perform the sensing task and send the
sensed data to its cluster header at a short distance
while a higher energy node can be selected as a cluster
head to process data from the cluster members and
transmit them to the base station. This process can not
only reduce the energy consumption for communication
but also balance the traffic load and improve scalability
as the network size increases.

In addition, aggregation of data can be performed on

cluster heads to reduce the amount of data transmitted to

the base station and improve the energy efficiency of the

network. For example, if a weather station picks up

temperature values with various temperature sensors, it is

obvious that the temperature is the same for a given

locality, instead of sending each value to the cluster head,

the cluster head could perform small calculations on the

data as the average in order to reduce network traffic

while saving energy and increasing network longevity.

The objective of data aggregation is to combine and

generalize the data coming from several sensor nodes in

order to reduce the data to be transmitted. The majority

of applications using the WSN require a certain level of

security, the encryption of the data collected before

transmission is preferable.

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

239

In the previous example of meteorology, sensor
nodes collecting the values of the ambient temperature of
the environment encrypt its data before their
transmission to the cluster head, as its data come from
the same neighborhood it is possible to prepare an
aggregation by summing them at the cluster head and the
result is sent to the base station as the same time as the
number of the nodes sent these encrypted values. In fact,
the average of the temperature of the environment is
calculated by the base station by summing aggregated
data from cluster headers and then it can decrypts this
sum in order to be divided by the addition of numbers of
all nodes that took these measurements.

Suppose we have three clusters A, B and C

(showed on the Fig. 1). Cluster A comprises five

sensor nodes, three sensor nodes for cluster B and four

sensors for cluster C. In this example, the cluster

headers do not collect the temperature values, they

serve only to aggregate data from children nodes.

Suppose we use an additive homomorphic encryption

algorithm, for example the Pailler cryptosystem. The

cluster head A receives encrypted values A1, A2, A3

and A4 from children nodes and calculate the output As

as the result of aggregation on inputs. As is sent to the

base station with the number 4 corresponding to the

number of nodes took the corresponding values. For

Pailler cryptosystem, in order to achieve the

aggregation on cluster header, it necessary to perform

multiplication on inputs:

As = A1 · A2 · A3 · A4,

As = g
(v

A1
+v

A2
+v

A3
+v

A4
)
 · (rA1 · rA2 · rA3 · rA4)

N
 mod N

2
,

where: A1= Enc(vA1) = g
v
A1

· rA1

N
 mod N

2
,

 A2= Enc(vA2) = g
v
A2

· rA2

N
 mod N

2
,

 A3= Enc(vA3) = g
v
A3

· rA3

N
 mod N

2
,

 A4= Enc(vA4) = g
v
A4

· rA4

N
 mod N

2

By using the same algorithm, the cluster header B

and C send to the base station respectively (Bs, 2) and

(Cs, 3), where Bs = g
(v

B1
+v

B2
)
 · (rB1 · rB2)

N
 mod N

2
 and Cs

= g
(v

C1
+v

C2
+v

C3
)
 · (rC1 · rC2 · rC3)

N
 mod N

2
. Then, the base

station calculates the average by the following formula:

()· ·

4 3

2

Dec A
Averag

s Bs Cs
e

+

=

+

()()1 2 3 4 1 2 1 2 3
(v) 2

1 2 3 4 1 2 1 2 3
· · · ·

· · · · · mod

9

A A A A B B C C C
Nv v v v v v v v v

A A A A B B C C C

Avera
Dec g r r r r r r r r r N

ge

+ + + + + + + +

=

1 2 3 4 1 2 1 2 3)

9

v
A A A A B B C C C

Average
v v v v v v v v v+ + + + + + + +

=

Internet

Base station

Cluster A

Cluster B

Cluster C

As, 4

A1

A2
A3

A4

Cs, 3

Bs, 2

B2

C1

C2
C3

B1

Average

Fig. 1: Homomorphic encryption on aggregated data in the WSN

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

240

Cloud

Base station

Cluster A

Cluster B

Cluster C

As, 4

A1

A2
A3

A4

Cs, 3

Bs, 2

B2

C1

C2
C3

B1

User workstation

Database

As, 4Bs, 2Cs, 3

Fig. 2 Integration of cloud computing with WSN

Assume that the clusters A, B and C represent the

neighborhoods of a city, the calculated average will be

the temperature of a city that can be sent over the

Internet, for example on a weather website. Since the

base station has already decrypted the aggregated

values from each cluster, it seems obviously that the

average sent over the Internet will be in plaintext and

that the confidentiality of the data is not ensured on

the Internet.

Afterwards we will see how we can transmit these

encrypted data on the Internet while ensuring its integrity

and confidentiality.

Back to our example of weather, we want to keep the

data archive in the cloud for future use, from the

previous paragraph we can extend the logical

architecture by sending immediately encrypted data (As,

4), (Bs, 2) and (Cs, 3) in the cloud instead of calculating

the average at the base station, the base station will

behave as a gateway without perform any processing on

the data (check on the Fig. 2 for more clarification).

It is assumed that there is a database in the cloud to

accommodate data from WSN. This data is stored

according to the date on which it was collected. When a

user wants to perform arithmetic operations on the

encrypted data, for example calculating the average

temperature of the day, he/she just needs to send a

request to the cloud, the cloud in turn retrieve the stored

data on the indicated date in the query to apply the

homomorphism property to the encrypted data. In our

previous example, the data is encrypted by the Pailler’s

algorithm, the cloud will only have to multiply all the

entries of the day and the result is an encrypted

representing the sum of these entries, in order to

calculate the average, the result and the number n of the

nodes that participated in the sensing are sent to the user.

The workstation of the user decrypts this result and

divides it by this number n to find the daily average.

Security Model

Previously, we discussed about aggregation of data

in WSN and integration of WSN with cloud

infrastructure using Pailler as homomorphic

encryption algorithm but we can ask ourselves if this

algorithm is the best for wireless sensor networks in

terms of the resources needed to encrypt, like the

sensor nodes’ CPUs and the memories containing the

programs and the encrypted data.

The majority of WSN platforms are not advanced like

traditional computers that we are using in everyday life,

the actual wireless sensor nodes embed few kilobits

microprocessors ranging from 8 bits up to 32 bits

(Johnson et al., 2009). So, let's take an example of an 8-

bit microprocessor whose temperature value of 22

Celsius is to be encrypted with the Pailler algorithm

using the following parameters:

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

241

 Private key: (p, q, r) = (5, 7, 12)

 Public key: (N, g) = (35, 144)

 Encryption: c = g
m

· r
N
 mod N

2

 c = 144
22

 · 12
35
 mod 35

2

c = 144

22
 · 12

35
 mod 1225

 c = 348

At first glance, an 8-bit microprocessor cannot

perform this kind of calculations because already the

result of encryption is on 9 bits (348 in decimal is

equivalent to 101011100 in binary), so there is an

overflow what will lead to the bad results. Another

remark is related to the power calculations, in spite of

which the operands remain within the limit of 8 bits but

this microprocessor cannot calculate 144 exponents 22

or 12 exponents 35 because there would also be an

overflow. As a result, algorithms using power operations

to encrypt the data are not well suited for this kind of

device with lower computing power.

Apart from the computing power, another problem is

related to energy consumption. To increase the level of

security, we have obviously to increase the size of the

encryption key. By increasing the size, the ciphertexts

become huge and the sensor nodes will be forced to

spend more energy for coding, modulation and radio

transmissions. A long chain of data leads to more

prolonged transmissions while consuming a lot of

energy. As a result, the algorithms to be used for

encryption must use the minimum possible key size for

an acceptable level of security.

Another challenge is the choice of a type of algorithm

to implement, if we use a symmetric encryption

algorithm we will be pleased to share the secret key with

all the sensor nodes of the network. This presents a huge

risk as we know that the network’s nodes are deployed in

a hostile environment where the risk of being intercepted

by malicious people is inevitable. If an attacker reaches

physically a sensor node, he may search until he gets the

secret key that this node shares with the other nodes in

the network as well as the base station. The best solution

is the use of an asymmetric encryption algorithm that has

two keys, one public and the other private.

In this proposed system, only the end user can access

the data in plaintext, i.e. the end user must generate

asymmetric encryption keys. The private key must be

shared with the sensor nodes either when programming

the nodes or using public key infrastructures (Holohan and

Schukat, 2010). When a node needs to send its collected

data, it encrypts them using the public key which it has

previously obtained and sends them to the next node or

cluster head which in turn applies the aggregation and

sends them to the base station. The base station will send

the data to the cloud where they will be stored or sent in

real-time to the end users. As long as the data are stored

in the cloud and encrypted, only the end user can

manipulate them without having to decrypt them since

they are homomorphically encrypted. The end user

retrieves the encrypted results found from the encrypted

data and decrypts them using his/her private key.

Previously, we discussed some criteria necessary to

pick out the suitable homomorphic encryption algorithm

for connecting the WSN with the cloud, then we will

later use a comparative Table 1 that will help us to

identify a suitable homomorphic encryption algorithm to

be implemented in the proposed architecture.

This comparative table above makes it easy to

determine the algorithm to be implemented under some

criteria before mentioned. Elliptic curve cryptosystem

seems to be the best suited for low power applications

(such as sensor nodes). The EC-ElGamal offers the same

level of security with a smaller bit size by reducing

processing overhead as compared to RSA or other

homomorphic algorithms.

Smaller key sizes result in less power, bandwidth and

computational requirements. This makes EC-ElGamal a

good choice for low power environments. EC-ElGamal

has got applications as a public key sharing scheme and

as digital signature authentication scheme.

Due to these factors, ECC is better suited for low

bandwidth, computational power and memory situations

especially in mobile and wireless environment (Malik,

2011). So undoubtedly, we can make an ascertainment

that EC-ElGamal is the strongest and the fastest

(efficient) among the present techniques (Malik, 2011).

Table 1: Comparison of homomorphic cryptosystems

 Additive homomorphic Exponential based Asymmetric

Homomorphic cryptosystems operation encryption encryption

RSA (Rivest et al., 1978) No Yes Yes

Pailler (1999) Yes Yes Yes

CMT (Castelluccia et al., 2005) Yes No No

EC-ElGamal (Koblitz, 1987) Yes No Yes

Naccache and Stern (1998) Yes Yes Yes

Domingo-Ferrer (2002) Yes Yes No

Goldwasser and Micali (1984) No Yes Yes

Okamoto and Uchiyama (1998) Yes Yes Yes

Benaloh (1994) Yes Yes Yes

DGHV (Dijk et al., 2010) Yes No No

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

242

Based on the criteria mentioned above, EC-ElGamal

seems to be efficient compared to other cryptosystems

but its implementation is not obvious by considering it as

homomorphic cryptosystem. Take for example an

elliptic curve E over prime integers defined on a finite

field Fp is represented by a following equation:

() 2 3
, :

p
E a b y x ax b mod p= + + (1)

Since the coefficients a and b are integers chosen

from the field Fp and the cubic x3 + ax +b must not have

the repeated roots in Fp which is equivalent to the

condition ∆ = 4a3 + 27b2 ≠ 0 (mod p). In addition to the

points of the curve, we must define a point O that we

affectionately name "point at infinity". If P1(x1, y1) and

P2(x2, y2) are points on Ep(a, b) with P1, P2 ≠ O, let

define P3 = (x3, y3) = P1 + P2 by:

1. if x1 ≠ x2, then x3 = λ
2
 – x1 – x2 and y3 = λ(x1 - x3) - y1,

where 2 1

2 1

y y

x x
λ

−

=

−

.

2. if x1 = x2, but y1 ≠ y2, then P1 + P2 = O.

3. if P1 = P2 and y1 ≠ 0 then x3 = λ
2
 – 2x1 and y3 = λ(x1 -

x3) - y1, where
2

1

1

3

2

x a

y
λ

−

= .

4. if P1 = P2 and y1 = 0 then P1 + P2 = O.

Elliptic curve cryptography can be used to encrypt

the plaintext message m into ciphertext. The plaintext

message m is encoded at a point Pm from the finite set of

points in the elliptic group, Ep(a, b). The first step

consists in choosing a generating point G ∈ Ep(a, b) such

that the smallest value of n for which nG = O is a very

large prime number. The number n (called order of G)

must verify the condition 1 ≤ n < N, where N is the

number of all points of Ep(a, b) (Rabah, 2005).

Assume that Bob and Alice intends to communicate.

Each user selects a private key and uses it to compute

their public-key. For example, Alice (A) selects a

private-key nA<n and computes the public-key PA =

nAG. To encrypt the message Pm for Bob (B), Alice

chooses a random integer k and computes the ciphertext

pair of points PC using Bob’s public-key PB = nBG: PC

= [(kG), (Pm + k PB)].

After receiving the ciphertext pair of points, PC,

Bob multiplies the first point, (kG) with his private-

key, nB and then subtracts the result to the second

point in the ciphertext pair of points, (PM + k PB): (Pm

+ k PB) - [nB(kG)] = (Pm + k nBG) - [nB(kG)] = Pm

which is the plaintext point, corresponding to the

plaintext message m. Only Bob, knowing the private-

key nB, can remove nB(kG) from the second point of

the ciphertext pair of point, i.e., (Pm + k PB) and hence

retrieve the plaintext information Pm.

The problem with elliptic curves as an additive

homomorphic cryptosystem is that the addition on an

elliptic curve must involve only the points on that curve

and the result must be a point on that curve, so if we

have to encrypt the messages (data from WSN such as

temperature for example) in the form of integers we

must first map them to the corresponding points on the

elliptic curve Ep(a, b). There are several ways of

mapping (Potey et al., 2018; Ugus et al., 2009) to

convert the message m to the point Pm of the curve.

Using a method where Pm is a multiple of the generator

point G i.e. Pm = mG requires the reverse function to

extract the original message m from the given encoded

message on the point mG. The mapping function obeys

the property of homomorphism because:

()

()

1 2 3 1 2 3

1 2 3

1 2 3

m m m
P P P map m m m

m m m G

mG m G m G

+ + +…= + + +…

= + + +…

= + + +…

where, m1, m2, m3 … are integer messages ∈ Fp. To

perform homomorphic encryption the reverse mapping

function is needed, such function is required to resolve

the discrete logarithm problem over an elliptic curve. For

this reason, the sensor nodes (cluster header of the WSN)

cannot execute the reverse mapping function because of

lack of computation power (Ugus et al., 2009). Since it

seems impossible for us to implement elliptic curves as

homomorphic ciphers in WSNs, we must think of the

other algorithms that best meet the criteria. The DGHV

and the CMT cryptosystem are better candidates

approaching the criteria but these two algorithms also

have weaknesses against the proposed architecture.

First of all, DGVH is applicable to the binary number

which implies that each time it is necessary to send the

messages (the data in the case of WSN) that it is also

necessary first to convert them in binary then to apply

the encryption what includes a costly step in energy

consumption and time. The second disadvantage is the

imposing size of the encryption key, the DGVH

generates a large cryptogram that requires more

bandwidth, transmit power and sufficient energy to

perform encryption. For these reasons, DGVH is not the

proper cryptosystem for WSNs. Without going into the

details of the CMT cryptosystem, it is not adequate for a

network using a thousand wireless sensors because the

base station shares a unique secret key with each node in

the network which makes the aggregation process of

ciphertexts more complicated to implement.

In Domingo-Ferrer’s cryptosystem, the size of

parameter d affects the size of ciphertext (Newman,

2018). Domingo-Ferrer’s encryption algorithm is a

symmetric-key based cryptosystem uses two secret

parameters rp and rq for encryption and computes rp
-1
 and

rq
-1
 for corresponding decryption. Drastically reducing

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

243

the size of the parameter d could attenuate the effect of

exponentiation for not having very wide cryptogram.

Although the cryptosystem is symmetrical, we could use

an asymmetric algorithm (EC-ElGamal for example) to

exchange the secret key globally throughout the WSN:

• This encryption algorithm begins with the choice of

two prime numbers p and q and from them we could

easily calculate n = p * q. These parameters (p, q

and n) are only available on sensor nodes and end

users. The parameter d must be greater or equal to 2.

• Then choose randomly rp and rq belonging to the

multiplicative subgroup Zp* and Zq* respectively.

• Before the encryption process, it is necessary to split

randomly the message m into different integers m1,

m2, ..., md such that
1

d

ii
m

=
∑ = m mod n and mi ∈ Zn.

The ciphertext is obtained by computing:

Ek(m) = ([m1*rp
1
 mod p, m1*rq

1
 mod q], [m2*rp

2
 mod

p, m2*rq
2
 mod q], …, [md*rp

d
 mod p, md*rq

d
 mod q])

• To decrypt, compute the scalar product of the i
th

[mod p, mod q] pair by [rp
-i
 mod p, rq

-i
 mod q] to

retrieve the [mi mod p, mi mod q]. Add up to get [m

mod p, m mod q]. Use the Chinese remainder

theorem (Ireland and Rosen, 1990) to obtain the

unique m mod n

The Fig. 3 shows an unrealistically small example of

a Domingo-Ferrer cryptosystem over an integer. This

cryptosystem supports homomorphic processing when

the ciphertext is obtained using the same key. The size of

the parameter d directly affects the size of the

cryptogram and each plaintext is divided into d sub-

plaintexts so that each of them is encrypted using the

secret parameters p, q, rp and rq.

Domingo-Ferrer Implementation

The implementation is performed on a 16-bit

microprocessor-based sensor node (i.e. the highest digit

can handle is 2
16
-1= 65535) called Waspmote and

manufactured by Libellium. For this implementation we

take the values of the ambient temperature (in Celsius

degrees) assuming they are positive numbers in the range

[0, 55]. So the choice of encryption parameters will be

based on this interval so that n is greater than 55. Every

15 minutes, each sensor node wakes up and collects the

temperature as a float number and converts (because this

cryptosystem is applicable to the integer numbers but in

order to produce accurate results, instead of converting

the floats values of temperature to the integers, we could

multiply each value by 100 for example but this would

lead to excessive calculations) it to an integer to be

encrypted using the previously programmed Domingo-

Ferrer algorithm. The programming of the Waspmote

nodes uses C++ language and code is loaded on the

sensor node via the USB cable.

([34 * 4
1
 mod 11, 34 * 2

1
 mod 13],

[90 * 4
2
 mod 11, 90 * 2

2
 mod 13],

[49 * 4
3
 mod 11, 49 * 2

3
 mod 13])

= ([4, 3],[10, 9],[1, 2])

d = 3 p = 11 q = 13 n = 143 rp = 4 rq = 2

 (rp
-1
 = 3) (rq

-1
 = 7)

Parameters

Encryption

Decryption

The scalar product

([4 * 3
1
 mod 11, 3 * 7

1
 mod 13], [10 * 3

2
 mod 11, 9 * 7

2
 mod 13], [1 * 3

3
 mod 11, 2 * 7

3
 mod 13])

= ([12 mod 11, 21 mod 13], [90 mod 11, 441 mod 13], [27 mod 11, 686 mod 13])

= ([1, 8], [2, 12], [5, 10])

Additions to get [m mod p, m mod q]

[(1 + 2 + 5) mod 11, (8 + 12 + 10) mod 13] = [8 mod 11, 30 mod 13] = [8, 4]

Chinese remainder theorem to retrieve m

[8 * 13 * (13
-1
 mod 11) + 4 * 11 * (11

-1
 mod 13)] mod 143

= [104 * (6 mod 11) + 44 * (6 mod 13)] mod 143 = [104 * 6 + 44 * 6] mod 143 = 888 mod 143 = 30

(34 + 90 + 49) mod 143

= 173 mod 143 = 30

Random fragmentation

of the message

Plaintext message

m = 30

Fragmented message

(34, 90, 49)

Ciphertext message

([4, 3],[10, 9],[1, 2])

Plaintext message

m = 30

Fig. 3: Encryption and decryption using Domingo-Ferrer’s cryptosystem

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

244

Laptop/Gateway
Sink node

End user

Sensor node 1

Sensor node 2

Cloud

Fig. 4: Implementation configuration

After encryption, the sensor node creates a ZigBee frame

and sends the temperature as ciphertext to the MAC

address of the base station. For this implementation we

do not include clustering due to lack of sufficient sensor

nodes and the data are sensed every 10 sec in order to

accelerate the experiments. Through the sink node

(connected to a laptop acting as a gateway toward the

cloud), the received ciphertexts are parsed and then

routed to the cloud for storage. The complete

configuration is shown in Fig. 4.

End users can access data stored in the cloud at any

time, data operations must be performed in the cloud

(Amazon EC2) and the user only gets results. Imagine we

want to calculate the average annual temperature, as

sensor nodes send data every 15 min, which is four values

in one hour and 96 values each day. In a year, each sensor

node collects 35040 temperature values. Suppose that the

WSN is composed by 100 sensor nodes, we would have

3504000 values and it would be difficult to manipulate

them with end-user computers having not enough power

to compute. In the next Table 2 are the sample of sensed

data and we will prove the homomorphism on them (the

parameters used for this sampling are: d = 2, p = 17, q =

13, n = 221, rp = 6 and rq = 9).

To demonstrate the homomorphism, just decrypt the

sum as ciphertext ([11, 6],[7, 7]) to verify whether we

get the value 198 or not. So, let's start finding rp
-1
 and rq

-1

in Zp and Zq respectively:

 rp * rp

-1
 mod p = 1 and rq*rq

-1
 mod q = 1

 6 * rp
-1

 mod 17 = 1 and 9 * rq
-1

 mod 13 = 1

 → rp
-1

 = 3 and rq
-1

 = 3

Let’s compute the scalar product of the i
th
 [mod p,

mod q] pair by [rp
-i
 mod p, rq

-i
 mod q] to retrieve [mi mod

p, mi mod q]:

([11* rp
-1

 mod p,6 * rq
-1

 mod q],[7 * rp
-2

 mod p,7 * rq
-2

mod q]) = ([11 * 3 mod 17,6 * 3 mod 13],[7 * 3
2
 mod

17,7 * 3
2
 mod 13]) = ([16 mod 17,5 mod 13],[12 mod

17,11 mod 13])

Let’s add [mi mod p, mi mod q] to obtain [m mod p, m

mod q] = [11 mod 17,3 mod 13].

Table 2: Sample of encrypted data received after Domingo-

Ferrer’s Implementation

 Enrypted temperature Decrypted temperature

 ([12,12],[9,1]) 32

 ([9,6],[12,6]) 33

 ([1,9],[11,8]) 34

 ([9,5],[14,5]) 34

 ([2,12],[3,4]) 33

 ([12,1],[9,9]) 32

Total ([11, 6],[7, 7]) 198

Finally, we have to apply the Chinese Remainder

Theorem to obtain the unique m mod n.

Assume that z1 = n/p = q and z2 = n/q = p and let y1

= z1
-1

 mod p = 4 mod 17 and y2 = z2
-2

 mod q = 10 mod 13

Thus, m = (m1y1z1 + m2y2z2) mod n = (11* 4 * 13 +

3* 10 * 17) mod 221 = 198. Hence, we proved the

homomorphism on temperature values using the

Domingo-Ferrer algorithm.

To understand how data is protected with this

encryption process, we must first know that the

encryption keys are known only by the sensor nodes and

the decryption by the end user. If an attacker gains

access to the encrypted data from the Table 2 stored in

the cloud, he/she will not be able to do anything with it

because the decryption keys are only available to the end

user. Even when the end user wants to perform some

arithmetic operations on the data of Table 2 such as the

temperature average for example, the cloud calculates

their sum by being encrypted and he/she receives only the

result ([11, 6],[7, 7]) and the number of lines participated

into the addition. The end-user decrypts ([11, 6],[7, 7])

locally on his/her computer using his decryption keys to

get 198 and divides it by the number of summed values to

find 33. In no case does the user send the decryption keys

over the network (cloud) and this is why the attacker

cannot intercept the decryption keys.

Domingo-Ferrer Performance Analysis

With a 16-bit processor we have to carefully choose

the parameters to encrypt the data from the WSN. First

of all, the choice of p and q must be such that the

maximum value to be encrypted must be strictly less

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

245

than n because by splitting the message m into m1, m2,

…, md, all these short messages must be less than n also.

During the implementation we used n = 221 with the

temperature values included in the interval [0, 55], this

assures us that this condition is sufficiently verified.

Second condition is related to the randomly chosen

parameters rp and rq, these two belong respectively in Zp

and Zq that is why they can take any value but

realistically small so that the rp
d
 and rq

d
 (also rp

-d
 and rq

-d
)

are not very big to saturate the maximum bits capacity of

the processor. The third criterion is the choice of the

parameter d, the more it is bigger the more we have

several splits of message, so the rp
d
 and rq

d
 (also rp

-d
 and

rq
-d
) becomes relatively large which can lead to the bad

results if during the encryption the calculations include

the intermediate results exceeding the 16 bits (the

maximum bits for the sensor node’s microprocessor).

To evaluate the effects of Domingo-Ferrer encryption

on the life state of the sensor node’s battery, we carried

out four experiments: the first is about to send 10,000

messages (temperature and battery level) in plaintext

(Fig. 5a), the second experiment (Fig. 5b) is about to

send the same number of messages but being encrypted

(whose encryption parameters are: p = 17, q = 13, n =

221, rp = 3 and rq = 2) with the parameter d equal to 2,

the third experiment (Fig. 5c) repeats experiment 2 but

changing d = 3 and the fourth (Fig. 5d) is identical to the

last three but with 4 fragments of plaintext (d = 4). The

experiment configurations and parameters are

summarized in the following Table 3.

Table 3: Experiment configuration and range of varying parameter values

Implementation Sent messages p q n rp rq d

(a) No cryptography 10,000 - - - - - -

(b) Encryption with 2 fragments 10,000 17 13 221 3 2 2

(c) Encryption with 3 fragments 10,000 17 13 221 3 2 3

(d) Encryption with 4 fragments 10,000 17 13 221 3 2 4

Table 4: Summary of the experiment results

Implementation Sent messages Battery before experiment Battery after experiment Dropped %

(a) No cryptography 10,000 39% 38% 1%

(b) Encryption with 2 fragments 10,000 68% 62% 6%

(c) Encryption with 3 fragments 10,000 82% 75% 7%

(d) Encryption with 4 fragments 10,000 90% 82% 8%

Fig. 5: Impact of domingo-ferrer homomorphic encryption on the state of the battery life

(a)

(b)

(d) (c)

100

90

80

70

60

50

40

30

20

10

0

100

80

60

40

20

0

100

90

80

70

60

50

40

30

20

10

0

100

80

60

40

20

0

B
at

te
ry

 l
ev

el
 (

%
)

B
at

te
ry

 l
ev

el
 (

%
)

B
at

te
ry

 l
ev

el
 (

%
)

B
at

te
ry

 l
ev

el
 (

%
)

1

4
7
8

9
5
5

1
4
3
2

1
9
0
9

2
3
8
6

2
8
6
3

3
3
4
0

3
8
1
7

4
2
9
4

4
7
7
1

5
2
4
8

5
7
2
5

6
2
0
2

6
6
7
9

7
1
5
6

7
6
3
3

8
1
1
0

8
5
8
7

9
0
6
4

9
5
4
1

1

4
5
6

9
1
1

1
3
6
6

1
8
2
1

2
2
7
6

2
7
3
1

3
1
8
6

3
6
4
1

4
0
9
6

4
5
5
1

5
0
0
6

5
4
6
1

5
9
1
6

6
3
7
1

6
8
2
6

7
2
8
1

7
7
3
6

8
1
9
1

8
6
4
6

9
1
0
1

9
5
5
6

Number of messages sent Number of messages sent

1

4
7
8

9
5
5

1
4
3
2

1
9
0
9

2
3
8
6

2
8
6
3

3
3
4
0

3
8
1
7

4
2
9
4

4
7
7
1

5
2
4
8

5
7
2
5

6
2
0
2

6
6
7
9

7
1
5
6

7
6
3
3

8
1
1
0

8
5
8
7

9
0
6
4

9
5
4
1

Number of messages sent

1

4
1
8

8
3
5

1
2
5
2

1
6
6
9

2
0
8
6

2
5
0
3

2
9
2
0

3
3
3
7

3
7
5
4

4
1
7
1

4
5
8
8

5
0
0
5

5
4
2
2

5
8
3
9

6
2
5
6

6
6
7
3

7
0
9
0

7
5
0
7

7
9
2
4

8
3
4
1

8
7
8
5

9
1
7
5

9
5
9
2

Number of messages sent

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

246

Note in Fig. 5a when the 10,000 messages are sent as
plaintext the battery level of 39% drops to 38%, so the
sensor node loses one percent which is relatively
convincing for autonomous sensor nodes. When applying
the encryption to the data collected with the parameter d =
2 we notice that at the end of the sending of 10,000
messages the level of the battery has dropped 6% (from
68% to 62% by referring to the Fig. 5b). By modifying the
parameter d = 3, we notice a slight difference with the
result obtained with d = 2 because in Fig. 5c we had the
battery level which varied from 82% to 75%, i.e., 7% in
this case and 1% more using d = 2. In Fig. 5d, the battery
has dropped from 90% to 82% with d = 4, so undoubtedly
we can comment that when increasing the number of
fragments of the plaintext is slightly decreasing the whole
energy of the wireless sensor network (Find the summary
of the obtained results in the Table 4).

Comparing with the results obtained by some of the
other related works (Ertaul and Yang, 2008), we can
validate our methodology because we come with the
same ascertainment that even if several message splits
offer better security they have a detrimental impact on
the whole network’s energy, thus the number of
fragments of the message should be kept at minimum.

Conclusion

Homomorphic encryption is useful in some

applications of wireless sensor networks, its use has a

positive impact firstly by promoting the confidentiality of

the aggregated data and then allowing it to be stored safely

into the cloud while performing arithmetic operations on

the encrypted data. The use of a symmetric encryption

algorithm such as the Domingo-Ferrer cryptographic

system is implementable in the WSNs but it is first

necessary to know the specifications of the sensor nodes

in order to choose the best encryption parameters in order

to avoid depletion of the network energy or exceeding the

value limits that processors of the sensor nodes can

support. Mutual encryption for WSN and cloud computing

seems to be an essential solution for two types of

networks, which one is WSN and the other is the Internet.

Despite the advantages of these homomorphic encryption

algorithms, they also have disadvantages to wireless

sensor networks, the encryption process requires power

calculations that consume a lot of energy, which makes

the network vulnerable to longevity. The use of these

algorithms lies between the importance of the project to be

protected and the profitability of the network.

In this paper we have proposed a solution to secure the

aggregated data by using Domingo-Ferrer’s homomorphic

encryption scheme with the objective of understanding its

impact on the life of the WSN. From the obtained results

we find that although more message splits offer a higher

level of security, generally in terms of performance the

energy of the wireless sensor network is penalized.

Therefore, message splitting should be kept to minimum.

To maintain the balance between the expected services and

the security level, it would be better to choose the

encryption parameters on the basis of the desired

performances and the energy state of the sensor nodes.

Thereafter, we will work on the arithmetic operations that

Domingo-Ferrer homomorphic encryption is able to ensure.

Acknowledgement

I would like to thank my supervisor who guided me for

this work to finish and Professor Aziz GHAZI for his

technical support for the wireless sensor network platform.

Author’s Contributions

Christophe Ishimwe Ngabo: He proposed this idea

of using common security in the WSN integrated with

cloud infrastructure. He was able to implement and

evaluate the performance of the proposed system.

Omar El Beqqali: Supervised this work and helped to

improve the layout. He found the collaborators to work

together on the technical support of the sensor nodes.

Ethics

On behalf of my co-author, we inform you that this

article has no ethical issues, we confirm that it is an

original work which hasn’t been published elsewhere.

Each author has personally and actively reads this work

before submission and that in no case will there be an

ethical issues.

References

Ahmed, K. and M. Gregory, 2011. Integrating wireless

sensor networks with cloud computing. Proceedings

of the 7th International Conference on Mobile Ad-

hoc and Sensor Networks, Dec. 16-18, IEEE Xplore

Press, Beijing, China, pp: 364-366.

 DOI: 10.1109/MSN.2011.86

Buyya, R., J. Broberg and A. Goscinski, 2011. Cloud

Computing: Principles and Paradigms. 1st Edn.,

Wiley, ISBN-10: 0470887990, pp: 664.
Castelluccia, C., E. Mykletun and G. Tsudik, 2005.

Efficient aggregation of encrypted data in wireless
sensor networks. Proceedings of the 2nd Annual
International Conference on Mobile and
Ubiquitous Systems -Networking and Services, Jul.
17-21, IEEE Xplore Press, San Diego, CA, USA,
pp: 109-117. DOI: 10.1109/MOBIQUITOUS.2005.25

Dijk, M.V., C. Gentry, S. Halevi and V. Vaikuntanathan,

2010. Fully homomorphic encryption over the

integers. Proceedings of the 29th Annual

International Conference on Theory and

Applications of Cryptographic Techniques, May 30-

Jun. 03, Springer, French Riviera, France, pp: 24-43.

DOI: 10.1007/978-3-642-13190-5_2

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

247

Domingo-Ferrer, J., 2002. A provably secure additive

and multiplicative privacy homomorphism.

Proceedings of the 5th International Conference on

Information Security, Sept. 30-Oct. 02, Springer,

Berlin, pp: 471-483. DOI: 10.1007/3-540-45811-5_37

Elhoseny, M., H. Elminir, A. Riad and X. Yuan, 2016. A

secure data routing schema for WSN using Elliptic

Curve Cryptography and homomorphic encryption.

J. King Saud Univ. Comput. Inform. Sci., 28: 262-

275. DOI: 10.1016/j.jksuci.2015.11.001
Ertaul, L. and J.H. Yang, 2008. Implementation of

domingo ferrer’s a new privacy homomorphism (DF
a New PH) in Securing Wireless Sensor Networks
(WSN). Security Manage.

Gentry, C., 2009. A fully homomorphic encryption

scheme. PhD Thesis, Stanford.

Goldwasser, S. and S. Micali, 1984. Probabilistic

encryption. J. Comput. Syst. Sci., 28: 270-299.

 DOI: 10.1016/0022-0000(84)90070-9

Holohan, E. and M. Schukat, 2010. Authentication using

virtual certificate authorities: A new security

paradigm for wireless sensor networks. Proceedings

of the 9th IEEE International Symposium on Network

Computing and Applications, Jul. 15-17, IEEE Xplore

Press, Cambridge, MA, USA, pp: 92-99.

 DOI: 10.1109/NCA.2010.19

Ireland, K. and M. Rosen, 1990. A Classical Introduction

to Modern Number Theory. 1st Edn., Springer,

ISBN-10: 354097329X, pp: 389.

Johnson, M., M. Healy, P. van De Ven, M.J. Hayes and

J. Nelson et al., 2009. A comparative review of

wireless sensor network mote technologies.

Proceedings of the IEEE SENSORS, Oct. 25-28,

IEEE Xplore Press, Christchurch, New Zealand, pp:

1439-1442. DOI: 10.1109/ICSENS.2009.5398442

Benaloh, J., 1994. Dense probabilistic encryption.

Proceedings of the Workshop on Selected Areas of

Cryptography, (SAC’ 94), pp: 120-128.

Koblitz, N., 1987. Elliptic curve cryptosystems. Math.

Comput., 48: 203-203.
 DOI: 10.1090/S0025-5718-1987-0866109-5
Malik, M.Y., 2011. Efficient implementation of elliptic

curve cryptography using low-power digital signal
processor. Proceedings of the 12th International
Conference on Advanced Communication
Technology, Feb. 7-10, IEEE Xplore Press, Phoenix
Park, South Korea, pp: 1464-1468.

Naccache, D. and J. Stern, 1998. A new public key
cryptosystem based on higher residues. Proceedings
of the 5th ACM Conference on Computer and
Communications Security, Nov. 02-05, San
Francisco, California, USA, pp: 59-66.

 DOI: 10.1145/288090.288106

Newman, C.R.E., 2018. Computer and Network Security

Essentials. 1st Edn., Springer International

Publishing, Cham.

Ngabo, C.I. and O.E.L. Beqqali, 2016. Real-time

lighting poles monitoring by using wireless sensor

networks applied to the smart cities. Proceedings of

the International Conference on Big Data and

Advanced Wireless Technologies, Nov. 10-11,

ACM, Blagoevgrad, Bulgaria.

 DOI: 10.1145/3010089.3010097

Okamoto, T. and S. Uchiyama, 1998. A new public-key

cryptosystem as secure as factoring. Proceedings of

the International Conference on the Theory and

Application of Cryptographic Techniques, May 31-

Jun. 4, Espoo, Finland, pp: 308-318.

 DOI: 10.1007/BFb0054135

Paillier, P., 1999. Public-key cryptosystems based on

composite degree residuosity classes. Proceedings of

the 17th International Conference on Theory and

Application of Cryptographic Techniques, May 02-06,

Springer, Prague, Czech Republic, pp: 223-238.

 DOI: 10.1007/3-540-48910-X_16

Potey, M.M., C.A. Dhote and D.H. Sharma, 2018. Low-

Size Cipher Text Homomorphic Encryption Scheme

for Cloud Data. In: Networking Communication and

Data Knowledge Engineering, Perez, G.M., K.K.

Mishra, S. Tiwari and M.C. Trivedi (Eds.), Springer

Singapore, ISBN-10: 981104600X, pp: 93-102.

Rabah, K., 2005. Theory and implementation of elliptic

curve cryptography. J. Applied Sci., 5: 604-633.

DOI: 10.3923/jas.2005.604.633

Rivest, R.L., A. Shamir and L. Adleman, 1978. A

method for obtaining digital signatures and public-

key cryptosystems. Commun. ACM, 21: 120-126.

DOI: 10.1145/359340.359342

Roy, S., M. Conti, S. Setia and S. Jajodia, 2012. Secure

data aggregation in wireless sensor networks. IEEE

Trans. Inform. Forens. Security, 7: 1040-1052.

 DOI: 10.1109/TIFS.2012.2189568

Sohraby, K., D. Minoli and T. Znati, 2007. Wireless

Sensor Networks: Technology, Protocols and

Applications. 1st Edn., John Wiley and Sons,

 ISBN-10: 0470112751, pp: 328.

Tebaa, M., S. El Hajji, A. El Ghazi, S. El Hajji and A. El

Ghazi, 2012. Homomorphic encryption applied to

the cloud computing security. Proceedings of the

World Congress on Engineering, Jul. 4-6,

Newswood Limited, London, UK, pp: 536-539.

Ugus, O., D. Westhoff, R. Laue, A. Shoufan and S.A.

Huss, 2009. Optimized implementation of elliptic

curve based additive homomorphic encryption for

wireless sensor networks. Arxiv Preprint

ArXiv09033900.

Wang, L., L. Wang, Y. Pan, Z. Zhang and Y. Yang,

2011. Discrete logarithm based additively

homomorphic encryption and secure data

aggregation. Inform. Sci., 181: 3308-3322.

 DOI: 10.1016/j.ins.2011.04.002

Christophe Ishimwe Ngabo and Omar El Beqqali / Journal of Computer Science 2019, 15 (2): 235.248
DOI: 10.3844/jcssp.2019.235.248

248

Xie, K., X. Ning, X. Wang, S. He and Z. Ning et al.,

2017. An efficient privacy-preserving compressive

data gathering scheme in WSNs. Inform. Sci., 390:

82-94. DOI: 10.1016/j.ins.2016.12.050

Zhang, P., J. Wang, K. Guo, F. Wu and G. Min, 2018a.

Multi-functional secure data aggregation schemes

for WSNs. Ad Hoc Net., 69: 86-99.

 DOI: 10.1016/j.adhoc.2017.11.004

Zhang, P., S. Wang, K. Guo and J. Wang, 2018b. A

secure data collection scheme based on compressive

sensing in wireless sensor networks. Ad Hoc Net.,

70: 73-84. DOI: 10.1016/j.adhoc.2017.11.011

Zheng, J. and A. Jamalipour, 2009. Wireless Sensor

Networks: A Networking Perspective. 1st Edn.,

Wiley-IEEE Press, ISBN-10: 0470167637, pp: 520.

