

 © 2019 Alycia Sebastian and Dr. K. Siva Sankar. This open access article is distributed under a Creative Commons

Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Design of a Dynamic Boot Loader for Loading an Operating

System

1
Alycia Sebastian and

2
Dr. K. Siva Sankar

1Research Scholar, Department of Computer Science and Engineering,

Noorul Islam Centre for Higher Education, Tamil Nadu, India
2Department of Information Technology, Noorul Islam Centre for Higher Education, Tamil Nadu, India

Article history

Received: 26-08-2018
Revised: 22-09-2018
Accepted: 25-01-2019

Corresponding Author:
Alycia Sebastian
Department of Computer
Science and Engineering, Noorul
Islam Centre for Higher
Education, Tamil Nadu, India
Email: alycia.sebastian@gmail.com

Abstract: Boot Loader is the crucial program that loads the operating

system in memory and initializes the system. In today’s world people are

constantly on move and portable system are in demand specially the

USB devices due to its portability and accessibility compared to CD/DVD

drives. The purpose of this paper is to design a dynamic boot loader which

removes the BIOS dependency and allow user to boot from USB without

changing CMOS settings. The USB is devised as plug and play portable

system with puppy Linux and newly developed dynamic boot loader. The

device is experimented on a computer machine with 8 GB RAM, i5

processor, 64-bit Operating system and windows 7 and observed that nearly

50% reduction in booting time i.e., the time spent in changing the boot order

is eliminated compared to the static boot loader. The time spent in the BIOS

is dependent on the user knowledge in changing the boot priority. The

portable system allows the user to work in ease in any environment with

minimum requirement of Windows XP and USB 2.0 compatible system.

Keywords: Boot Loader, Dynamic, Operating System, USB, Open source OS

Introduction

Boot Loader is the first program that starts running

after BIOS. Its task is to load the operating system in

memory. The boot loader resides in the first sector of

primary partition and the size is restricted to 512 bytes.

Due to this size limitation, it becomes difficult to load and

execute a 32 bit kernel. To accommodate more features

the boot loader is divided into 3 stages. The first stage

primary boot loader initializes the memory, hardware

devices and loads the second stage boot loader. So there is

no size restriction for secondary boot loader. Stage 1.5

which is 63 bytes is to interpret the file system. The boot

process is as explained in Fig. 1.

The USB can be made bootable with different

versions of Linux OS, Windows or Mac OS. Open

source Operating systems are customizable, flexible,

secure and freely available and so widely gaining

popularity. Windows have restriction in installing to a

drive other than the hard disk.

To boot from USB, the user needs to change the boot

order and choose the USB to start the booting process from

USB. The available boot process is static which is

dependent on user changing the BIOS settings. In recent

times, BIOS is being slowly replaced by Unified Extensible

Firmware Interface (UEFI). UEFI secure boot allows only

trusted OS to boot while locking out open source OS.

Fig. 1: Stages of boot loader

Stage 1:
boot.img

1. Code is stored
in the first 466
bytes of MBR.
2. BIOS loads
stage 1 to the
address 0x7C00.
3. Uses LBA48
addressing to
point to stage
1.5.
4. Loads stage
1.5 in to the
memory at
address 0x2200.
5. Jump to entry
point of

Stage1.5.

Stage 1.5:
core.img

1. Stored in the 63
bytes after MBR.
2. Contains file
system specific
code to find the
operating system
image on the
“boot” file system.
3. Since it contains
file system drivers
it can load stage 2
by directly
specifying file path
and file name.
3. Loads the stage 2
into the memory at

address 0x8000.

Stage 2:

1. Initializes
the grub shell,
loads menu.lst
and displays
the menu and
command
environment.
2. Appropriate
selected kernel
image is
loaded into
memory.
3. Boot kernel.

Alycia Sebastian and Dr. K. Siva Sankar / Journal of Computer Science 2019, 15 (1): 190.196

DOI: 10.3844/jcssp.2019.190.196

191

This paper proposes a dynamic boot loader which
addresses the static boot. A light weight open source
operating system is installed in the USB. This portable
system can act as a substitute for personal laptop
particularly for users who are constantly on move. It’s
easier to carry and the user can work on any borrowed
system without having to worry about the security of the
data transaction.

Related Work

Universal Serial Bus (USB) flash drives are leading
portable storage device for storage and easy transfer of
data from one computer to another. Due to its significant
growth in usage many researchers have experimented with
USB as portable device and as installation resources. The
boot loaders discussed below are dependent on the user
knowledge in changing the boot order to boot from USB.
The dynamic boot loader concept removes this
dependency as explained in the next section.

With USB gaining popularity as replacement for
CD/DVD drives as installation medium to multi boot
different ISO images, comparison study has been made
using two boot loaders SYSLINUX and GRUB2 for
various Linux based operating system (Sivaiah et al.,
2014). The success rate of both the boot loaders to boot
load the different OS have been graphed and found that
SYSLINUX have higher rate compared to GRUB2. For
every booting of ISO images from USB, it is needed to
change the boot order in the BIOS to USB. The boot
loaders are static and dependent on BIOS.

The USB can be utilized as both as installation
medium and also as a portable device (Karna, 2010;
Karna and Chen, 2014). Different experiments were
conducted with Windows OS, Linux distributions,
Opensolaris and Fedora and the results are tabulated.
Windows OS has limitation in installing to a USB drive.

Security is the major concern for any portable device.
Trusted Platform Module (TPM) ensures data

security from hardware layer. With the advancement of
USB technology, USB is developed as portable TPM
(Kushwaha, 2013) and for portability the EFI System
Partition (ESP) which contains the boot loader program
is installed in USB. For every boot, the hash value is
calculated and checked with the previous stored value in
USB. Here USB acts as portable TPM. So securing USB
becomes highly critical.

To build USB as portable device (Jebarajan and

Sankar, 2011; Sankar, 2010; Kanahasabapathy et al.,

2015), a customized kernel and boot loader is developed

and written into the drive. The lightweight OS reduces

the complexity of compressing and loading the kernel

image from USB to RAM.

Design of a Dynamic Boot Loader

The dynamic boot loader methodology was proposed in

my previous paper (Sebastian and Sankar, 2015). This

eliminates BIOS dependency, thus providing a user friendly

system and significantly reduces the load on the user.

Live USB

A USB drive of 16 GB is used. Lesser size USB can

also be used as it requires less space to make USB bootable.

USB is formatted with FAT32 file system which is the

compatible file system for a USB. The USB is made

bootable with kernel puppy slacko 6.3.2 and SysLinux boot

loader using Unetbootin tool. It is a simple and small Linux

OS distribution of size around 240 MB.

To make USB portable, in the first boot, the Live

USB session is saved as ‘slackosave-s1.2fs’. This allows

booting to the saved session on next reboot. More

sessions can be saved with different customizations. If

session not saved any changes made will not be saved

and on reboot it starts from the scratch. The session

s1.2fs is saved in the sdb1 i.e., USB with extension ext2

and file size of 512 MB. The USB can be made bootable

with persistent storage of max size 4GB and the session

can be saved in the persistent storage partition. The OS

writes only once to the flash drive on session close

thereby reducing the number of writes to the flash drive.
The file ‘slackosave-s1.2fs’ is password protected

for security. Every time on shutdown the session is
automatically saved to the file. Now the USB is
portable and the same data is available for booting
from different machines. Still USB boot is dependent
on boot order priority. The next section shows how to
remove the dependency.

Booting Process

The Fig. 2 depicts the functional design of the
booting process of the proposed design.

Fig. 2: Booting from USB

System power

ON/restart Restart the

system

Booting

Loading OS

Plug in Live-

USB

Reboot- USB

Use machine

OS

Boot

Loader
loaded in

memory

from USB

Loads the

Kernel to

memory

Dynamic

Boot

Loader

Yes

No

Alycia Sebastian and Dr. K. Siva Sankar / Journal of Computer Science 2019, 15 (1): 190.196

DOI: 10.3844/jcssp.2019.190.196

192

Fig. 3: Stage 1 memory hexdump

Dynamic Boot Loader

The dynamic boot loader consists of stage1, stage2

and w32grub and runs from USB on reboot.

W32Grub

W32grub is a windows version of grub boot loader to

boot Linux based OS from windows. On yes to reboot

from USB, the w32grub installs the grub in the windows

boot sector, calculates the stage2 address and stores

sector address in the stage 1 at address 0044-0047. Stage

1 loads stage 2 using this sector number. W32grub

displays the below information:

• stage1< 2075182704>

• stage2_address = 0×8000

• stage2_sector= 2075182704

• stage2_segment = 0×800

• stage2< 2075182704+223>

The stage 2 sector absolute address is stored as

0×7bb0c74f in stage 1 at address 0044-0047. The following

commands display the 512 bytes of the USB MBR.

• # sudo dd if = /dev/sdb1 of = /mnt/linux.bin bs =

512 count = 1

• #hexdump –Cv /mnt/linux.bin

The Fig. 3 shows the hexdump of stage1 indicating

the stage2 address.

Stage 1

The windows boot loader stage 1 is in the Master Boot

Record (MBR) which is the first sector of hard disk. The

MBR is of size 512 bytes of which 446 bytes is the stage 1

boot loader, 64 bytes is the partition table which is 4

primary partitions of 16 bytes entries each and remaining 2

bytes which is 0xAA55 is boot record signature.

The above hexdump shows the stage 1 with relocatable

address code which during the boot process gets loaded at

address 0×7C00. On selecting the GRUB boot loader, the

stage 2 is loaded in memory at address 0×8000.

Stage 2

Stage2 initializes the grub shell and loads the

configuration file menu.lst from the directory boot/grub.

The configuration file must contain the directory path

and filename of the active partition where the kernel is

stored and partition containing intird. Below are the

configuration files where menu.lst is used for grub and

grub.cfg file for grub2 for booting from USB.

menu.lst

timeout 60

Alycia Sebastian and Dr. K. Siva Sankar / Journal of Computer Science 2019, 15 (1): 190.196

DOI: 10.3844/jcssp.2019.190.196

193

default 1

For booting Windows

title Windows

unhide (hd0,0)

rootnoverify (hd0,0)

chainloader +1

For booting Linux

title Puppy Linux

rootnoverify (hd1,0)

kernel (hd1,0)/vmlinuz root=/dev/sdb1

initrd (hd1,0)/initrd.gz

grub.cfg

set timeout 60

set default = 0

For booting Windows

menuentry “Windows ”

{

set root = (hd0,1)

chainloader +1

}

For booting Linux

menuentry “Puppy Linux”

{

rootnoverify (hd1,1)

linux (hd1,1)/vmlinuz root=/dev/sdb1

initrd (hd1,1)/initrd.gz

}

Adding Boot Entries

The Boot Configuration Data (BCD) is the data store

that represents windows boot manager, boot loader and

other boot applications as objects (GUIDs)

(https://docs.microsoft.com/en-us/previous-

versions/windows/it-pro/windows-server-2008-R2-and-

2008/ee221031(v=ws.10)). Using BCD WMI (Windows

Management Instrumentation) or bcdedit, the menu is

edited to add GRUB as new entry.

The below bcdedit commands creates a GRUB entry

in the boot menu as shown in Fig. 4, assigns the first 512

bytes, Stage 1 which is the linux.bin to GRUB.

• bcdedit/create/d “GRUB” /Application Bootsector

• bcdedit/set {d1a53a4e-bddf-11e7-a41f-

cd2974fd2e3} device partition = C:

• bcdedit/set {d1a53a4e-bddf-11e7-a41f-

cd2974fd2e3} path\linux.bin

• bcdedit/displayorder {d1a53a4e-bddf-11e7-a41f-

cd2974fd2e3}/addlast

• bcdedit/timeout = 30

Fig. 4: Windows boot menu

Alycia Sebastian and Dr. K. Siva Sankar / Journal of Computer Science 2019, 15 (1): 190.196

DOI: 10.3844/jcssp.2019.190.196

194

The above commands creates an entry with GRUB

and when selected provides options for both windows

and Puppy Linux booting.

Kernel

Kernel is a self extracting compressed image. The

kernel vmlinz gets loaded from /dev/sdb1 which is the

compressed bzImage at address 0x3a00 and loads the

temporary root file system initrd at address 0x37eaa000.

The bzImage is then decompressed to ramdisk and

kernel is booted.

Init

The init in/sbin/init is the first process to run. The last

step is the user space initialization function. The initrd is

unmounted and real file system is loaded and system

starts working as per the system runlevel

under/etc/inittab.

WMI

Windows Management Instrumentation (WMI) is

Microsoft technology to retrieve information about disk

drive, network configurations, Operating system and

other internal state of computer systems. It uses query

language to query and update any section of the WMI

repository (https://msdn.microsoft.com/en-

us/library/aa384642(v=vs.85).aspx).

WMI query along with VB script is written to access

information regarding USB drive number, host system

details, BCD store edit and also to reboot the system.

Below are few queries which retrieve the required

windows information:

• “SELECT * FROM Win32_OperatingSystem where

Primary = true”- To reboot the system using Reboot

() method under the win32_operating system class.

• “SELECT * FROM Win32_LogicalDisk where

DriveType = 3” – To get the properties of device

drive.

• ”SELECT * FROM

Win32_ComputerSystemProduct” – To get the

properties about the computer system like Name,

Version, UUID, etc.

Results

The dynamic boot loader designed completely

eliminates the dependency on boot loader and the

need for user knowledge on boot order change. The

dynamic boot loader is implemented using VC++, VB

script and WMI and the experimental result shows the

dynamic boot loader takes less booting time when

compared with the static boot loader. The minimum

requirement for USB is 2.0 with size of 8GB with 4

GB as persistent storage to make it portable.

The booting time is measured using a stopwatch from

the time the host system is rebooted to boot from USB.

The experiment was conducted on computer machine

with 8 GB RAM, i5 processor, 64-bit Operating system

and windows 7.

The booting time for both existing and dynamic

boot loader is tabulated as shown in Fig. 5. The time

in seconds is measured and the result shows that more

than 50% booting time improvement is attained when

using the dynamic boot loader to boot from USB.

Maximum time is spent in entering the CMOS settings

and changing the boot order. This time is dependent

on the user knowledge of changing the boot priority.

The dependency time can be eliminated using the

dynamic boot loader. The booting time measured may

differ depending on the processor speed and

specification but in all cases the dynamic boot loader

eliminates the time spent in boot order change.

Fig. 5: Boot time comparison chart

Booting time static Vs dynamic boot loader

T
im

e
(s

ec
)

120

100

80

60

40

20

0

Static Dynamic

Userspace
initialization

Kernel loading

from USB

Change boot order
to USB (varies
based on user

knowledge)

Press key to
enter the BIOS

settings

POST

System
reboot

9.338

20.693

45

8

7

23

9.244

20.815

0

0

7

23

Alycia Sebastian and Dr. K. Siva Sankar / Journal of Computer Science 2019, 15 (1): 190.196

DOI: 10.3844/jcssp.2019.190.196

195

Table 1: List of OS experimented with dynamic boot loader
 Dynamic boot loader

Operating system Portable Installation medium
Windows OS Win XP x √
 Win Vista x √
 Win 7 x √
 Win 8 x √
 Win 10 x √
GNU/Linux distributions Ubuntu √ √
 Puppy Linux √ √
 Fedora √ √
 Debian √ √
 Linux Mint √ √
 Kubuntu √ √
 Lubuntu √ √

The above graph shows that the Live USB along with

dynamic boot loader greatly reduces the booting time and

makes it an excellent replacement as a portable device.

The designed boot loader works with any version of

Windows Operating system. The user needs to plug in

and reboot the system. The advantage of dynamic boot

loader is that it supports USB both as a portable system

and as an installation media for different type of OS.

Several experiments were conducted to test the working

of the dynamic boot loader both as a portable medium and

as an installation resource. The dynamic boot loader works

efficiently with open source OS both for portable OS and

installation medium whereas Windows OS only for

installation medium. Both 32-bit and 64-bit OS’s are

supported. The results are tabulated as shown in Table 1.
The experiment conducted on few distributions of

Linux OS as shown in the table and its scope is not
limited to only the listed OS.

Conclusion

The Live USB increases the lifetimes of the USB to a
great extent, since all writes are done in ram and saved
only once in the USB on shutdown. The user can easily
carry the portable USB anywhere and plug in and start
running the customized session in less boot time.
Implementing the dynamic boot loader concept allows
any novice to use the portable USB system to run
smoothly on any machine without worry about the
knowledge of the BIOS settings. The designed system
along with the fingerprint authentication will provide a
highly secure and portable system.

Future Enhancements

The Live USB is vulnerable to attacks when used

with other system. Biometric authentication is on high

demand particularly for portable device. The Live USB

with dynamic boot loader being portable can be

integrated with fingerprint authentication to make the

system a highly secure portable system.

The USB is divided into 2 partitions with the first

partition made read only and second partition the secure

one protected with fingerprint. The read only partition

contains the dynamic boot loader and fingerprint

program. The private partition contains the kernel file

and storage space for storing secured data. On reboot, it

prompts the user to scan the fingerprint. The

authorization process matches the fingerprint pattern

against each of the stored pattern. On successful

authorization the secured partition opens and kernel

starts loading into RAM of the host machine.

The USB drive when used in a host environment, the

transfer of data between host system and USB makes the

data vulnerable for attacks. Since the OS runs from the

USB and not dependent on the operating system of the

machine, the proposed design achieves the security for

the data stored as well as make the environment secure.

The kernel image can be customized as per the

requirement of the user. This will greatly improve the

loading time of the OS to the host machine.

Acknowledgment

I sincerely thank my guide Dr. K. Siva Sankar for his

continuous guidance and support for the successful

completion of this work.

Author’s Contributions

Alycia Sebastian: Design, conduct experiments, data

analysis and manuscript writing.

Dr. K. Siva Sankar: Design analysis, interpretation

of data and review manuscript writing.

Ethics

As corresponding author, I assure whole or any part

of the manuscript is not under consideration for

publication in any journal.

Alycia Sebastian and Dr. K. Siva Sankar / Journal of Computer Science 2019, 15 (1): 190.196

DOI: 10.3844/jcssp.2019.190.196

196

References

https://docs.microsoft.com/en-us/previous-
versions/windows/it-pro/windows-server-2008-R2-
and-2008/ee221031(v=ws.10)

https://msdn.microsoft.com/en-
us/library/aa384642(v=vs.85).aspx

Jebarajan, T. and K.S. Sankar, 2011. A method for
developing an operating system for plug and play
bootstrap loader for USB drive. Int. J. Comput. Sci.,
8: 295-301.

Kanahasabapathy, S.S., J. Thanganadar and P.
Lekshmikanthan, 2015. A novel approach to
develop dynamic portable instructional operating
system for minimal utilization. Int. Arab J. Inform.
Technol., 12: 780-784.

Karna, A.K. and Y. Chen, 2014. Multi-operative USB
HD: An all-in-one solution to IT supports and
forensic experts. J. Software, 9: 847-858.

 DOI: 10.4304/jsw.9.4.847-858
Karna, A.K., 2010. Multipurpose USB hard disk: Your

mini laptop. Proceedings of the International
Conference on Information Technology and
Computer Science, pp: 357-360.

 DOI: 10.1109/ITCS.2010.93

Kushwaha, A.S., 2013. A trusted bootstrapping scheme

using USB key based on UEFI. Int. J. Comput.

Commun. Eng., 2: 543-546.

 DOI: 10.7763/IJCCE.2013.V2.245

Sankar, K.S., 2010. A method for developing bootstrap

loader and configuring network for live USB flash

drive. Int. J. Decis. Mak. Supply Chain Logist., 1:

221-232.

Sebastian, A. and K.S. Sankar, 2015. Design of a boot

loader for operating system. Austral. J. Basic

Applied Sci., 9: 368-374.

Sivaiah, B., T.S.N. Murthy and T. Vandana Babu, 2014.

Boot multiple operating systems from ISO images

using USB disk. Proceedings of the International

Conference on Electronics and Communication

Systems, Feb. 13-14, IEEE Xplore Press,

Coimbatore, India, pp: 1-5.

 DOI: 10.1109/ECS.2014.6892602

